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Abstract. The circular chromatic number χc(G) of a graph G is a very
natural generalization of the concept of chromatic number χ(G), and has been
studied extensively in the past decade. In this paper we present a new method
for bounding the circular chromatic number from below. Let ω be an acyclic
orientation of a graph G. A sequence of acyclic orientations ω1, ω2, ω3, . . . is
obtained from ω in such a way that ω1 = ω, and ωi (i ≥ 2) is obtained from
ωi−1 by reversing the orientations of the edges incident to the sinks of wi−1.
This sequence is completely determined by ω, and it can be proved that there
are positive integers p and M such that ωi = ωi+p for every integer i ≥ M .
The value p at its minimum is denoted by pω. To bound χc(G) from below,
the methodology we develop in this paper is based on the acyclic orientations
ωM , ωM+1, · · · , ωM+pω−1 of G. Our method demonstrates for the first time
the possibility of extracting some information about χc(G) from the period
ωM , ωM+1, · · · , ωM+pω−1 to derive lower bounds for χc(G).

1. INTRODUCTION

The purpose of this paper is to explore the possibilities of using dynamic tech-
niques to obtain lower bounds for circular chromatic number. We use Bondy and
Murty’s book [4] for terminology and notation not defined here and consider only
finite, simple and connected graphs. First let us give a definition of the circular
chromatic number χc(G) of a graph G. Suppose k ≥ 2d are positive integers. A
(k, d)-coloring of a graph G is a mapping f : V (G) → {0, 1, . . . , k− 1} such that
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for any edge xy of G, d ≤ |f(x)− f(y)| ≤ k − d. If G has a (k, d)-coloring then
we say G is (k, d)-colorable. The circular chromatic number χc(G) of a graph G
[6, 7, 9] is defined as

χc(G) = inf{k/d : G is (k, d)−colorable}.

In fact, to determine the circular chromatic number of a graph G, it suffices to check
finitely many k, d whether G is (k, d)-colorable. In [8, 9, 11] we see the following
fact

Fact 1. For any graph G with n vertices, we have

χc(G) ∈ {k
d : k ≤ n, d ≤ α(G) and n

α(G) ≤ k
d ≤ χ(G)},

where α(G) is the maximum size of an independent set in G and χ(G) is the
chromatic number of G.

A graph G is called k-colorable if V (G) can be colored by at most k colors so
that adjacent vertices are colored by different colors. The chromatic number of G,
denoted by χ(G), is the smallest k such that G is k-colorable. For any graph G,
χ(G) − 1 < χc(G) ≤ χ(G), that is χc(G) is a refinement of χ(G). The study of
circular chromatic number χc(G) has been very active in the past decade [9, 11].
In this paper we present a new method for bounding the circular chromatic number
from below.

To explain the main point of our method we introduce a discrete dynamical
system on a graph G. Let ω be an acyclic orientation of G. A vertex in ω with
zero outdegree (resp., zero indegree) is called a sink (resp., source) of ω. Let
sink(ω) (resp., source(ω)) denote the set of sinks (resp., sources) in ω. One can
obtain a sequence of acyclic orientations ω1, ω2, ω3, . . . from ω in such a way that
ω1 = ω, and ωi (i ≥ 2) is obtained from ωi−1 by reversing the orientations of
the edges incident to the sinks of wi−1. This sequence is completely determined
by ω, and hence we say that this sequence {ωi}∞i=1 is generated by ω. Obviously
the sequence of {ωi}∞i=1 has the following periodic behavior [1, 2, 3]: There exist
positive integers p and M such that ωi = ωi+p for every integer i ≥ M . The value
p at its minimum is denoted by pω and is called the period of ω. For any i ≥ M ,
the sequence ωi, ωi+1, · · · , ωi+pω−1 is called a period generated by ω. For a vertex
u of an acyclic digraph ω, let mu

ω denote the number of times that u becomes a sink
in a period generated by ω. It was shown in [1, 2, 3] that mu

