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Abstract. An adjacent vertex distinguishing total coloring of a graph G is a
proper total coloring of G such that any pair of adjacent vertices are incident
to distinct sets of colors. The minimum number of colors required for an
adjacent vertex distinguishing total coloring of G is denoted by χ′′

a(G). Let
mad(G) and ∆(G) denote the maximum average degree and the maximum
degree of a graph G, respectively.

In this paper, we prove the following results: (1) If G is a graph with
mad(G) < 3 and ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ′′

a(G) ≤ ∆(G) + 2, and
χ′′

a(G) = ∆(G)+2 if and only ifG contains two adjacent vertices of maximum
degree; (2) If G is a graph with mad(G) < 3 and ∆(G) ≤ 4, then χ′′

a(G) ≤ 6;
(3) If G is a graph with mad(G) < 8

3 and ∆(G) ≤ 3, then χ′′
a(G) ≤ 5.

1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we only consider simple graphs, i.e. graphs without loops or
multiple edges. Let G be a graph with vertex set V (G) and edge set E(G). A
proper total k-coloring is a mapping φ : V (G) ∪ E(G) → {1, 2, . . . , k} such that
any two adjacent or incident elements in V (G) ∪ E(G) have different colors. The
total chromatic number χ ′′(G) of G is the smallest integer k such that G has a total
k-coloring. Let Cφ(v) = {φ(v)} ∪ {φ(xv) | xv ∈ E(G)} denote the set of colors
assigned to a vertex v and those edges incident to v. A proper total k-coloring φ of
G is adjacent vertex distinguishing, or a total-k-avd-coloring, if C φ(u) �= Cφ(v)
whenever uv ∈ E(G). The adjacent vertex distinguishing total chromatic number
χ′′

a(G) is the smallest integer k such that G has a total-k-avd-coloring.
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Let ∆(G) denote the maximum degree of a graph G. By definition, it is evident
that χ′′

a(G) ≥ χ′′(G) ≥ ∆(G)+1 for any graphG. Zhang et al. [6] first investigated
the adjacent vertex distinguishing total coloring of graphs by determining completely
the adjacent vertex distinguishing total chromatic numbers for paths, cycles, fans,
wheels, trees, complete graphs, and complete bipartite graphs. The well-known
Total Coloring Conjecture, made by Behzad [1] and independently by Vizing [4],
says that every simple graph G has χ′′(G) ≤ ∆(G) + 2. This conjecture still
remains open. Contrastively, Zhang et al. [6] put forward the following conjecture:

Conjecture 1. If G is a graph with at least two vertices, then χ′′
a(G) ≤

∆(G) + 3.

If Conjecture 1 were true, then the upper bound ∆(G) + 3 for χ′′
a(G) is tight.

For instance, χ′′
a(K2n+1) = ∆(K2n+1) + 3 = 2n + 3 for any n ≥ 1. Chen [2]

further constructed a class of graphs, i.e. the joint graph sP3
∨

Kt, attaining the
upper bound ∆ + 3.

More recently, Wang [5] and Chen [2] independently confirmed Conjecture 1
for graphs G with ∆(G) ≤ 3.

Let χ(G) and χ′(G) denote the (vertex) chromatic number and the edge chro-
matic number of a graph G, respectively. The following result follows immediately
from the definitions of parameters under consideration:

Proposition 1. For any graph G, χ′′
a(G) ≤ χ(G) + χ′(G).

Proposition 1 implies that Conjecture 1 holds for all bipartite graphs and for
Class 1 graphs G with χ(G) ≤ 3. We say that a graph G is of Class 1 if χ′(G) =
∆(G).

Another easy observation was given in [6] as follows:

Proposition 2. If G is a graph with two adjacent vertices of maximum degree,
then χ′′

a(G) ≥ ∆(G) + 2.

