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FROM RAINBOW TO THE LONELY RUNNER:
A SURVEY ON COLORING PARAMETERS OF DISTANCE GRAPHS

Daphne Der-Fen Liu*
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. Motivated by the plane coloring problem, Eggleton, Erd"os and
Skelton initiated the study of distance graphs. Let D be a set of positive
integers. The distance graph generated by D, denoted by G(Z, D), has all
integers Z as the vertex set, and two vertices x and y are adjacent whenever
|x−y| ∈ D. The chromatic number, circular chromatic number and fractional
chromatic number of distance graphs have been studied extensively in the
past two decades; these coloring parameters are also closely related to some
problems studied in number theory and geometry. We survey some research
advances and open problems on coloring parameters of distance graphs.

1. INTRODUCTION

The long-standing plane coloring problem states: What is the least number of
colors needed to paint all the points on the Euclidean plane so that any two points of
unit distance apart receive distinct colors? It was more than four decades ago that
Moser and Moser [36] proved that four colors is needed, and Hadwiger, Debrunner
and Klee [22] showed that seven colors is enough. So far, these bounds remain
the best known results for this problem. Figure 1 shows a rainbow-coloring (with
seven colors) of �2.

When restricted to all real numbers �, the analogy of the plane coloring problem
has an immediate answer: One can easily color the real line by two colors such that
any two reals with unit absolute difference apart receive different colors. However,
when the avoided absolute difference has more than one single value, the problem
becomes intricate and has generated various research topics that have been studied
extensively in the past two decades.
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Fig. 1. A 7-coloring of �2 such that any two points of unit distance apart receive
different colors. Divide �2 into cells of hexagons; the distance between any two
diagonal points in each cell is slightly smaller than 1. Then, color the points in
each cell by the same color as indicated.

In 1985, Eggleton, Erd"os and Skilton [17] introduced the notion of coloring the
real line. Let D be a subset of �. Denote G(�, D) the graph with the vertex set
� and edges connecting x and y if |x − y| ∈ D. In [17], the chromatic number
of G(�, D) for various families of sets D was investigated, such as D = [1, δ] or
D = (0, δ) for some real δ > 1, with special attention given to finding the minimal
subgraph G0 of G(�, D) such that χ(G0) = χ(G(�, D)).

Also considered in [17] is the case when D is a set of positive integers, in
which by isomorphism of components in G(�, D), is equivalent to consider the
subgraph induced by all the integers Z. Denote such a subgraph by G(Z, D) and
call it integral distance graph (or simply, distance graph). The set D is called
the distance set. The chromatic number of distance graphs for different families of
distance sets has been studied extensively (cf. [8, 9, 17-20, 25, 26, 32, 40-43, 46,
49]). Among the investigations, for instance, are the subsets of primes. Let P denote
the set of all primes. It was proved in [17] that χ(G(Z, P)) = 4, and for D ⊆ P and
|D| = 3 then χ(G(Z, D)) = 4 if and only if D = {2, 3, 5}. For 4-element prime
sets, the ones with chromatic number 4 were completely characterized by Voigt and
Walther [42]. For prime sets of more than four elements, the problem remains open.

Besides the chromatic number, other coloring parameters of distance graphs
such as the fractional chromatic number and the circular chromatic number have
also been studied in the past decade (cf. [7, 8, 29, 30, 33-35, 45]). These coloring
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parameters provide more information on the structure of distance graphs and are
useful to determine the chromatic number of distance graphs. Moreover, these
coloring parameters of distance graphs are found closely related to some problems
studied in number theory and geometry.

The fractional chromatic number of G, denoted by χf (G), is the minimum ratio
m/n (m, n ∈ Z

+) of an (m/n)-coloring, where an (m/n)-coloring is a function
on V (G) to n-element subsets of [m] = {1, 2, · · · , m} such that if uv ∈ E(G)
then f(u) ∩ f(v) = Ø. There are several equivalent definitions of the fractional
chromatic number; we refer the readers to the book by Scheinerman and Ullman
[39].

Let r, x, y be reals with 0 � x, y < r. The circular difference modular r for x
and y, denoted as |x − y|r, is defined by

|x − y|r = min {|x− y|, r − |x− y|}.

Let k, d be positive integers with k � 2d. A (k, d)-coloring of a graph G is a
mapping, c : V (G) → {0, 1, · · · , k − 1}, such that |c(x) − c(y)|k � d for any
xy ∈ E(G). The circular chromatic number χc(G) is the minimum ratio (k/d)
among all (k, d)-colorings of G. For research advances on circular coloring, we
refer the reader to the comprehensive survey articles by Zhu [47, 48].

Denote the independence number and clique size of G by α(G) and ω(G),
respectively. The following are known (cf. [47]):

(1.1) max
{

ω(G), |V (G)|
α(G)

}
� χf (G) � χc(G) � χ(G), �χc(G)� = χ(G).

The fractional chromatic number of distance graphs is closely related to the
problem called “density of integral sequences with missing differences” studied in
number theory. For a set D of positive integers, a sequence S of non-negative
integers is called a D-sequence if |x − y| �∈ D for any x, y ∈ S. Let S(n) denote
as |S ∩ {0, 1, 2, · · · , n− 1}|. The density of S, δ(S), is defined by

δ(S) := lim
n→∞

S(n)
n

.

The parameter of interest is the density of D, µ(D), defined by

µ(D) := sup { δ(S) : S is a D-sequence}.

