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DERIVATIONS COCENTRALIZING MULTILINEAR
POLYNOMIALS

Tsai—Lien Wong

Abstract. Let R be a prime ring with center Z and let f(Xy, ..., X,)
be a multilinear polynomial which is not central-valued on R. Suppose
that d and § are derivations on R such that d(f(x1,...,2n))f(21, ..., Tn) —
flz,..sxn) 0(f(x1, ..., zpn)) € Z for all x4, ..., z,, in some nonzero ideal of
R. Then either d =5 =0 or § = —d and f(Xj, ..., X,,)? is central-valued
on R, except when char R = 2 and R satisfies the standard identity sy
in 4 variables.

Throughout this note K will denote a commutative ring with unity and
R will denote a prime K-algebra with center Z. By d and § we always mean
derivations on R. For z,y € R, let [z,y] = zy — yz.

A well-known result proved by Posner [17] states that if [d(x), z] € Z for all
x € R, then either d = 0 or R is commutative. In [12], P. H. Lee and T. K. Lee
generalized Posner’s theorem by showing that if char R # 2 and [d(x),z] € Z
for all = in some Lie ideal L of R, then either d = 0 or L is contained in Z.
As to the case when char R = 2, Lanski [11] obtained the same conclusion
except when R satisfies the standard identity s4 in 4 variables. Note that a
noncentral Lie ideal of R contains all the commutators [z1, 3] for z1,z9 in
some nonzero ideal of R except when char R = 2 and R satisfies s4. So it is
natural to consider the situation when [d([z1,z2]), [z1,22]] € Z for z1, 22 in
some nonzero ideal of R. In a recent paper [13], a full generalization in this
vein was proved by Lee and Lee that if [d(f(z1,...,zn)), f(z1,...,2,)] € Z for
all z1, ..., z, in some nonzero ideal of R, where f(Xjy,..., X,,) is a multilinear
polynomial, then either d = 0 or f(X7, ..., X,) is central-valued on R, except
when char R = 2 and R satisfies sy.
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On the other hand, Bresar [2] showed that if d(z)x — zd(x) € Z for all
x € R, then either d = § = 0 or R is commutative. Recently we [14] proved
that if d(z)xz—zd(x) € Z for all x in some noncentral Lie ideal of R, then either
d =9 =0 or R satisfies s4. In the present note, we shall extend these results
to the case when d(f(x1,...,xpn)) f(z1, ooy xn) — f(21, ooy )0 (f (21, .0y )) € 2
for all x; in some nonzero ideal of R, where f(Xj,...,X,) is a multilinear
polynomial.

First we dispose of the simplest case when R is the matrix ring M,,(F')
over a field F' and d, ¢ are inner derivations on R.

Lemma 1. Let F be a field and R = My,(F), the m x m matriz al-
gebra over F. Suppose that a, b € R and that f(X1,...,X,) is a multilinear
polynomial over F such that

[a, f(z1, ..., )| f (@1, ooy 2p) — f(21, ooy 20) [0, f (21, oy 20)] € 2
for all x; € R. Then either a+b¢€ Z or f(X1,...,X,) is central-valued on R.

Proof. If m = 1, there is nothing to prove; so we assume that m > 2
and proceed to show that a +b € Z if f(Xy,..., X,,) is not central-valued on
R. For simplicity, we write f(z1,...,xz,) = f(z) for x = (z1,...,2,) € R" =
R x --- X R (n times). Then the hypothesis can be written as [a, f(z)]f(z) —
f(@)b, f(x)] = af(x)? — f(x)(a+b)f(z) + f(x)?b € Z for all z € R™. Since
f(Xi,...,X,) is assumed to be noncentral on R, by [6, Lemma 1] and [15,
Lemma 2] there exists a sequence of matrices r = (ry,...,7,) in R such that
f(r)=f(r1,...,rn) = aes # 0 where o € F', s # t and eg is the matrix with 1
as the (s,t)-entry and 0's elsewhere. Thus af(r)? — f(r)(a+b)f(r) + f(r)%b =
—a?eg(a+ b)ess = —a®(a + b)sest € Z, where (a + b)ss is the (¢, s)-entry of
a +b. Hence, (a 4+ b);s = 0. For distinct h, k, let 0 be a permutation in
the symmetric group Sy, such that o(t) = h and o(s) = k, and let ¢ be the
F-automorphism on R defined by

”
(Zfz’jeij) ZZfijeau),o(a‘)-
1,] 2Y)

Then f(r¥) = f(rqf, o) = f(r)¥ = aep, # 0 and we have as above (a +
b)nr = 0 for h # k. Thus a+b is a diagonal matrix. For any F-automorphism 6
of R, a’ and b? enjoy the same property as a and b do, namely, [a?, f(z)]f(z)—
f@)[p?, f(x)] € Z for all x € R™. Hence, (a + b)? = a’ + b’ must be also

diagonal. Write a + b = Z a;e;i; then for each j # 1, we have
i=1

(I+e)(a+b)(1—eyy) =Y ey + (o — ar)ey;
i=1
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diagonal. Therefore, a; = aq and so a + b is a scalar matrix.
We are now ready to prove the main theorem.