Since every simple bipartite graph is of Class 1, Proposition 2 implies that every
simple bipartite graph G with a pair of adjacent vertices of maximum degree has
χ′′

a(G) = ∆(G) + 2. In particular, this is true for all regular bipartite graphs with
at least one edge.

We recall that the girth g(G) of a graph G is the length of a shortest cycle in
G. The maximum average degree mad(G) of G is defined by

mad(G) = max
H⊆G

{2|E(H)|/|V (H)|}.

Proposition 3. ([3]). Let G be a planar graph. Then
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mad(G) <
2g(G)

g(G)− 2
.

In this paper, we shall prove the following results:

Theorem A. Let G be a graph.

(1) If mad(G) < 3 and ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ′′
a(G) ≤ ∆(G) + 2; and

χ′′
a(G) = ∆(G) + 2 if and only if G contains adjacent vertices of maximum
degree.

(2) If mad(G) < 3 and ∆(G) = 4, then χ′′
a(G) ≤ 6.

(3) If mad(G) < 8
3 and ∆(G) = 3, then χ′′

a(G) ≤ 5.

We see from Proposition 3 that if G is a planar graph with g(G) ≥ 6 then
mad(G) < 3, and if g(G) ≥ 8 then mad(G) < 8

3 . This fact together with Theorem
A gives the following corollary:

Corollary B. Let G be a planar graph.

(1) If g(G) ≥ 6 and ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ′′
a(G) ≤ ∆(G) + 2; and

χ′′
a(G) = ∆(G) + 2 if and only if G contains adjacent vertices of maximum
degree.

(2) If g(G) ≥ 6 and ∆(G) = 4, then χ′′
a(G) ≤ 6.

(3) If g(G) ≥ 8 and ∆(G) = 3, then χ′′
a(G) ≤ 5.

The proof of Theorem A is established in Sections 2 and 3. We need to consider
two cases, depending on the value of mad(G).

2. CASE Mad (G) < 3

Let G be a graph. The degree of a vertex v in G, denoted dG(v), is the number
of vertices in G that are adjacent to v. Those vertices are also called the neighbors
of v. A k-vertex is a vertex of degree k. A 1-vertex is also said to be a leaf. Let
|T (G)| = |V (G)|+ |E(G)|.

Lemma 4. Let G be a graph.

(1) If v is a leaf of G, then mad(G− v) ≤mad(G);
(2) If e is an edge of G, then mad(G − e) ≤mad(G).

Proof. By definition, (2) holds obviously. The proof of (1) appeared in [3].

Suppose that φ is a total-k-avd-coloring of a graph G with the color set C =
{1, 2, · · · , k}, where k ≥ 5. Assume that v ∈ V (G) with dG(v) ≤ 2 is not adjacent
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to any vertex of the same degree as itself. Since v has at most two adjacent vertices
and two incident edges and |C| ≥ 5, we may first erase the color of v and finally
recolor it after arguing. In other words, we omit the coloring for such 1-vertices
and 2-vertices in the following discussion.

Theorem 5. IfG is a graph withmad(G) < 3 andK(G) = max{∆(G)+2, 6},
then χ′′

a(G) ≤ K(G).

Proof. Our proof proceeds by reductio ad absurdum. Assume that G is a
counterexample to the theorem such that |T (G)| is as small as possible. Since
χ′′

a(G) = max{χ′′
a(Gi)} and ∆(G) = max{∆(Gi)}, both maxima being taken

over all componentsGi of G, we know that G is a connected graph with mad(G) <

3 and χ′′
a(G) > K(G). Any proper subgraph H of G with mad(H) < 3 has

χ′′
a(H) � K(H) � K(G) by the minimality of T (G).
We are going to analyze the structure of G with a sequence of auxiliary claims.

Then we will derive a contradiction using the discharging method.
In the subsequent proofs, we routinely construct appropriate proper total color-

ings without verifying in detail that they are adjacent vertex distinguishing because
that usually can be supplied in a straightforward manner.

Claim 1. No vertex of degree at most 3 is adjacent to a leaf.