The problem of determining or estimating µ(D) was initially posed by Motzkin
in an unpublished problem collection (cf. [6]). In 1975, Cantor and Gordon [6]
proved the existence of µ(D) for any D. The exact values of µ(D) for several
families of sets D have been later on studied by Haralambis [23]. The parameter
µ(D) is also closely related to the channel assignment problem (or T -coloring).
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Griggs and Liu [21] indicated that µ(D) is equivalent to the asymptotic ratio of
T -colorings for cliques and gave a different proof for the existence of µ(D), using
directed graphs. This implies that the earlier work by Rabinowitz and Proulx [37]
on the asymptotic ratio of T -coloring has equivalently determined the exact values
of µ(D) for several families of sets D, and the authors also posted a conjecture on
the value of µ(D) for D = {a, b, a + b}. In Section 3, we shall discuss with more
details on this conjecture and its confirmation.

To simplify the notations, throughout the article we denote χ(X, D), χf (X, D),
χc(X, D), α(X, D) and ω(X, D) as the corresponding parameters for the distance
graph G(X, D).

For any D, the density of D and the fractional chromatic number of the cor-
responding distance graph G(Z, D) are indeed identical, as proved by Chang, Liu
and Zhu [8]:

Theorem 1. For any finite set D of positive integers, χ f (Z, D) = 1/µ(D).

The circular chromatic number of distance graphs is closely related to the pa-
rameter involved in the Wills conjecture [44]. For a real number x, let ||x|| denote
the distance from x to the nearest integer, i.e.,

||x|| = min{x− 	x
, �x� − x}.
For a set D ⊆ � and t ∈ �, let ||tD|| = inf{||tx|| : x ∈ D}, and define

κ(D) = sup { ||tD|| : t ∈ � }.
The parameter κ(D) is studied in the Diophantine approximations by Wills [44],

Y.G. Chen [10-12], the View Obstruction Problems by Cusick [13-15] and Cusick
and Pomerance [16], and problems concerning flows and colorings of graphs by
Bienia et al. [4]. A long-standing open question concerning κ(D) is the conjecture
of Wills [44]:

Conjecture 1. For any finite set D of positive integers, κ(D) � 1/(|D|+ 1).

Conjecture 1 has been given a poetic name lonely runner conjecture by Goddyn
[4]: Suppose m runners run laps on a circular track of unit length. Each runner
maintains a constant speed, and the speeds of all the runners are distinct. A runner
is called lonely if the distance on the circular track between him or her and every
other runner is at least 1/m. Equivalently, the conjecture asserts that for each runner,
there is a time when he or she is lonely. Conjecture 1 was confirmed for |D| = 3
by Betke and Wills [3] and Cusick [13-15]; for |D| = 4 by Cusick and Pomerance
[16] and later by Bienia et al. [4] with a simpler proof, and also by Y. G. Chen [10]
who considered a more general format of this conjecture; for |D| = 5 by Bohman,
Holzman and Kleitman [5] and a simpler proof by Renault [38].



A Survey on Coloring Parameters of Distance Graphs 855

It is known [47] that for any set D, χc(Z, D) � 1/κ(D). Combining this with
Theorem 1 and (1.1), we have

(1.2) ω(Z, D) � 1/µ(D) = χf (Z, D) � χc(Z, D) � 1/κ(D).

Inequalities in (1.2) layout intriguing connections among coloring parameters
of distance graphs and the two number theory problems. These inequalities are
also useful in the study of coloring parameters for distance graphs. For instance, if
µ(D)=κ(D) holds for some D then the last two equalities in (1.2) hold, χf (Z, D)
= χc(Z, D) = 1/µ(D). If one can determine the fractional chromatic number
– or equivalently µ(D) - and κ(D), or one can get bounds for these parameter,
sometimes these bounds are sharp enough to determine the chromatic number of
the corresponding distance graphs. For example, let m > k be positive integers.
Denote Dm,k = {1, 2, · · · , m} − {k}. The chromatic number of G(Z, Dm,k) was
first studied by Eggleton et al. [17], and later on by Kemnitz and Kolberg [25],
and Liu [32]. Partial results for special values of k and m were obtained. Using
fractional chromatic number as a lower bound, Chang et al. [8] solved this problem
completely. This family of distance graphs will be further discussed in Section 4.

Moreover, inequalities in (1.2) generate interesting research problems. A natural
question is when those inequalities are sharp (or strict)? For instance, as µ(D) �
κ(D), the question whether the equality holds in general was first raised by Cantor
and Gordon [6] (although the parameter κ(D) was not introduced explicitly there),
and then discussed by Haralambis [23]. An infinite family of sets D for which
µ(D) > κ(D) was given in [23]. In later sections of this survey, we will further
discuss results that lead to sharpness or strictness of the inequalities in (1.2).

The article is organized as: In Section 2, we introduce some commonly used
tools in the study of coloring parameters of distance graphs; and in other sections,
restricting to special families of distance sets, we survey research advances and open
problems on the parameters involved in (1.2), with a main focus on the coloring
parameters of distance graphs. Many of the families of sets D that have been
studied are inspired by (1.2) or are generalized from the ones initially investigated
by Eggleton et al. [17].

Notice that if D ={d1, d2, · · ·dn} and gcd(d1, d2, · · · , dn)=d, then the graph
G(Z, D) consists of dcomponents, each isomorphic toG(Z, {d1/d, d2/d,· · · ,dn/d}).
Hence, throughout the article we assume, unless indicated, that gcd(D) = 1.