ω = mv
ω for any two

vertices u and v of the acyclic digraph ω. So we writemω instead of mu
ω, andmω is

called the multiplicity of ω. In Figure 1 we depict a sequence of acyclic orientations
{ωi}∞i=1 which is generated by ω1. This sequence has the periodic property that
ωi = ωi+5 for every i ≥ 1, moreover, pω1 = 5 and mω1 = 2.
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Suppose that w is an orientation of G and C is a closed walk of G. Denote by
C+

w and C−
w the set of forward arcs and the set of backward arcs of C in the orien-

tation w, respectively. That is, C+
w is the collection of edges of C whose direction

in the digraph w agree with the direction of the traversal (clockwise or counter-
clockwise) of the closed walk C. From now on, for simplicity of notation, we write
maxC |C|/|C+

ω | instead of max{|C|/|C+
ω |, |C|/|C−

ω | : C is a closed walk of G}.
In 1989 [3], Barbosa and Gafni showed that if G is a tree with at least one edge
then pω/mω = 2 for any acyclic orientation ω of G. Furthermore, if G contains at
least one closed walk, they proved the following result.

Fig. 1. A sequence of acyclic orientations {ωi}∞i=1 generated by ω1.

Theorem 2. ([3]). Suppose G is not a tree. For any acyclic orientation ω of
G we have

pω

mω
= max

C

|C|
|C+

ω | ,

where the maximum is over all closed walks of G.

In 1998 [5], the following result was proved by Goddyn et al.

Theorem 3. ([5]). The circular chromatic number χc(G) of a graph G equals

min
ω

max
C

|C|
|C+

ω | ,

where the minimum is over all acyclic orientations of G and the maximum is over
all closed walks of G.

It is clear that the following result follows from Theorems 2 and 3 immediately.

Theorem 4. Suppose G is a connected simple graph. Then

χc(G) = min
ω

pω

mω
,
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where the minimum is over all acyclic orientations of G.

In Section 2, we use Theorem 4 to develop a new method for bounding the
circular chromatic number χc(G) from below. The central feature of our method
is that, for a period ωi, ωi+1, · · · , ωi+pω−1 generated by an acyclic orientation ω

of a graph G, we are going to derive lower bounds on χc(G) by considering the
sets sink(ωi), sink(ωi+1),· · · , sink(ωi+pω−1) of this period. The aim of this paper
is to develop a methodological framework for deriving lower bounds on χc(G) by
using a period generated by an “optimal” acyclic orientation of G. To demonstrate
our methodology, throughout this paper several lower bounds for circular chromatic
number are derived in a somewhat unified manner. Some of these bounds are new,
and some of these bounds might follow from existing theorems.

2. LOWER BOUNDS FOR CIRCULAR CHROMATIC NUMBER

In this section, lower bounds on the circular chromatic number χc(G) of a
graph G are derived by using the dynamic characterization of χc(G) shown in
Theorem 4. To simplify our expressions, throughout this section we assume that if
ω1, ω2, · · · , ωpω is a period generated by an acyclic digraph ω then, for any integer
j > pω, we define ωj to be the digraph ωj−pω . For a vertex u of a graphG, letNk(u)
denote all vertices of distance k from u in G, i.e. Nk(u) = {v ∈ V (G) : dG(u, v) =
k}. For a set S ⊆ V (G), we define N1(S) = {v ∈ V (G) \ S : vu ∈ E(G) for
some u ∈ S}. We write N1(x, y) instead of N1({x, y}) for short. Let αk(G)
(or simply αk if it cause no confusion) denote the maximum number of vertices in
a vertex-induced k-colorable subgraph of G. Notice that α1(G) = α(G). For a
vertex v of a graph G, let αv denote the maximum size of an independent set of G
containing v. For a vertex subset S of G, by abuse of notation, we also use S to
denote the subgraph of G induced by S.

The following theorem reveals connection between the circular chromatic num-
ber χc(G) of a graph G and the chromatic number of the subgraph induced by a
vertex’s distance-1 neighborhood N1(u).

Theorem 5. (a) For any vertex u of a graph G, χc(G) ≥ χ(N1(u)) + 1.
(b) For any graph G we have χc(G) ≥ ∑

v∈V (G) 1/αv.

Proof. By Theorem 4, there is an acyclic orientation ω of G such that pω/mω =
χc(G). Let ω1, ω2, · · · , ωpω be a period generated by ω. Let Ii denote the indicator
function on the set sink(ωi) i.e., Ii(v) = 1 if v ∈ sink(ωi) and 0 otherwise. Note
that

∑pω

i=1 Ii(v) = mω for any vertex v of G.