Proof. Assume to the contrary that G contains a vertex v with dG(v) ≤ 3
adjacent to a leaf. Without loss of generality, we may assume that dG(v) = 3
and u1, u2, u3 are neighbors of v with dG(u1) = 1. Let H = G − u1. Then
H is a connected graph with mad(H) ≤ mad(G) < 3 by Lemma 4(1). By the
minimality of |T (G)|, there is a total-K(G)-avd-coloring φ of H with the color set
C = {1, 2, . . . , K(G)}. We note that |C| = K(G) ≥ 6. Suppose that φ(v) = 1,
φ(vu2) = 2, and φ(vu3) = 3.

If |{4, 5, 6}∩ Cφ(ui)| ≥ 2 for all i = 2, 3, we color vu1 with 4. If |{4, 5, 6}∩
Cφ(ui)| ≤ 1 for all i = 2, 3, we color uv1 with a color in {4, 5, 6}\(Cφ(u2) ∪
Cφ(u3)). If |{4, 5, 6} ∩ Cφ(u2)| ≥ 2 and |{4, 5, 6} ∩ Cφ(u3)| ≤ 1, say, we color
vu1 with a color in {4, 5, 6}\Cφ(u3). It is easy to see that φ is extended to the
whole graph G in every possible case.

Claim 2. There does not exist a path P = x1x2 · · ·xn with dG(x1), dG(xn) ≥ 3
and dG(xi) = 2 for all i = 2, 3, · · · , n − 1, where n ≥ 4.

Proof. Assume to the contrary that G contains such a path P . Let H =
G − x2x3. Then H is a graph with mad(H) ≤ mad(G) < 3 by Lemma 4(2). By
the minimality of |T (G)|, there is a total-K(G)-avd-coloring φ of H with the color
set C = {1, 2, . . . , K(G)}.
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If n = 4, we recolor x2 with a color a ∈ C\{φ(x1), φ(x3), φ(x1x2), φ(x3x4)},
and color x2x3 with a color in C\{a, φ(x3), φ(x1x2), φ(x3x4)}.

If n ≥ 5, we recolor x3x4 with a ∈ C\{φ(x2), φ(x4), φ(x5), φ(x4x5)}, x3 with
b ∈ C\{a, φ(x2), φ(x4), φ(x4x5)}, and color x2x3 with a color in C\{a, b, φ(x2),
φ(x1x2)}.

Claim 3. There does not exist a k-vertex v, k ≥ 4, with neighbors v1, v2, · · · , vk

such that dG(v1) = 1, dG(vi) ≤ 2 for 2 ≤ i ≤ k − 2.

Proof. Assume to the contrary thatG contains such vertex v. For 2 ≤ i ≤ k−2,
if vi is a 2-vertex, we denote by ui �= v the second neighbor of vi. Note that
ui is of degree at least 3 by Claim 2 if it exists. Let H = G − v1. By the
minimality of |T (G)|, there is a total-K(G)-avd-coloring φ of H with the color
set C = {1, 2, . . . , K(G)}. Without loss of generality, we assume that φ(v) = 1,
φ(vvi) = i for i = 2, 3, · · · , k. Since∆(G) ≥ dG(v) = k, |C| ≥ ∆(G)+2 ≥ k+2.
Thus, k + 1, k + 2 ∈ C.

If k +1 ∈ Cφ(vk−1)∩Cφ(vk), we color vv1 with k +2. If k +1 /∈ Cφ(vk−1)∪
Cφ(vk), we color vv1 with k + 1. The similar argument works for the color k + 2.
If {k + 1, k + 2} ⊆ Cφ(vk−1)\Cφ(vk) or {k + 1, k + 2} ⊆ Cφ(vk)\Cφ(vk−1), we
color vv1 with k + 1.