2. DISTANCE GRAPHS V.S. CIRCULANT GRAPHS

A graph homomorphism from a graph G to a graph H is an edge preserving
function from V (G) to V (H). If such a function exists, we say G is homomorphic
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to H and denote this by G → H . The chromatic number of G is the minimum n

such that G → Kn; the clique size of G is the maximum w such that Kw → G.
The fractional chromatic number of a graph G is indeed the minimum ratio n/m

such that G → K(n, m), where K(n, m) is the Kneser graph with the vertex set(
[n]
m

)
(m-element subsets of [n]) and two verticesA and B are adjacent ifA∩B = Ø.

From this point of view, K(n, m) plays essentially the same role as the one that the
clique Kn does in vertex-coloring.

For positive integers p, q with p � 2q, the circular cliqueKp/q has as the vertex
set Zp = {0, 1, · · · , p− 1} where two vertices u and v are adjacent if |u− v|p � q.
The circular chromatic number of G is the minimum ratio p/q such that G → Kp/q.
From this point of view, Kp/q plays essentially the same role as the one that Kn

does in vertex-coloring.
By composition of functions, ifG → H then g(G) � g(H), where the parameter

g can be χ, χf , χc, ω(G) etc.
For a positive integer n and a subset D of [n], the n-vertex circulant graph

generated byD, denoted by G(Zn, D), has as the vertex setZn = {0, 1, 2 · · · , n−1}
and vertices a and b are adjacent if |a − b|n ∈ D. The circular clique Kp/q is a
circulant graph, Kp/q = G(Zp, [q − 1]).

For any D, G(Z, D) → G(Zn, D) holds for all n � 2 maxD. Hence, a coloring
parameter of the circulant graph G(Zn, D) provides an upper bound for G(Z, D). It
is known that for a vertex-transitive graph G, χf (G) = |V (G)|/α(G). As circulant
graphs are vertex-transitive, we have the upper bound χf (Z, D) � n/α(Zn, D)
for any n � 2 maxD. For a lower bound, one may consider the subgraph of
G(Z, D) induced by the vertex set {0, 1, 2 · · · , n−1} (note, this subgraph may not
be isomorphic to G(Zn, D)). The coloring parameters of this subgraph provides a
lower bound for G(Z, D). See Example 1 below for a straightforward application
of this method. A more complicated example will be introduced in Section 5.

A discrete version of κ(D) for finite sets D is given as follows. For a set of
D, let λ, p � 2 maxD be positive integers, gcd(λ, p) = 1. Denote

(λD)p = min{|λd|p : d ∈ D}.
Then we have

Proposition 2. For a finite set D of positive integers,

κ(D) = max {(λD)p/p : 1 � p, λ � 2 maxD, gcd(λ, p) = 1}.

A direct proof of µ(D) � κ(D) can be derived from a result of Cantor and Gor-
don [Theorem 1, [6]]. Suppose there exist positive integers λ, p with gcd(λ, p) = 1.
Assume (λD)p = q. Let S be the set of integers defined by

S = {n ∈ Z : (λn mod p) ∈ {0, 1, 2, · · · , q − 1}}.



A Survey on Coloring Parameters of Distance Graphs 857

Then S is a D-sequence, implying µ(D) � q/p. By Proposition 2, µ(D) � κ(D).
For an example, consider D = {a, b} with gcd(a, b) = 1. If both a and b are

odd, then G(Z, D) is a bipartite graph and (D)2 = 1, so µ(D) = κ(D) = 1/2. If
a and b are of different parity we have the following:

Example 1. Let D = {a, b} where a and b are relative primes of different
parity. Then µ(D) = κ(D) = (a + b − 1)/2(a + b).

Proof. As gcd(a, b) = 1, the following is an odd cycle of length a + b in
G(Z, D):

[0, a, 2a, 3a, · · · , (a + b − 1)a] (mod a + b).

It is known that χf (C2k+1) = (2k + 1)/k (cf. [47]), so

1/κ(D) � 1/µ(D) = χf (Z, D) � 2(a + b)/(a + b − 1).

As gcd(b + a, b− a) = gcd(a, b) = 1, there exist x and y such that x(b− a) =
y(b+a)+1. Also, because x(b+a) ≡ 0 (mod b+a), we get 2xb ≡ 1 (mod b+a).
This implies that xb ≡ (b+a+1)/2 (mod a+b). Similarly, we get 2xa ≡ −1 (mod
b + a), and so xa ≡ (b + a − 1)/2 (mod a + b). Hence, (xD)a+b = (a + b− 1)/2,
implying κ(D) � (a + b − 1)/2(a + b).

The result of the above example was shown in [6], while the proof of the first
part - using fractional chromatic number - was from [8].

The relation between χc(Z, D) and κ(D) can be established by the following
method which also provides an upper bound for χc(Zn, D). Suppose κ(D) = q/p.
Then there exist p, λ � 2 maxD, gcd(λ, p) = 1, such that (λD)p = q. The
permutation π on Zp defined by π(x) = λx is indeed a homomorphism from
G(Zp, D) to the circular clique Kp/q. Therefore,

χc(Z, D) � χc(Zp, D) � p/q = 1/κ(D).

The permutation π is called the multiplier method (cf. Zhu [47]) which has been
used in several articles on coloring parameters for distance graphs [8, 7, 46, 49] or
coloring parameters for circulant graphs [28].

