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THE PARAMETER SELECTION PROBLEM FOR MANN’S FIXED
POINT ALGORITHM

Hong-Kun Xu

Abstract. Mann’s fixed point algorithm can be written as a line search
method that generates a sequence {xn} through the recursive manner xn+1 =
xn − αnvn, where αn is the stepsize and where vn is the search direction
given by vn = xn − Txn, with T being a nonexpansive mapping. This line
search method has widely been used in optimization, variational inequalities
and fixed point problems. In this paper, we address the problem of selection
of the sequence of parameters, {αn}, so as to have optimal convergence of
this algorithm.

1. INTRODUCTION

A variational inequality problem (VIP) is formulated as finding a point x∗ ∈ K
such that

(1.1) 〈f(x∗), x− x∗〉 ≥ 0, x ∈ K

whereK is a closed convex subset of a Hilbert spaceH (finite or infinite-dimensional)
with inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and f : K → H is a mapping.
It is known that the VIP (1.1) is equivalent to a fixed point problem (FPP) of finding
a point x∗ ∈ K such that

(1.2) Tx∗ = x∗

where T is a self-mapping of K given by

(1.3) T = PK(I − λf)
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with λ > 0 being any positive real number, and PK being the (nearest point)
projection from H onto K; that is, for x ∈ H , PKx is the only point in K with the
property

(1.4) ‖x− PKx‖ = inf{‖x− y‖ : y ∈ K}.

It is known that if f : K → H is strongly monotone (i.e., there exists a constant
γ > 0 such that 〈f(x)−f(y), x−y〉 ≥ γ‖x−y‖2 for all x, y ∈ K) and if f is also
Lipschitzian (i.e., there exists a constant L such that ‖f(x) − f(y)‖ ≤ L‖x − y‖
for all x, y ∈ K), and if λ > 0 is small enough (precisely, 0 < λ < 2γ/L2), then
the mapping T given by (1.3) is a contraction:

(1.5) ‖Tx− Ty‖ ≤ α‖x − y‖, x, y ∈ K

where α =
√

1 − λ(2γ − λL2) < 1. Hence, Banach’s contraction principle guar-
antees that T has a unique fixed point, which is also the unique solution of the VIP
(1.1), and for each x ∈ K, the sequence of Picard iterates, {Tnx}, converges in
norm to this unique solution.

This argument however fails if f is either not strongly monotone or non-
Lipschitzian because the mapping T would not be a contraction; instead, T would
be nonexpansive; that is,

(1.6) ‖Tx − Ty‖ ≤ ‖x − y‖, x, y ∈ K.

Thus iterative methods for finding fixed points of nonexpansive mappings are
needed, among which is Mann’s fixed point algorithm [7] which, starting with
an arbitrary x0 ∈ C, generates a sequence {xn} via the recursive manner:

(1.7) xn+1 = (1 − αn)xn + αnTxn, n = 0, 1, · · · ,

where {αn} is a sequence in the interval [0, 1]. This algorithm has extensively been
investigated (see [4, 5, 6, 9, 10, 11] and the references therein).

In this paper we will look at Mann’s fixed point algorithm (1.7) from another
angle. More precisely, we rewrite (1.7) in the form:

(1.8) xn+1 = xn − αnvn, vn = xn − Txn.

Hence, Mann’s algorithm (1.7) can indeed be viewed as a line search algorithm. The
problem to be addressed in this paper is the optimal parameter selection problem.
In other words, we try to select the sequence of parameters, {αn}, so as to have
optimal convergence of the sequence {xn}. This problem remains open. We will
however provide with some partial answers.
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2. SOME PROPERTIES AND CONVERGENCE RESULTS FOR MANN’S FIXED POINT
ALGORITHM

Let K be a nonempty closed convex subset of a Hilbert space H and let T :
K → K be a nonexpansive mapping such that the set of fixed points of T , Fix(T ) =
{x ∈ K : Tx = x}, is nonempty.

Recall that Mann’s fixed point algorithm generates a sequence {xn} via the
recursive way:

(2.1) xn+1 = (1− αn)xn + αnTxn, n = 0, 1, · · · ,

where the initial guess x0 ∈ K is arbitrary and the sequence of parameters, {αn}, is
a sequence in the interval [0, 1]. We say that a sequence {xn} is a Mann’s sequence
(defined by the parameter sequence {αn}) if it is generated by Mann’s algorithm
(2.1). Below we discuss some properties of Mann’s sequences.

Proposition 2.1. Let {xn} be a Mann sequence. Then the sequence {‖xn −
Txn‖} is decreasing. In particular, limn→∞ ‖xn − Txn‖ exists.