Now suppose that k+1 ∈ Cφ(vk−1)\Cφ(vk) and k+2 ∈ Cφ(vk)\Cφ(vk−1), say.
If dG(v2) = 1, we recolor (or color) vv2 with k+1 and vv1 with k+2. If dG(v2) = 2,
we recolor (or color) vv2 with a color a ∈ {k + 1, k + 2}\{φ(v2u2)}, vv1 with a
color in {k+1, k+2}\{a}, and v2 with a color different from 1, a, φ(u2), φ(u2v2).

Claim 4. There does not exist a 2-vertex v adjacent to a 3-vertex u.

Proof. Assume to the contrary that G contains a 2-vertex v adjacent to a 3-
vertex u and another vertex w. Let u1, u2 �= v be the other neighbors of u. By
Claims 1 and 2, dG(w) ≥ 3. Let H = G− uv. By the minimality of |T (G)|, there
is a total-K(G)-avd-coloring φ of H with the color set C = {1, 2, . . . , K(G)}.
Without loss of generality, we assume that φ(u) = 1, φ(uu1) = 2, and φ(uu2) = 3.
Note that at least two colors in {4, 5, 6} differ from φ(vw), say φ(vw) �= 4, 5.

If 4 ∈ Cφ(u1) ∩ Cφ(u2), we color uv with 5. If 4 /∈ Cφ(u1) ∪ Cφ(u2),
we color uv with 4. The similar argument works for the color 5. If {4, 5} ⊆
Cφ(u1)\Cφ(u2) or {4, 5} ⊆ Cφ(u2)\Cφ(u1), we color uv with 4. Now suppose that
4 ∈ Cφ(u1)\Cφ(u2) and 5 ∈ Cφ(u2)\Cφ(u1), say. If φ(vw) �= 6, we color uv with
6. If φ(vw) = 6, we need to consider some subcases. When 6 ∈ Cφ(u1), we color
uv with 4. When 6 ∈ Cφ(u2), we color uv with 5. When 6 /∈ Cφ(u1)∪Cφ(u2), we
recolor u with 6 and color uv with 1. Finally, we recolor v with a color different
from φ(u), φ(w), φ(uv), φ(vw).
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Claim 5. There does not exist a 4-vertex v adjacent to three 2-vertices.

Proof. Assume to the contrary that G contains a 4-vertex v with neighbors
v1, v2, v3, v4 such that dG(v1) = dG(v2) = dG(v3) = 2. Let u1 �= v be the second
neighbor of v1. By Claims 1, 2 and 4, dG(u1) ≥ 4. Let H = G − vv1. By the
minimality of |T (G)|, there is a total-K(G)-avd-coloring φ of H with the color
set C = {1, 2, . . . , K(G)}. Without loss of generality, we assume that φ(v) = 1,
φ(vvi) = i for i = 2, 3, 4. If 5, 6 ∈ Cφ(v4), or 5, 6 /∈ Cφ(v4), we color vv1 with a
color in {5, 6}\{φ(v1u1)}. Otherwise, we may assume, without loss of generality,
that 5 ∈ Cφ(v4) and 6 /∈ Cφ(v4). If φ(v1u1) �= 6, then we color vv1 with 6. If
φ(v1u1) = 6, we recolor v with 6 and color vv1 with 1.

Claim 6. There does not exist a 5-vertex v adjacent to five 2-vertices.

Proof. Assume to the contrary that G contains a 5-vertex v adjacent to five
2-vertices v1, v2, · · · , v5. For 1 ≤ i ≤ 5, let ui �= v be the second neighbor of
vi. We note that dG(ui) ≥ 3 by Claims 1 and 2. By the minimality, G − vv1

has a total-K(G)-avd-coloring φ with the color set C = {1, 2, . . . , K(G)}. We
color vv1 with a color in C\{φ(vv2), φ(vv3), φ(vv4), φ(vv5), φ(v1u1)} and recolor
v with a color in C\{φ(vv1), φ(vv2), φ(vv3), φ(vv4), φ(vv5)}. Finally, we recolor
v1, v2, · · · , v5 (if needed).