The multiplier method provides an upper bound for the circular chromatic num-
ber of distance graph and often the bound is sharp enough to determine the chromatic
number. On the other hand, the multiplier method does not always provide the exact
value for χc(Z, D), a particular case is when χc(Z, D) < κ(D). In the next few
sections, we will encounter several examples like this.
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3. DISTANCE GRAPHS WITH LARGE CLIQUE SIZE

If |D| = 1 or if D = {a, b} where a and b are both odd, then G(Z, D) is a
bipartite graph and so µ(D) = κ(D) = 1/2. For the rest of 2-element sets D, the
solution is included in Example 1.

For |D| = 3, the chromatic number of G(Z, D) was studied by Eggleton et al.
[17], J.-J. Chen el al. [9], and Voigt [40], and was completely settled by Zhu [49]
(after confirming a conjecture posted in [9, 40]).

Theorem 3. ([49]) Let D = {a, b, c}, a < b < c and gcd(a, b, c) = 1. Then

χ(Z, D) =




2, if a, b, c are all odd;
4, if either c = a + b and b − a �≡ 0 (mod 3),

or D = {1, 2, 3k};
3, otherwise.

Comparing to the complete solution of the chromatic number, the values of
χf (Z, D) and χc(Z, D) for 3-element sets D are known only for some special
families.

The sets D = {a, b, a+ b} were considered by Rabinowitz and Proulx [37] and
by Haralambis [23]. If none of a, b or a + b is a multiple of 3, then it is easy
to see that κ(D) = µ(D) = 1/3 (since all multiples of 3 form a D-sequence and
(D)3 = 1). If a = 1, i.e. D = {1, b, b+1}, then the value of µ(D) was determined
in [23]. A complete solution to this problem was settled by Liu and Zhu [34].

Theorem 4. ([34]) If D = {a, b, c}, where c = a + b, gcd(a, b) = 1, and
exactly one of a, b, c is a multiple of 3, then

µ(D) = min
{	(a + c)/2


a + c
,
	(b + c)/2


b + c

}
.

Using circulant graphs, one inequality (�) of Theorem 4 was proved by Rabi-
nowitz and Proulx [37]. The argument is by showing that for n = a + c or b + c,
then α(Zn, D) � 	n/2
, implying χf (Z, D) � χf (Zn, D) � n/	n/2
. In the
same article the authors conjectured that the other direction of the inequality (�)
also holds. This conjecture was confirmed in [34] by using the following result of
Haralambis as a major tool.

Lemma 5. ([23]) Let D be a set of positive integers, t a real number in
the interval (0, 1]. If for every D-sequence S there exists some n � 0 such that
S(n)/(n + 1) � t, then µ(D) � t.
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In viewing of (1.2), it is natural to consider distance graphs with large clique
size. By definition of distance graphs, the largest value of ω(Z, D) is |D|+1, which
happens to be when D = {1, 2, · · · , d}. For this case, it can be easily seen that all
the equalities in (1.2) hold with ω(Z, D) = d + 1 = 1/κ(D).

Hence, the next case to consider are the sets D with ω(Z, D) = |D|, which are
called almost difference closed sets [34]. Notice that the set D in Theorem 4 is
almost difference closed. A complete characterization of almost difference closed
sets was given by Kemnitz and Marangio [26].

Theorem 6. ([26]) Suppose D is a finite set of positive integers, gcd(D) = 1.
Then D is almost difference closed if and only if D is one of the following:
(Type A.1) D = {a, 2a, 3a, · · · , (m− 1)a, b}.
(Type A.2) D = {a, b, a+ b} for some b �= 2a.
(Type A.3) D = {x, y, y − x, y + x} for some y > x.
For almost difference closed sets, the chromatic numbers were completely settled

[9, 25, 26, 40], and most of the values of µ(D) and κ(D) were determined [11, 34],
except only for one subcase of A.3 in which κ(D) were determined while bounds
for µ(D) were given [34]. The following is the result for A.1 sets D.

Theorem 7. ([34]) Suppose D = {a, 2a, · · · , (m−1)a, b}, where gcd(a, b) =
1. Then

µ(D) = κ(D) =




1
m

, if a � 2 or b is not a multiple of m;
k

km + 1
, if a = 1 and b = km for some k.

For A.2 sets in Theorem 6, the values of κ(D) were determined by Y. G. Chen
[11]. By Theorem 4, we have:

Theorem 8. ([11, 34]) Suppose D = {a, b, c}, 0 < a < b, c = a + b, and
gcd(a, b) = 1. Then

µ(D) = κ(D) = min
{	(a + c)/2


a + c
,
	(b + c)/2


b + c

}
.

Notice that the chromatic number for the sets in Theorem 8 were determined
by J.-J. Chen et al. [9] and by Voigt [40]. Partial results on the circular chromatic
number and the fractional chromatic number were obtained by Zhu [49].

Type A.3 sets turned out to be more complicated.

Theorem 9. ([34]) If D = {x, y, y−x, x+y}, y > x, and x, y are of different
parity, then µ(D) = 1/4.
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Theorem 10. ([34]) SupposeD = {x, y, y−x, y+x}, where y > x, x = 2k+1,
y = 2m + 1 and gcd(x, y) = 1. Then µ(D) � (k+1)m

4(k+1)m+1
.

The equality in Theorem 10 holds for x = 1 and is conjectured to hold for the
general case [34]. The following is an upper bound for this family of sets D.

Theorem 11. ([34]). Suppose D = {x, y, y − x, y + x}, where y > x,
x = 2k + 1, y = 2m + 1 and gcd(x, y) = 1. Let δ = 1

k2+2km+3k+m+1
. Then

µ(D) � 1
4+δ .