Proof. We have

‖xn+1 − Txn+1‖ = ‖(1− αn)(xn − Txn+1) + αn(Txn − Txn+1)‖
≤ (1 − αn)‖xn − Txn+1‖ + αn‖Txn − Txn+1‖
≤ (1 − αn)(‖xn − Txn‖ + ‖Txn − Txn+1‖)

+αn‖xn − xn+1‖
≤ (1 − αn)‖xn − Txn‖ + ‖xn − xn+1‖
= (1 − αn)‖xn − Txn‖ + αn‖xn − Txn‖
= ‖xn − Txn‖.

Let {xn} be a Mann sequence. For x∗ ∈ Fix(T ) and n ≥ 1 such that xn �= Txn,
define Anx∗ ([8]) by

(2.1) Anx∗ =
‖xn − x∗‖2 − ‖Txn − x∗‖2

‖xn − Txn‖2
+ 1 − αn.

Note that, since T is nonexpansive, it is always true that Anx∗ ≥ 0 for all x∗ ∈
Fix(T ) and n ≥ 1.

Lemma 2.2.
(i) There holds the identity

(2.1) ‖xn+1 − x∗‖2 = ‖xn − x∗‖2 − anAnx∗‖xn − Txn‖2.
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(ii) The sequence {‖xn − x∗‖} is decreasing; in particular, limn→∞ ‖xn − x∗‖
exists.

(iii) limn→∞ anAnx∗‖xn − Txn‖2 = 0.

Proof. (i) We compute

‖xn+1 − x∗‖2 = ‖(1− αn)(xn − x∗) + αn(Txn − x∗)‖2

= (1− αn)‖xn − x∗‖2 + αn‖Txn − x∗‖2

−αn(1− αn)‖xn − Txn‖2

= ‖xn − x∗‖2 − αn(‖xn − x∗‖2 − ‖Txn − x∗‖2

+(1 − αn)‖xn − Txn‖2)
= ‖xn − x∗‖2 − anAnx∗‖xn − Txn‖2.

(ii) and (iii) follow from (i).

Lemma 2.3. (Demiclosedness Principle [3]). I − T is demiclosed in the
sense that whenever {un} is a sequence in K such that un → u∞ weakly and
un − Tun → 0 strongly, it follows that u∞ = Tu∞.

One of the fundamental convergence results on Mann’s fixed point algorithm is
the following.

Theorem 2.4. A Mann sequence {xn} converges at least weakly to a fixed
point of T provided the condition

(2.4)
∞∑

n=0

αn(1 − αn) = ∞

is satisfied.

Theorem 2.5. Let {xn} be a Mann sequence. Assume the following condition
is satisfied

(A) For any fixed point x∗ of T , if {αnAx∗} converges to zero, then every weak
limit point of {xn} is a fixed point of T .

Then {xn} converges weakly to a fixed point of T .

Proof. It suffices to prove that the weak limit point set of the sequence {xn},
ωw(xn) ⊂ Fix(T ) which together with the facts that limn→∞ ‖xn−x∗‖ exists for all
x∗ ∈ Fix(T ) and the Opial property of a Hilbert space implies the weak convergence
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of {xn}. To see ωw(xn) ⊂ Fix(T ), let δ = limn→∞ ‖xn − Txn‖. Then, if δ = 0,
Lemma 2.3 implies that ωw(xn) ⊂ Fix(T ). If δ > 0, then by Lemma 2.2(iii),
limn→∞ anAnx∗ = 0. Hence, condition (A) implies that ωw(xn) ⊂ Fix(T ).

The following result shows that condition (A) is weaker than condition (2.4).

Theorem 2.6. Assume that {xn} is a Mann sequence where the sequence of
parameters, {αn}, satisfies the condition (2.4). Then condition (A) is satisfied.
Hence {xn} converges weakly to a fixed point of T .

Proof. It suffices to show that condition (A) implies that limn→∞ ‖xn−Txn‖ =
0 which in turns implies that ωw(xn) ⊂ Fix(T ).

Let δ = limn→∞ ‖xn−Txn‖. If δ > 0, then ‖xn−Txn‖ ≥ δ for all n. Hence,
by (2.3), we get

(2.5)
∞∑

n=0

αnAx∗ < ∞.

However, αnAx∗ ≥ αn(1− αn) for all n. Relation (2.5) contradicts (2.4).