Now we continue the proof of Theorem 5.
LetH be the graph obtained by removing all leaves ofG. Then mad(H) ≤mad(G)

< 3 by Lemma 4. The other properties of the graph H are collected in the following
Claim 7:

Claim 7.

(1) There are no vertices of degree less than 2;
(2) If v ∈ V (G) with 2 ≤ dG(v) ≤ 3, then v ∈ V (H) and dH(v) = dG(v);
(3) If v ∈ V (H) with dH(v) = 2, then dG(v) = 2;
(4) If v ∈ V (G) with dG(v) ≥ 4, then dH(v) ≥ 3.

Proof. (1) Suppose thatH contains a vertex v with dH(v) ≤ 1, then dG(v) ≥ 2
by the definition of H and v is adjacent to at least dG(v) − 1 leaves in G. This
contradicts Claims 1 and 3.

The statements (2) to (4) follow immediately from Claim 1.

Claim 7 asserts that H can not contain a 2-vertex adjacent to a 2-vertex or a
3-vertex.
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In order to complete the proof, we make use of discharging method. First,
we define an initial charge function w(v) = dH(v) for every v ∈ V (H). Next, we
design a discharging rule and redistribute weights accordingly. Once the discharging
is finished, a new charge function w′ is produced. However, the sum of all charges
is kept fixed when the discharging is in progress. Nevertheless, we can show that
w′(v) ≥ 3 for all v ∈ V (H). This leads to the following obvious contradiction:

3 =
3|V (H)|
|V (H)| ≤

∑

v∈V (H)

w′(v)

|V (H)| =

∑

v∈V (H)

w(v)

|V (H)| =
2|E(H)|
|V (H)| ≤ mad(H) < 3.

The discharging rule is defined as follows:

(R). Every vertex v of degree at least 4 gives 1
2 to each adjacent 2-vertex.

Let v ∈ V (H). Then dH(v) ≥ 2 by Claim 7(1). If dH(v) = 2, then v is adjacent
to two vertices of degree at least 4 by Claim 4, each of which sends 1

2 to v by (R).
Thus, w′(v) ≥ dH(v)+ 2× 1

2 = 2+ 1 = 3. If dH(v) = 3, then w′(v) = w(v) = 3.
If dH(v) = 4, then v is adjacent to at most two 2-vertices by Claim 5. Thus,
w′(v) ≥ 4− 2× 1

2 = 3. If dH(v) = 5, then v is adjacent to at most four 2-vertices
by Claim 6. Thus, w′(v) ≥ 5 − 4 × 1

2 = 3. If dH(v) ≥ 6, then v is adjacent to at
most dH(v) 2-vertices and hence w′(v)≥dH(v)− 1

2dH(v)= 1
2dH(v)≥3 by (R).

Theorem 6. Let G be a graph with mad(G) < 3 and without adjacent vertices
of maximum degree. Let K ′(G) = max{∆(G) + 1, 6}. Then χ′′

a(G) ≤ K ′(G).

Proof. The proof is proceeded by contradiction. Assume that G is a coun-
terexample to the theorem such that |T (G)| is as small as possible. With the same
argument, we can prove that G satisfies Claims 1, 2, 4, 5 and 6.

If G does not satisfy Claim 3, we suppose that v is a k-vertex, k ≥ 4, with
neighbors v1, v2, · · · , vk such that dG(v1) = 1, dG(vi) ≤ 2 for 2 ≤ i ≤ k − 2. If
vi is a 2-vertex, for 2 ≤ i ≤ k − 2, we use ui �= v to denote the second neighbor
of vi. By the minimality of |T (G)|, G− v1 has a total-K ′(G)-avd-coloring φ′ with
the color set C′ = {1, 2, . . . , K ′(G)}. Without loss of generality, we assume that
φ′(v) = 1, φ′(vvi) = i for i = 2, 3, · · · , k.