By Theorems 7 and 8, µ(D) = κ(D) for Types A.1 and A.2. For Type A.3,
however, the equality does not always hold (see Theorem 13 below). An easier case
for Type A.3, D = {x, y, y − x, x + y}, is when x and y are of distinct parity and
none of x, y is a multiple of 4, then we have ||(1/4)D|| = 1/4, by Theorem 9,
µ(D) = κ(D) = 1/4.

It is known and not hard to show (cf. [23]) that κ(D) is a fraction whose
denominator always divides the sum of some pair of elements inD. Indeed, suppose
κ(D) = ||tD|| = p/q, then there exist a, b ∈ D such that at = k1 + p/q and bt =
k2−p/q, for some integers k1 and k2 (for otherwise, one may increase or decrease t

by a small amount so that ||tD|| increases). This implies that t = (k1+k2)/(a+b),
and hence q|(a + b). By this fact and some calculation, we obtain the values of
κ(D) for all Type A.3 sets.

Theorem 12. ([34]). Suppose D = {x, y, y − x, y + x}, where gcd(x, y) = 1.
Then

κ(D) =




φ4(2y + x), if x ≡ 0 (mod 4) and y ≡ 3 (mod 4), or
x ≡ 1 (mod 4) and y ≡ 0 (mod 4), or
x ≡ 3 (mod 4) and y ≡ 1, 3 (mod 4);

φ4(2x + y), if x ≡ 0 (mod 4) and y ≡ 1 (mod 4), or
x ≡ 1 (mod 4), y ≡ 3 (mod 4), and y < 3x;

φ4(2y − x), if x ≡ 3 (mod 4) and y ≡ 0 (mod 4), or
x ≡ y ≡ 1 (mod 4), or
x ≡ 1 (mod 4), y ≡ 3 (mod 4), and y � 3x,

where φ4(n) denotes 	n
4 
/n.

By Theorems 9, 10 and Corollary 12, we conclude that

Theorem 13. ([34]). Let D = {x, y, y − x, y + x}, gcd(D) = 1. Then
µ(D) = κ(D) if and only if one of the following holds:
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• x = 1 and y is odd,
• x and y are of different parity and none of them is a multiple of 4.

Note that by Theorems 9, 11, and (1.2), we can determine the chromatic number
for all Type A.3 sets, which was obtained by Kemnitz and Kolberg [25] and Kemnitz
and Marangioand [26] by different approaches.

Corollary 14. Suppose D = {x, y, y − x, x + y}, where gcd(x, y) = 1. If x
and y are of distinct parity then χ f (Z, D) = χc(Z, D) = χ(Z, D) = 4. If x and y

are both odd then χ(Z, D) = 5.

Barajas and Serra [1] proved that: For any setsD with |D| = 4, χ(Z, D) = 5 if
and only if eitherD belongs to Type A.1 or it is the set with χ(Z, D) = 5 mentioned
in Corollary 14. This partially confirmed the following conjecture of Zhu [49], for
4-element sets D.

Conjecture 2. ([49]). If ω(Z, D) < |D| then χ(Z, D) � |D|.

As mentioned in the previous paragraph, Conjecture 2 has been confirmed for
sets D with |D| � 4. (For |D| = 3, see Theorem 3.)

By Theorems 7, 8 and 13, all the values of χc(Z, D) for almost difference closed
sets are determined, except the following case:

Problem 1. What are the values of χc(Z, D) where D = {x, y, y− x, y + x},
x < y, x and y are both odd and x �= 1, or one of x and y is a multiple of 4 and
the other is odd?

Another open problem is about 3-element sets D. So far, all the known results
for |D| = 3 have µ(D) = κ(D). Whether this is true for all 3-element sets D
remains an open problem.

Problem 2. Does there exist a 3-element set D with µ(D) > κ(D)?

Problem 3. Does there exist a 3-element set D with χc(Z, D) < 1/κ(D)?

4. THE PUNCHED SETS D = [m]− {k, 2k, · · · , sk}

By (1.2), χf (Z, D) = χc(Z, D) holds if µ(D) = κ(D). On the other hand,
there also exist sets D with χf (Z, D) < χc(Z, D). In this section, we introduce
a family of such sets. Indeed, we will show families of sets D such that all the
inequalities of (1.2) are strict.
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Recall, for integers k < m, Dm,k = [m] − {k}. The chromatic number of
G(Z, Dm,k) was first studied by Eggleton, Erd"os and Skilton [17] and later on by
several authors. In [17], Eggleton et al. obtained the solution for k = 1, and partial
solutions for k = 2: χ(Z, Dm,1) = 	m+3

2 
 for any m � 2; χ(Z, Dm,2) = 	m+4
2 


when m �≡ 3 (mod 4), and 	m+3
2 
 � χ(Z, Dm,2) � 	m+5

2 
 for any m � 4 with
m ≡ 3 (mod 4). For 3 � k < m, the same authors provided the following bounds:

max{k, 	1
2( m

k−1 + 1)
t} � χ(Z, Dm,k) � min{m, 	1
2(m

k + 3)
k},
where t = 2 if k = 3 and t = k − 2 if k � 4. The result for the case k = 1 was
also proven by Kemnitz and Kolberg in [25], by a different approach. The lower
bound of χ(Z, Dm,k) in the above was improved to �m+k+1

2 � by Liu [32], who
also showed that the new bound is sharp for all pairs of integers (m, k) where k

is odd. Furthermore, complete solutions for k = 2 and 4, and partial solutions for
other even integers k are given in [32].