(a) Let ξ = χ(N1(u)). Note that if u and v are adjacent in G, and u is a sink
of wi and wi+t, then there must be an index j such that i < j < i + t
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and v is a sink of wj . Moreover, since each sink(ωj) is an independent
set of G, the subgraph induced by the neighbors of u is (t − 1)-colorable.
Therefore it must be that t ≥ ξ + 1 and u �∈ ⋃ξ

s=1 sink(ωi+s). It follows that
pω ≥ ∑pω

i=1(ξ + 1)Ii(u) = (ξ + 1)mω, and hence χc(G) = pω/mω ≥ ξ + 1.
(b) This part follows from the fact that

pω =
pω∑

i=1

∑

v∈V (G)

Ii(v)/|sink(ωi)|=
∑

v∈V (G)

pω∑

i=1

Ii(v)/|sink(ωi)| ≥
∑

v∈V (G)

mω/αv .

Note that Theorem 5(a) yields the following well-known result that if H has a
universal vertex, i.e., a vertex adjacent to every other vertex, then χc(H) = χ(H).

From now on, we say that ω is an optimal acyclic orientation of G with period
ω1, ω2, · · · , ωpω if ω1, ω2, · · · , ωpω is a period generated by ω and pω/mω = χc(G).
The following theorem is a special case of Lemma 1 in [10], here we give a different
proof based on arguments similar in concept to the proofs of Theorem 5.

Theorem 6. Let H be a graph with vertex set {v1, v2, . . . , vn}. Let G be
the graph obtained from n + 1 disjoint graphs H, H 1, H2, . . . , Hn by joining all
vertices in H1, H2, . . . , Hn to a new vertex x, and joining all vertices in H i to vi,
for i = 1, 2, . . . , n. The graph G is represented diagrammatically in Figure 2 left.
If H1, H2, . . . , Hn are t-chromatic graphs and χ(H) ≥ 3, then χc(G) ≥ t + 2.

Proof. Let ω be an optimal acyclic orientation ofG with period ω1, ω2, · · · , ωpω .
Assume that x ∈ sink(ωi). Let s be the largest integer such that x �∈ ∪s

k=1sink(ωi+k).
Since x is adjacent to all vertices of Hj (j = 1, 2, . . . , n) in G, we have V (Hj) ⊆
∪s

k=1sink(ωi+k) (j = 1, 2, . . . , n). It is clear that s ≥ t. Let r = χ(H). To prove
this theorem, we make the following stronger claim.

Claim. Either s ≥ t + 1 holds or s = t and x �∈ ⋃t+r
k=2 sink(ωi+s+k).

To prove the claim, it suffices to assume that s = t. In this case, for any
j = 1, 2, . . . , n and any k = 1, 2, . . . , s, we have V (Hj) ∩ sink(ωi+k) �= ∅. Let
� be the largest integer such that x �∈ ∪�

k=2sink(ωi+s+k). We should show that
� ≥ t + r. Note that x ∈ sink(ωi) ∩ sink(ωi+s+1). According to the above
arguments, in the digraph ωi+s+1 we see that V (Hj) ⊆ N−(vj) for j = 1, 2, . . . , n

(as depicted in Figure 2 right). Next, since x ∈ sink(ωi+s+1)∩ sink(ωi+s+�+1), we
see that each vertex in the graphs H1, H2, . . . , Hn is a sink in one of the digraphs
ωi+s+2 , ωi+s+3, . . . , ωi+s+�. Therefore it must be that V (H) ⊆ ∪�

k=1sink(ωi+s+k).
Let �̄ be the smallest integer such that V (H) ⊆ ∪ �̄

k=1sink(ωi+s+k). Note that
�̄ ≥ χ(H) = r ≥ 3, since sink(ωi+s+1), . . . , sink(ωi+s+�̄) are independent sets of
G. By the choice of �̄ there is a vertex inH , say vn, such that vn �∈ sink(ωi+s+k) for
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k = 1, 2, . . . , �̄−1 and vn ∈ sink(ωi+s+�̄). It follows that V (Hn)∩sink(ωi+s+k) =
∅ for each k = 1, 2, . . . , �̄. However, in the above discussion we have shown that
V (Hn) ⊆ ∪�

k=2sink(ωi+s+k). Therefore we conclude that V (Hn) ⊆ ∪�
k=�̄+1

sink
(ωi+s+k), and hence � − �̄ ≥ χ(Hn) = t. That is � ≥ t + r, since �̄ ≥ r, and this
proves the claim.