If dG(v) = ∆(G), then since G contains no adjacent vertices of maximum
degree, we have dG(vk−1) �= ∆(G) and dG(vk) �= ∆(G). It suffices to properly
color vv1 with a color different from the colors of v, vv2, · · · , vvk. If dG(v) = k <

∆(G), then |C ′| ≥ ∆(G) + 1 ≥ k + 2, which implies that k + 1, k + 2 ∈ C ′ . The
remaining proof is similar to that of Claim 3. Therefore, G satisfies Claim 3.

Similarly, let H be the graph obtained by removing all leaves of G. Then
mad(H) ≤ mad(G) < 3 by Lemma 4. Using the same initial charge function



986 Weifan Wang and Yiqiao Wang

w(v) = dH(v) for all v ∈ V (H) and the same discharging rule (R) as in Theorem
5, we can complete the proof by providing a contradiction.

Combining Theorem 5 and Theorem 6, we conclude (1) and (2) in Theorem A.

3. CASE Mad (G) < 8
3

In this section, we prove the statement (3) in Theorem A.

Theorem 7. If G is a graph with mad(G)< 8
3 and ∆(G)≤3, then χ′′

a(G)≤5.

Proof. The proof is proceeded by contradiction. Assume that G is a counterex-
ample to the theorem such that |T (G)| is as small as possible. It is easy to show
that G possesses the following properties (a) to (c).

(a) No 2-vertex is adjacent to a leaf.

(b) No 3-vertex is adjacent to at least two leaves.

(c) There are no adjacent 2-vertices.

Claim 1. G does not contain a 3-vertex v with neighbors v1, v2, v3 such that
dG(v1) = 1 and dG(v2) = 2.

Proof. Assume to the contrary that G contains such vertex v. Let u2 �= v be the
second neighbor of v2. Note that u2 is a 3-vertex by (a) and (c). Let H = G − v1.
By the minimality of |T (G)|, there is a total-5-avd-coloring φ of H with the color
set C = {1, 2, . . . , 5}. Let φ(v) = 1, φ(vvi) = i for i = 2, 3. If at least one of 4
and 5 does not belong to Cφ(v3), say 4 /∈ Cφ(v3), we color vv1 with 4. Otherwise,
4, 5 ∈ Cφ(v3), so we can color vv1 with 5.

Claim 2. Suppose that v is a 3-vertex adjacent to a leaf x and two other
vertices y and z. Let φ be a total-5-avd-coloring of the subgraph G − x with the
color set C = {1, 2, . . . , 5}. Then {φ(v), φ(y), φ(z), φ(vy), φ(vz)}= C.

Proof. Without loss of generality, we may assume that φ(v) = 1, φ(vy) = 2
and φ(vz) = 3. If there is k ∈ {4, 5} such that Cφ(y) �= {1, 2, 3, k} and Cφ(z) �=
{1, 2, 3, k}, then we can color vx with k, which produces a contradiction.

Assume that Cφ(y) = {1, 2, 3, 4} and Cφ(z) = {1, 2, 3, 5}, say. Clearly, φ(y) �=
1, 2. If φ(y) = 3, we can recolor v with 4 and color xv with 5. Thus, we must have
φ(y) = 4. Similarly, we can prove that φ(z) = 5. Consequently, {φ(v), φ(y), φ(z),
φ(vy), φ(vz)} = {1, 2, 3, 4, 5}= C.
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Claim 3. There are no two adjacent 3-vertices each of which is adjacent to a
leaf.