By using fractional chromatic number, Chang et al. [8] completely solved this
problem.

Theorem 15. [8] If 2k > m, then

ω(Z, Dm,k) = χf (Z, Dm,k) = χc(Z, Dm,k) = χ(Z, Dm,k) = k.

If 2k � m, then χf (Z, Dm,k) = (m + k + 1)/2. Suppose 2k � m. Write
m + k + 1 = 2rm′ and k = 2sk′, where r and s are non-negative integers and m ′

and k′ are odd integers. Then

χ(Z, Dm,k) =
{

m+k+1
2 , if r > s;

�m+k+2
2 �, otherwise.

The circular chromatic number for G(Z, Dm,k) for 2k � m was studied in [8]
and later on completely determined by Chang, Huang and Zhu [7].

Theorem 16. [7] Suppose 2k � m. Write m + k + 1 = 2rm′ and k = 2sk′,
where r and s are non-negative integers and m ′ and k′ are odd integers. Then

χc(Z, Dm,k) =




m + k + 2
2

, if r � s and gcd(m + k + 1, k) �= 1;

m + k + 1
2

, otherwise.

The sets Dm,k can be extended to a more general setting. For positive integers
m, k and s with m > ks, let Dm,k,s be the set [m] − {k, 2k, · · · , sk}. The set
D = [m]− {k} is a special case when s = 1, Dm,k,1.
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For the general case s � 2, the fractional chromatic number and the chromatic
number were given by Liu and Zhu [33]. The circular chromatic number turned
out to be more difficult, since for some sets D in this family we have χc(Z, D) <

1/κ(D) (see Theorems 17 and 18). That is, the multiplier method for circulant
graphs does not provide sharp bounds for χc(Z, D). Partial results on χc(Z, D)
were given by Liu and Zhu [33] and by Huang and Chang [24]. Complete solutions
were shown by Zhu [50].

Theorem 17. [50] If m < (s + 1)k, then µ(Dm,k,s) = κ(Dm,k,s) = 1/k. If
m � (s + 1)k, then χf (Z, Dm,k,s) = m+sk+1

s+1 and

χc(Z, Dm,k,s) =




m + sk + 1
s + 1

, if d = 1 or d(s + 1)|(m + sk + 1);

m + sk + 2
s + 1

, otherwise,

where d = gcd(m + 1, k).
As all the fractional chromatic numbers and circular chromatic numbers for

G(Z, Dm,k,s) are settled, the next question is the values of κ(D)? We answer this
question in the following:

Theorem 18. Suppose D = [m] − {k, 2k, · · · , sk} for some m � (s + 1)k.
Let t be the smallest positive integer such that gcd(m + t, k) = 1. Then

κ(D) =

{
1/(2k), if m = (s + 2)k − 1 and s is even;

(s + 1)/(m + sk + t), otherwise.

Proof. For the first case, m = (s + 2)k − 1 and s is even, one can see
that (D)2k = 1 as gcd(m, 2k) = 1, so κ(D) � 1/(2k). Also, by Theorem 17,
µ(D) = (s + 1)/(m + sk + 1) = 1/(2k), so the result follows.

For the remaining case, we first claim that κ(D) � (s + 1)/(m + sk + t).
Since gcd(m + sk + t, k) = gcd(m + t, k) = 1, there exists some λ � 2m such
that λk ≡ ±1 (mod m + sk + t). This implies that for i = ±1,±2, · · · ,±s,
λik ≡ ±i (mod m + sk + t). Hence, (λD)m+sk+t = s + 1. By Proposition 2,
κ(D) � (s + 1)/(m + sk + t).

Next we verify that κ(D) � (s + 1)/(m + sk + t). Let κ(D) = q/p. By
Theorem 17,

(s + 1)/(m + sk + t) � q/p � (s + 1)/(m + sk + 1).

Hence the result follows for t = 1. Assume t � 2. So, k � 2. Because m �
(s + 1)k, by direct calculation, the following holds for all 0 � i < j � s:

(4.1) (i + 1)/(m + ik + 1) � (j + 1)/(m + jk + k).
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By Proposition 2, there exist some λ � 2m and d ∈ D such that gcd(λ, p) = 1
and |λd|p = q. Suppose p � m + 1. Let p = m + xk + r for some x � 0 and
1 � r � k. By (4.1), it suffices to show that q � x + 1. As gcd(λ, p) = 1
and λ � 2m, there exists λ′ � m such that λ′λ ≡ ±1 (mod p). If λ′ ∈ D, then
q = 1 � x + 1.

Assume λ′ /∈ D. Then λ′ = yk for some y � s. As λ′λ ≡ ±1 (mod p), it must
be gcd(p, k) = 1. This implies that p − ck ∈ D for c � x + 1. Note, if |λck|p = i

for some c � s then |λ(p − ck)|p = −i (mod p). Therefore, at most s numbers
(and x numbers, respectively) from the set {±1,±2, · · · ,±s} will be avoided by
|λ(ck)|p for 1 � c � s (and by |λ(p − ck)|p for 1 � c � x, respectively). So
q � x + 1.

It remains to consider the case p � m. Then p = ak for some 2 � a � s and
m < (s+a)k (for otherwise, q = 0). Since gcd(k, ak) = k > 1 and gcd(λ, ak) = 1,
we have {λi : i = 1, 2, · · · , ak− 1} = {1, 2, · · · , ak− 1} (mod ak) and λbk �≡ ±1
(mod ak) for b = 1, 2, · · · , a− 1. So, q = 1.