Now we are in the position to be able to prove the theorem. We know that there
are exactly mω integers 1 ≤ i1 < i2 < . . . < imω ≤ pω such that x ∈ sink(ωik)
for k = 1, 2, . . . , mω. Let �k = ik+1 − ik for k = 1, 2, . . . , mω − 1, and let
�mω = pω − (imω − i1). From what was shown in the first paragraph of this proof,
we see that �k ≥ t + 1 for each k = 1, 2, . . . , mω. Moreover, by the claim we
proved above, if �k = t + 1 then �k+1 ≥ t + r ≥ t +3 (the addition in the subscript
of �k+1 is taken modulo mω). Consequently, we have

pω =
mω∑

k=1

�k ≥
mω∑

k=1

(t + 2) = mω(t + 2),

and therefore χc(G) = pω/mω ≥ t + 2.

Fig. 2. The graph G (left) and the digraph ωi+s+1 (right).

Next, in the following two theorems, lower bounds of the form |V (G)|/(α1(G)−
ε) are established for circular chromatic number χc(G) of a graph G. From now
on, if ω1, ω2, · · · , ωpω is a period generated by ω, then for arbitrary positive integers
i ≥ 1 and � ≤ pω − 1 the vector (|sink(ωi)|,|sink(ωi+1)|,· · · ,|sink(ωi+�)|) is called
a sub-pattern of ω.

Theorem 7. If graphG has the following three properties P1: χ(N 1(u, v)) ≥ 2
for any two nonadjacent vertices u and v in G, P2: |V (G)| ≤ 3α 1(G) − 3, and
P3: α2(G) < 2α1(G), then we have χc(G) ≥ |V (G)|/(α1(G)− 2

3).

Proof. Let ω be an optimal acyclic orientation of G with period ω1, ω2, · · · , ωpω .
Throughout the proof, let Ii denote the independent set sink(ωi) for i = 1, 2, 3, · · · .
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Claim A. For any index i, we have |Ii| + |Ii+1| ≤ 2α1(G)− 1.

Note that, for any index i, the vertex subset Ii
⋃

Ii+1 induces a bipartite subgraph
of G. Since G has property P3, we see that 2α1(G) > α2(G) ≥ |Ii

⋃
Ii+1| =

|Ii| + |Ii+1| which proves the claim.

Claim B. For any index i, we have |Ii| + |Ii+1| + |Ii+2| ≤ 3α1(G)− 2.

To prove this claim by contradiction, let us assume that, for some index i, |Ii|+
|Ii+1|+|Ii+2| ≥ 3α1(G)−1. We must have (|Ii|, |Ii+1|, |Ii+2|) = (α1(G), α1(G)−
1, α1(G)), for otherwise either |Ii|+ |Ii+1| = 2α1(G) or |Ii+1|+ |Ii+2| = 2α1(G)
would hold, contrary to Claim A. From property P2 and the fact that Ii ∩ Ii+1 =
∅ = Ii+1 ∩ Ii+2, we conclude that there exist two distinct nonadjacent vertices u

and v in the set Ii ∩ Ii+2, and hence it must be N1(u, v) ⊆ Ii+1. But which is
impossible since G has property P1. This completes the proof of Claim B.

We conclude from Claim B that pω(3α1(G)−2) ≥ ∑pω

i=1(|Ii|+ |Ii+1|+ |Ii+2|)
= 3mω|V (G)|, hence that pω/mω ≥ |V (G)|/(α1(G)− 2

3 ). This completes the
proof.

Theorem 8. Suppose t is a positive integer. If a graphG has the following three
properties P1: χ(N1(v)) ≥ t− 2 for any vertex v in G, P2: χ(N1(I)) ≥ t− 1 for
any maximum independent set I of G, and P3: any two different maximum indepen-
dent sets ofG intersect in exactly one vertex, then χ c(G) ≥ |V (G)|/(α1(G)− t−1

t ).