3. POTENTIAL OPTIMIZATION METHOD

Suppose in Mann’s algorithm, the nth iterate xn has been constructed. We then
select the stepsize αn and define the (n + 1)th iterate xn+1 by

(3.1) xn+1 = xn − αn(xn − Txn).

We hope to select such an αn so that limn→∞ αnAnx∗ = 0 and also condition (A)
is satisfied; hence by Theorem 2.5, the Mann sequence {xn} constructed converges
at least weakly to a fixed point of T . We select αn by solving the following
one-dimensional optimization problem:

(3.2) αn = arg min
α∈S

gxn(α),

where S is some closed subset of the interval [0,1] and g is some continuous function
defined over S.

We use the notation: x(α) := x − α(x − Tx), where x ∈ H and α ∈ [0, 1].

Lemma 3.1. For all α ∈ [0, 1] and n, we have

(3.3) ‖xn(α) − Txn(α)‖ ≤ ‖xn − Txn‖.
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Proof. Since xn(α) := (1− α)xn + αTxn, we compute

‖xn(α) − Txn(α)‖ ≤ (1− α)‖xn − Txn(α)‖+ α‖Txn − Txn(α)‖
≤ (1− α)(‖xn − Txn‖ + ‖Txn − Txn(α)‖)

+α‖Txn − Txn(α)‖
≤ (1− α)‖xn − Txn‖+ ‖xn − xn(α)‖
= (1− α)‖xn − Txn‖+ α‖xn − Txn‖
= ‖xn − Txn‖.

We now consider two potential functions [8] as follows:

gx
1 (α) = ‖x(α)− Tx(α)‖2 − βα2‖x − Tx‖2,

gx
2 (α) = ‖x(α)− Tx(α)‖2 − βα(1 − α)‖x− Tx‖2,

where β > 0 is a parameter.

Lemma 3.2. Fix c ∈ (0, 1) and choose αn ∈ [0, 1] such that

(3.4) gxn
1 (αn) = min

0≤α≤c
gxn
1 (α).

Then

(3.5) ‖xn+1 − Txn+1‖2 ≤ [1− β(c2 − α2
n)]‖xn − Txn‖2.

If αn ∈ [0, 1] is chosen such that

(3.6) gxn
2 (αn) = min

0≤α≤1
gxn
2 (α),

then

(3.7) ‖xn+1 − Txn+1‖2 ≤
[
1 − β(

1
2
− αn)2

]
‖xn − Txn‖2.

Proof. First observe that xn(0) = xn, xn(1) = Txn, and xn(αn) = xn+1.
(i) The relation gxn

1 (αn) ≤ gxn
1 (c) implies that

‖xn+1 − Txn+1‖2 − βα2
n‖xn − Txn‖2

≤ ‖xn(c)− Txn(c)‖2 − βc2‖xn − Txn‖2.

This together with Lemma 3.1 implies

‖xn+1 − Txn+1‖2 ≤ [1 − β(c2 − α2
n)]‖xn − Txn‖2.
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(ii) Noticing the fact that max0≤α≤1 α(1 − α) = 1
4 , we have that the relation

gxn
2 (αn) ≤ gxn

2 (c) implies that, for any α ∈ [0, 1],

‖xn+1 − Txn+1‖2 ≤ βαn(1− αn)‖xn − Txn‖2

+‖xn(α) − Txn(α)‖2 − βα(1 − α)‖xn − Txn‖2

≤ [(1− β(
1
4
− αn(1 − αn))2]‖xn − Txn‖2

=
[
1 − β(

1
2
− αn)2

]
‖xn − Txn‖2.

Theorem 3.3. Let {xn} be a Mann sequence. Suppose that the sequence
of parameters, {αn}, is chosen according to either (3.4) or (3.6). Then {xn} is
convergent at least weakly to a fixed point of T .

Proof. By Theorem 2.5, all we need to prove is that condition (A) is satisfied.
That is, if x∗ ∈ Fix(T ) is such that αnAnx∗ → 0, then we must prove that every
weak limit point of {xn} is a fixed point of T . In other words, if xnj → z weakly,
then Tz = z. As a matter of fact, since the sequence {‖xn − Txn‖} is decreasing,
limn→∞ ‖xn − Txn‖ =: δ always exists. If δ = 0, then we are done. Assume next
δ > 0. We then distinguish two cases and we will find a contradiction in either
case. First observe

αnAnx∗ =
αn(‖xn − x∗‖2 − ‖Txn − x∗‖2)

‖xn − Txn‖2
+ αn(1 − αn).

Since both terms on the right side of the above equation are nonnegative, we find
that the assumption αnAnx∗ → 0 must imply that

(3.8) αn(1 − αn) → 0.