Proof. Assume to contrary that G contains two adjacent 3-vertices u and v

such that u is adjacent to a leaf u1 and v is adjacent to a leaf v1. Let u2 �= v, u1 be
the third neighbor of u, and v2 �= u, v1 be the third neighbor of v. Let H = G−u1.
By the minimality of |T (G)|, there is a total-5-avd-coloring φ of H with the color
set C = {1, 2, . . . , 5}. By Claim 2 and its proof, we may assume that φ(u) = 1,
φ(uu2) = 2, φ(uv) = 3, φ(u2) = 4, φ(v) = 5, Cφ(u2) = {1, 2, 3, 4}, and
Cφ(v) = {1, 2, 3, 5}. If Cφ(v2) �= {1, 2, 4, 5}, we recolor u with 3, uv with 4, and
color uu1 with 5. If Cφ(v2) = {1, 2, 4, 5}, we recolor vv1 with 4 and color uu1

with 5.

Claim 4. There does not exist a 3-vertex that is adjacent to two 3-vertices each
of which is adjacent to a leaf.

Proof. Assume that G contains a 3-vertex u with neighbors x, y, z such that y
is adjacent to a leaf y1 and z is adjacent to a leaf z1. Let y2 �= u, y1 be the third
neighbor of y and z2 �= u, z1 be the third neighbor of z. Let H = G−{y1, z1}. By
the minimality of |T (G)|, there is a total-5-avd-coloring φ of H with the color set
C = {1, 2, . . . , 5}. Without loss of generality, we assume that φ(x) = 1, φ(xu) = 2,
and Cφ(x) ⊆ {1, 2, 3, 4}. First, we erase the colors of u, y, z, uy and uz.

If there is k ∈ {3, 4} such that φ(yy2) = φ(zz2) = k, we color u with k, uy

with 5, uz with a color in {3, 4}\{k}, y with a color in {1, 2}\{φ(y2)}, and z with
a color in {1, 2}\{φ(z2)}. Similarly to the proof of Claim 2, we can extend φ to
both edges yy1 and zz1.

Suppose that such k does not exist. We can color u with 5, uy with 3, uz with
4, say. Let φ(yy2) = a, φ(y2) = b, φ(zz2) = p, φ(z2) = q. In the following
partial coloring, y is called good if {φ(u), φ(uy)} ∩ {a, b} �= ∅ and z good if
{φ(u), φ(uz)} ∩ {p, q} �= ∅.

If both y and z are good, then yy1 and zz1 can be properly colored with a
similar argument as in the proof of Claim 2. Otherwise, we may assume that y is
not good, that is {a, b}∩ {3, 5} = ∅. This means that a, b ∈ {1, 2, 4}. Moreover, if
z is not good, then p, q ∈ {1, 2, 3}. We have the following cases (up to symmetry):

Case 1. {a, b} = {1, 2}.
(1.1) z is good.

By Claim 2, z and zz1 can be colored. If a = 1, we color y with 4 and yy1

with 5. Assume that b = 1. If Cφ(y2) �= {1, 2, 3, 4}, we color y with 4 and
yy1 with 1. If Cφ(y2) = {1, 2, 3, 4}, we recolor uy with 1 such that both y
and z are good.
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(1.2) {p, q} = {1, 2}.
If b = 1, we recolor uy with 1 such that y is good. Then we color z with 3
and zz1 with 5. If q = 1, we have a similar coloring by symmetry.

If a = p = 1, we color y with 4, z with 3, and yy1, zz1 with 5.
(1.3) {p, q} = {1, 3}.

If b = p = 1, we recolor uy with 1 and uz with 3 such that both y and z are
good.

If b = q = 1, we recolor uy with 1 such that y is good. Color z with 2 and
zz1 with 5.

If a = p = 1, we color y with 4, z with 2, and yy1, zz1 with 5.

If a = q = 1, we color y with 4 and yy1 with 5. Then we recolor uz with 1
such that z is good.

(1.4) {p, q} = {2, 3}.
We color z with 1 and zz1 with 5. If a = 1, we color y with 4 and yy1 with
5. If b = 1, we recolor uy with 1 such that y is good.

Case 2. {a, b} = {1, 4}.
(2.1) z is good.