Therefore, q/p = 1/(ak) � (s + 1)/(m+ sk + 1), equivalently,m + sk + 1 �
ak(s+1). If m+sk+1 < ak(s+1), then by the choice of t, m+sk+t < ak(s+1),
inducing 1/(ak) < (s + 1)/(m + sk + t). So the result follows.

Assumem+sk+1 = ak(s+1). Sincem < (s+a)k, so a � 2, implying a = 2
and so m = (s + 2)k− 1. Then s must be even (for if s is odd, then (s + 1)k ≡ 0
(mod 2k), contradicting q = 1). This is the first case considered at the beginning
of the proof.

We conclude that κ(Dm,k,s) > 1/|Dm,k,s| (stronger than the lonely runner
conjecture which has |D| + 1 in the denominator), except when D = {1, 3, 4} in
which κ(D) = 2/7.

The complete solutions of µ(D), κ(D) and χc(Z, D) for this family of sets D

also provide examples for which the inequalities in (1.2) are strict. For instance, let
D = [26] − {6}. By Theorems 17 and 18, χf (Z, D) = 33/2, χc(Z, D) = 34/2,
and 1/κ(D) = 35/2.

5. UNION OF TWO INTERVALS

Another extension of the family D = [m] − {k} is D = [m] \ [a, b] for some
1 � a � b � m. Denote this family of distance sets byDm,[a,b] = [a−1]∪[b+1, m].
The special caseD = [m]−{a} is when a = b. Another special case is when a = 1,
which is the punched set discussed in the previous section, i.e., Dm,[1,b] = Dm,1,b.

For the general case 2 � a < b, the coloring parameters for G(Z, Dm,[a,b])
have been studied by several authors. Both the fractional chromatic number and the
chromatic number for G(Z, Dm,[a,b]) were studied by Wu and Lin [45], Lam, Lin
and Song [30] and Lam and Lin [29]. An easy case is when m � 2a− 1, in which
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µ(D) = κ(D) = 1/a. The case for b < 2a was considered in [30, 45], in which
the authors completely determined the fractional chromatic number; partial results
and bounds on the circular chromatic number were also presented and the bounds
are sharp enough to determine the chromatic number.

Theorem 19. ([45]). Let G = G(Z, Dm,[a,b]) for some a + 1 � b � 2a − 1.
Then

χf (G) =

{
χc(G) = (m + 1)/2, if 2a � m < 2b;

(m + a + 1)/2, if m � 2b.

Theorem 20. ([30, 45]). Let G = G(Z, Dm,[a,b]) for some a + 1 � b � 2a− 1.
Suppose m � 2b. Let m+a+1 = 2rm′ and a = 2sa′, where r, s are non-negative
integers and m′, a′ are odd integers. Then

(a) If 1 � r � s, then m+a+1
2 + 1

3 � χc(G) � m+a+2
2 .

(b) If r = 0 and gcd(m + 1, a) �= 1, then χc(G) = m+a+2
2 .

(c) Otherwise, χc(G) = m+a+1
2 .

The values of κ(Dm,[a,b]) for the above family are determined as follows.

Theorem 21. Let D = Dm,[a,b] for some a + 1 � b � 2a − 1. Then

κ(D) =

{
2/(m + 1), if 2a � m < 2b;

2/(m + a + t), if m � 2b,

where t is the minimum positive integer such that there exists some y, a � y �
min{a + t − 1, b}, with gcd(m + a + t, y) = 1.

Proof. We first consider the case 2a � m < 2b. Assume m is odd. Let
m = 2m′ + 1. Then a � m′ < b, implying a < m′ + 1 � b. As m < 2b, we have
(D)m′+1 = 1. By Proposition 2, Theorem 19 and (1.2), κ(D) = 1/(m′ + 1) =
2/(m + 1).

Assumem is even. Letm = 2m′. Then a � m′ < b and a < m′ +1 � b. That
is, m′, m′+1 �∈ D. Because gcd(m′, 2m′+1) = 1, there exists some integer x such
that gcd(x, 2m′+1) = 1 and xm′ ≡ 1 (mod 2m′+1). This implies x(m′+1) ≡ −1
(mod 2m′ + 1). Hence, (xD)2m′+1 � 2, so κ(D) � 2/(2m′ + 1) = 2/(m + 1).
By Theorem 19 and (1.2), the proof for the case 2a � m < 2b is complete.

We now consider the remaining case, m � 2b. Let κ(D) = q/p. Because
m � 2b and b < 2a, for every x ∈ [a, b] it holds that 2x ∈ D. Hence, p � m + 1
and q � 2. Let t be the minimum positive integer such that there exists some y,
a � y � min{a + t − 1, b}, such that gcd(m + a + t, y) = 1. (Note, t � a − 1
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as we can have y = a.) Then there exists some λ � m such that λy ≡ 1 (mod
m+a+ t). Since y � min{a+ t−1, b}, we have (λD)m+a+t � 2. By Proposition
2, q/p � 2/(m + a + t). Next we verify that κ(D) � 2/(m + a + t). By Theorem
19 and (1.2),

2
m + a + t

� q

p
� 2

m + a + 1
.