Proof. Let ω be an optimal acyclic orientation ofG with period ω1, ω2, · · · , ωpω .
To shorten notation, let Ii stand for the independent set sink(ωi) for i = 1, 2, 3, · · · .

Claim. For any index i, we have
∑t−1

s=0 |Ii+s| ≤ t(α1(G) − 1) + 1.

To prove this claim by contradiction, let us assume that there exists an index i

such that
∑t−1

s=0 |Ii+s| ≥ t(α1(G) − 1) + 2. Since each independent set Ii+s has
size at most α1(G), there exist two maximum independent sets Ii+a and Ii+b with
0 ≤ a < b ≤ t − 1 such that |Ii+k| < α1(G) for each k ∈ [a + 1, b − 1]. If
Ii+a = Ii+b then we must have N1(Ii+a) ⊆ ∪b−1

s=a+1Ii+s and hence χ(N1(Ii+a)) ≤
(b−1)−(a+1)+1 ≤ t−2. This contradicts the fact that G has the property P2. If
Ii+a �= Ii+b then, by property P3, there exists a vertex v such that Ii+a∩Ii+b = {v},
which leads to N1(v) ⊆ ∪b−1

s=a+1Ii+s, and hence χ(N1(v)) ≤ (b−1)−(a+1)+1 ≤
t − 2. Which follows that b − a = t − 1 and hence a = 0, b = t − 1, since G
has property P1 and 0 ≤ a < b ≤ t − 1. We see at once that

∑t−1
s=0 |Ii+s| =∑b

s=a |Ii+s| ≤ t(α1(G)− 1) + 1, since |Ii+a| = |Ii+b| = α1(G), |Ii+a ∩ Ii+b| = 1,
and |Ii+k| < α1(G) for each k ∈ [a + 1, b − 1]. This contradicts our assumption
that

∑t−1
s=0 |Ii+s| ≥ t(α1(G) − 1) + 2. This proves the claim.
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It follows that pω[t(α1(G) − 1) + 1] ≥ ∑pω

i=1

∑t−1
s=0 |Ii+s| = tmω|V (G)|, and

finally that pω/mω ≥ |V (G)|/(α1(G)− t−1
t ). This proves the theorem.

In the following, we give two examples to show that the lower bounds obtained
above are non-trivial, and the methodology we used in this paper throws some
interesting light on arguments regarding circular chromatic number of a graph. Let
Q be the graph obtained from the Petersen graph by deleting one vertex.

Example 9. χc(Q) = 3.

Proof. By Fact 1 we have χc(Q) ∈ {k
d : k ≤ 9, d ≤ 4 and 9

4 ≤ k
d ≤ 3}, it

follows that χc(Q)∈{5
2 , 8

3 , 3}. Since α1(Q)=4, α2(Q)<8 and χ(Q)=3, we can
easily check that the graph Q satisfies all the properties stated in the Theorem 7. It
follows that χc(Q)≥ |V (Q)|

α1(Q)−(2/3)
=27/10>8/3, which completes the proof.

Fig. 3. An acyclic orientation ω on PL.

Example 10. Suppose PL is the line graph of the Petersen graph. Then
χc(PL) = 11/3.

Proof. The acyclic orientation ω of PL (depicted in Figure 3) has pω/mω =
11/3, and hence χc(PL) ≤ 11/3. Since α1(PL) = 5 and χ(PL) = 4, similar to
the proof of Example 9, by Fact 1 we have χc(PL) ∈ {3, 13

4 , 10
3 , 7

2 , 11
3 }. Since

each vertex of the Petersen graph has degree 3, PL has the property P1 of Theorem
8 for t = 4. Since the subgraph left by deleting a perfect matching from the
Petersen graph contains an odd cycle, thus PL has the property P2 of Theorem 8 for
t = 4. We also see that any two different maximum matchings of the Petersen graph
intersect in exactly one edge, thus PL has the property P3 of Theorem 8. Therefore
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PL satisfies all the properties stated in Theorem 8 for t = 4. We conclude that

χc(PL) ≥ |V (PL)|
α1(PL) − 3

4

=
15

5 − 3
4

=
60
17

>
7
2
.

Thus it must be χc(PL) = 11/3, since χc(PL) ∈ {3, 13
4 , 10

3 , 7
2 , 11

3 }.
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