By Claim 2, z and zz1 can be colored. If a = 1, we color y with 2 and yy1

with 5. If b = 1, we recolor uy with 1 such that both y and z are good.
(2.2) {p, q} = {1, 2}.

We have a similar argument as for Case 1.
(2.3) {p, q} = {1, 3}.

If b = p = 1, we recolor uy with 1 and uz with 3 such that both y and z are
good.

If b = q = 1, we recolor uy with 1 such that y is good. Color z with 2 and
zz1 with 5.

If a = p = 1, we color y, z with 2, and yy1, zz1 with 5.

If a = q = 1, we recolor u with 3 such that z is good. Recolor uy with 5,
and color y with 2 and yy1 with 3.

(2.4) {p, q} = {2, 3}.
If a = 1, we color y with 2, z with 1, and yy1, zz1 with 5. If b = 1, we
recolor uy with 1 such that y is good. Color z with 1 and zz1 with 5.
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Case 3. {a, b} = {2, 4}.
If z is good, we color y with 1 and yy1 with 5.
If {p, q} = {2, 3}, we color y, z with 1, yy1, zz1 with 5.
Assume that q = 1 and p ∈ {2, 3}. If a = 2, we recolor uy with 4 and uz with

1 such that both y and z are good. If b = 2, we recolor uz with 1 such that z is
good, then color y with 1 and yy1 with 5.

Assume that p = 1 and q = 3. If a = 2, we recolor uy with 4 and uz with
3 such that both y and z are good. If b = 2, we recolor uz with 3 such that z is
good, then color or recolor uy with 1, y with 3, yy1 with 5.

Assume that p = 1 and q = 2. If a = 2, we recolor uy with 4 such that y
is good. Color or recolor uz with 3, z with 4, zz1 with 5. If b = 2, we color or
recolor uy with 1, uz and y with 3, z with 4, yy1 and zz1 with 5.

With a similar and easier proof, we can get the following:

Claim 5. There does not exist a 3-vertex v adjacent to a 2-vertex and a 3-vertex
u such that u is adjacent to a leaf.

Claim 6. There does not exist a 3-vertex v adjacent to two 2-vertices.

Proof. Assume to contrary that G contains a 3-vertex v adjacent to two 2-
vertices y, z and the third vertex x. Let H = G − {vy, vz}. By the minimality,
there is a total-5-avd-coloring φ of H with the color set C = {1, 2, . . . , 5}. Without
loss of generality, we assume that φ(x) = 1, φ(xv) = 2, and Cφ(x) ⊆ {1, 2, 3, 4}.
We first color v with 5, then properly color vy, vz, and recolor y, z (if needed).

Let H be the graph obtained by removing all leaves of G. Then mad(H) ≤
mad(G) < 8

3 by Lemma 4. By Claims 1 to 6, we see thatH contains neither vertices
of degree less than 2 nor two adjacent 2-vertices, and every 3-vertex is adjacent to
at most one 2-vertex.

Again, we define an initial charge w(v) = dH(v) for every vertex v ∈ V (H)
and design the following discharging rule:

(R′) Every 3-vertex gives 1
3 to its adjacent 2-vertex.

Let w′(v) denote the new charge of a vertex v after the discharging process is
finished on H . If v is a 3-vertex, then since it is adjacent to at most one 2-vertex,
we have w′(v) ≥ 3− 1

3 = 8
3 by (R

′). If v is a 2-vertex, then since it is not adjacent
to any 2-vertex, i.e., it is adjacent to two 3-vertices, we have w′(v) = 2+ 1

3 + 1
3 = 8

3
by (R′). This shows that, for any v ∈ V (H), we have w′(v) ≥ 8

3 . However, this
leads to the following contradiction:

8
3

=

8
3
|V (H)|
|V (H)| ≤

∑

v∈V (H)

w′(v)

|V (H)| =

∑

v∈V (H)

w(v)

|V (H)| =
2|E(H)|
|V (H)| ≤ mad(H) <

8
3
.
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