Case 1. By (3.5), we derive that the series
∞∑

n=1

(c2 − α2
n)‖xn − Txn‖2 < ∞.

Since ‖xn−Txn‖2 → δ2 > 0, we must have that αn → c ∈ (0, 1). This contradicts
(3.8).

Case 2. By (3.7), we see that
∞∑

n=1

(
1
2
− αn)2‖xn − Txn‖2 < ∞.
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Again since ‖xn − Txn‖2 → δ2 > 0, we must have that limn→∞ αn = 1
2 , which

again contradicts (3.8).

Can the choice of {αn} via (3.4) or (3.6) improve the convergence of the Mann
sequence {xn}? The answer is yes if the space is finite-dimensional, but unknown
if the space is infinite-dimensional.

This however can improve the convergence to zero of the sequence {‖xn −
Txn‖}. Indeed, setting γn = β(c2 − α2

n) or β(1
2 − αn)2, then in either case we

have

‖xn+1 − Txn+1‖2 ≤ (1− γn)‖xn − Txn‖2

≤ exp(−γn)‖xn − Txn‖2

...

≤ exp


−

n∑
j=0

γj


 ‖x0 − Tx0‖2.

4. AN APPLICATION TO VIP

The VIP

(4.1) 〈f(x∗), x− x∗〉 ≥ 0, x ∈ K,

where K is a closed convex subset of a Hilbert space H , is equivalent to the FPP

(4.2) Tx∗ = x∗

where T is a self-mapping of K given by

(4.3) T = PK(I − λf)

with λ > 0 a positive real number, and PK the (nearest point) projection from H

onto K.
If f is γ-strongly monotone and L-Lipschitzian, then for 0 < λ < 2γ/L2, the

mapping T defined by (4.3) is a contraction. Thus, for any x0, the sequence {T nx0}
converges strongly to the unique solution of the VIP (4.1).

Fukushima [1] considered the following potential

(4.4) gx
3 (α) = g3(x(α)) = −〈f(x(α), Tx(α)− x(α)〉 − 1

2
‖Tx(α)− x(α)‖2.

The criteria to select the control sequence {αn} is
(4.5) αn = arg min

α∈[0,1]
gxn
3 (α).
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Define {xn} as a Mann sequence by
xn+1 = xn + αn(Txn − xn).

In [1] Fukushima assumed that f : H → H is continuously differentiable and the
gradient ∇f(x) is positive definite for all x ∈ K . Under these conditions, he was
able to show that each direction Txn − xn satisfies the descent condition:

〈∇g3(xn), Txn − xn〉 < 0.

As a result, the sequence {‖Txn − xn‖} is decreasing.
Fukushima then was able to prove that, under the additional condition that the

set K is compact convex, the Mann sequence converges to a solution of the VIP
(4.1).

We now briefly look at the VIP (4.1) in the case where f is an ν-inversely
strongly monotone (ν-ism, for short); this is,

(4.6) 〈f(x)− f(y), x− y〉 ≥ ν‖f(x)− f(y)‖2

for all x, y ∈ K and some ν > 0 (f is not necessarily Lipschitzian). This class
of monotone operators are introduced due to their applications in transportation
networks (see, for instance, [2] for more details).

Again we convert this VIP to its equivalence FPP (4.2) with T given by (4.3).
It can be shown that if 0 < λ < 2ν, then the mapping T = PK(I − λf) is
nonexpansive. In fact, since the projection operator PK is nonexpansive, we get by
(4.6),

‖Tx − Ty‖2 = ‖PK(I − λf)x− PK(I − λf)y‖2

≤ ‖(I − λf)x − (I − λf)y‖2

= ‖(x− y)− λ[f(x)− f(y)]‖2

= ‖x − y‖2 − 2λ〈x− y, f(x)− f(y)〉 + λ2‖f(x) − f(y)‖2

≤ ‖x − y‖2 − λ(2ν − λ)‖f(x)− f(y)‖2

≤ ‖x − y‖2.

Thus, our results presented in Section 3 are applicable. In particular, we have the
following result.

Theorem 4.1. Consider the VIP (4.1) and its FPP equivalence (4.2) with T

given by (4.3). Given x0 ∈ K. Define {xn} by Mann’s fixed point algorithm
xn+1 = xn − αnvn, vn = xn − Txn, n ≥ 0

where the sequence of parameters, {αn}, is selected by the potential optimization
method (3.4) or (3.6). Then {xn} converges weakly to a solution of the VIP (4.1).
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