Hence the result follows if t = 1. Assume t � 2. It can be seen that p � m+a+1.
For if p � m + a then q � 1, which is impossible as p � m + 1 and 1/(m + 1) �
2/(m + a + t). Assume p = m + a + x for some 1 � x < t. Then by the choice
of t, we have q � 1, a contradiction. This completes the proof.

The case for b � 2a turned out to be much more complicated. Lam and
Lin [29] obtained partial results on both the fractional chromatic number and the
circular chromatic number. Complete solutions for the fractional chromatic number
were recently obtained by Liu and Zhu [35].

Theorem 22. ([35]). For integers 1 < a � b < m. Let G = G(Z, Dm,[a,b]),
∆ = m + 1 − b, s = 	b/a
, and q = 	(m + 1)/∆
.

• If ∆ � 2a, then χf (G) = (m + sa + 1)/(s + 1).

• If ∆ � a, then χf (G) = max{a, (m + 1)/(s + 1)}.
• If a < ∆ < 2a, then

χf (G) =




m + sa + 1
s + 1

, if 2qa − 1 � m < a + q∆ − 1 or

m � (2q + 1)a− 1;

m + 1
q

, if m < min{q∆ + a − 1, 2qa− 1};
(2q − 1)(m + 1) + a

2q2
, if q∆ + a − 1 � m < (2q + 1)a− 1.

The cases for ∆ � 2a and ∆ � a in Theorem 22 were first proved in [29]. For
the remaining case, a < ∆ < 2a, the upper bounds were established by defining a
weight function to the independent sets in G(Z, D), while the lower bounds were
by the periodic D-sequences. To provide more insight into these formulas, in the
following we describe these sequences.

Let S = (s1, s2, · · · , sn, · · · ) be a D-sequence where si < si+1. Equivalently,
S is an independent set in G(Z, D). Let δ i = si+1 − si. The sequence Ω(S) =
(δ1, δ2, · · · ) is called the gap sequence of S. Observe the following:
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• A sequence (δ1, δ2, · · · ) is a Dm,[a,b]-gap sequence if and only if

(1) δi � a for each i; and

(2) for any j ≤ j ′, either
∑j′

i=j δi � b or
∑j′

i=j δi � m + 1.

By definition,

µ(D) = max lim
n→∞

|S ∩ [0, n− 1]|
n

,

where the maximum is taken over all D-sequences S. Hence

χf (G) =
1

µ(D)
= min lim

n→∞
n

|S ∩ [0, n− 1]| = min lim
k→∞

k∑
i=1

δi

k
.

Again, the minimum is taken over allD-sequencesS with gap sequence (δ1, δ2, · · · ).
The D-set S is periodic if Ω(S) is periodic. That is, if there exists some

k such that δi = δi+k for every i � 1. We denote a periodic Ω sequence by
Ω = 〈δ1, δ2, · · · , δk〉.

To simplify the notations, we denote consecutive repeated terms in Ω using ⊗.
For instance, 〈3 ⊗ 2, 5〉 = 〈2, 2, 2, 5〉. The following are the corresponding gap
sequences for the sets in Theorem 22.

• For ∆ � 2a, the gap sequence is:

Ω = 〈s ⊗ a, m + 1〉.
• For ∆ � a:

Ω = 〈a〉 or 〈(m + 1)/(s + 1)〉.
• For a < ∆ < 2a, 2qa − 1 � m < a + q∆ − 1 or m � (2q + 1)a− 1:

Ω = 〈s ⊗ a, m + 1〉.
• For a < ∆ < 2a, m < min{q∆ + a − 1, 2qa− 1}:

Ω = 〈(q − 1)⊗ ∆, m + 1 − ((q − 1)∆)〉.
• For a < ∆ < 2a, q∆ + a − 1 � m < (2q + 1)a − 1:

Ω = 〈Y ′
q , Yq−1, Y

′
q−1, Yq−2, Y

′
q−2, · · · , Y1, Y

′
1, a〉.

where

Yi = i⊗ ∆, a, (q − 1 − i)⊗ ∆, m − (a + (q − 1)∆),

Y ′
i = (i− 1)⊗ ∆, ∆ + a, (q − 1 − i)⊗ ∆, m− (a + (q − 1)∆),

Y ′
q = (q − 1)⊗ ∆, m− (q − 1)∆.
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It is not hard to check that each sequence is a periodic D-sequence. The ratio∑|Ω|
i=1 δi

|Ω| of each Ω gave a lower bound for χf (Z, D). These bounds were proved to
be the exact values [35].

So far, the values of χc(Z, D) of this family of sets D are known only for some
special cases (see [29, 30, 45]).

6. A CONCLUDING REMARK

Although the lonely runner conjecture is widely open for eight or more runners 1,
an analogy for the parameter µ(D), µ(D) � 1/(|D|+ 1), is quite straightforward.
As it is known [9] that χ(Z, D) � |D| + 1 (by first-fit coloring the vertices of
positive integers sequentially), so 1/µ(D) = χf (Z, D) � χ(Z, D) � |D| + 1. So
far, the bound χf (Z, D) � |D| + 1 is known to be sharp only for some sets D
with ω(Z, D) � |D| (see Section 3). Are there any other sets attaining this bound
remains an open problem. In particular, the following was posted in [34]:

Conjecture 3. LetD be a finite set of positive integers with ω(Z, D) � |D|−1.
Then χf (Z, D) � |D| (or equivalently, µ(D) � 1/|D|).

Notice that Conjecture 3 is weaker than Conjecture 2. As 2 has been confirmed
for |D| � 4, so does Conjecture 3.
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