Theorem 1. Let R be a prime K-algebra with center Z and let f(X1, ..., Xp,)
be a multilinear polynomial over K which is not central-valued on R. Suppose
that d and § are derivations on R such that

d(f(x1, ey zn)) f(1, s Tn) — f(@1, ey n)0(f (21,0 0)) € Z

for all x; in some nonzero ideal I of R. Then either d =90 =0 or 6 = —d and
f(X1,...,X,)? is central-valued on R, except when char R =2 and R satisfies

S4.

Proof. First note that if 6 = —d, then d(f(x1,...,2,)%) € Z for all
x; € I. Let A be the additive subgroup generated by all the elements of
the form f(z1,...,2,)? with z; € I. By a theorem due to Chuang [3], either
f(X1,..., X;)? is central-valued on R or A contains a noncentral Lie ideal L
of R, except when R = My(GF(2)), the ring of 2 x 2 matrices over the field
of 2 elements. If L C A, then d(L) C Z and it follows from [1, Lemma 6] and
[8, Lemma 2] that d = 0 unless char R = 2 and R satisfies s4. So it suffices to
show that either d = d = 0 or § = —d on condition that either char R # 2 or
R does not satisfy sy.

Assume first that both d and § are Q-inner, that is, d(z) = ad,(x) = [a, x]
and d(z) = adp(x) = [b,z] for all x € R, where a and b are elements in the
symmetric quotient ring @ of R [9]. Then

9(x1y ey i) = la, f(@1, oy zn)] f(21, 000 2p)
—f(x1y ey ) [b, f(x1y ooy )], Tpg1] =0

for all z; € I. By [4, Theorem 2|, this generalized polynomial identity (GPI)

9(Xq, ..., Xp41) is also satisfied by @. In case the center Q of () is infinite,

we have g(z1,...,2p41) = 0 for all z; € Q®C where C' is the algebraic
C

closure of C'. Since both @ and Q@C’ are prime and centrally closed [5,
C
Theorems 2.5 and 3.5] we may replace R by Q or Q ®C’ according as C' is

finite or infinite respectively. Thus we may assume furqcher that a,b € R and
R is centrally closed over C' which is either finite or algebraically closed and
g(z1, ..., Tp+1) = 0 for all z; € R.

Suppose that d # 0 or § # 0. Then a ¢ C or b ¢ C and so the GPI
9(X1, ..., Xy41) is nontrivial. By Martindale’s theorem [16], R is then a primi-
tive ring having nonzero socle H with C as the associated division ring. In light
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of Jacobson’s theorem [7, p.75], R is isomorphic to a dense ring of linear trans-
formations of some vector space V over C, and H consists of the linear trans-
formations in R of finite rank. Assume first that V is finite-dimensional over
C. Then the density of R on ¢V implies that R = M,,(C) with m = dim¢ V.
By Lemma 1, we have a +b € C and so 6 = —d. Assume next that V is
infinite-dimensional over C. Suppose that a + b is not central in R; then
it does not centralize the nonzero ideal H of R, so (a 4+ b)hg # ho(a + b)
for some hy € H. Also, f(Xi,...,Xy) is not central-valued on H, for other-
wise R would satisfy the polynomial identity [f(X7, ..., X»), Xnt1], contrary
to the infinite-dimensionality of V. So [f(h1,...,hn), hnt1] # O for some
hi,....hny1 € H. By Litoff’s theorem [11, p.280], there is an idempotent
e € H such that (a + b)hg, ho(a +b), hg, hi,...,Apt1 are all in eRe. Note
that we have eRe = M,,(C) with m = dimc Ve. Since R satisfies the GPI
eg(eXye,...,eXpyt1€)e, the subring eRe satisfies the GPI

ge(Xl,...,Xn+1): [[eae,f(Xl,...,Xn)]f(Xl,...,Xn)
_f(X17 "'7Xn)[ebev f(X17 "'7Xn)]’Xn+1]'

By Lemma 1 again, eae + ebe is central in eRe because f(Xi,...,X,) is not
central-valued on eRe. Thus (a + b)hg = e(a + b)hg = e(a + b)ehy = hpe(a +
b)e = ho(a+b)e = ho(a+b), a contradiction. Hence, a + b is central in R and
s0 § = —d.

Now assume that d and ¢ are not both Q-inner. Suppose first that d and §
are C-dependent modulo Q-inner derivations, say, § = Ad + ad, where A\ € C
and a € Q. Then d cannot be Q-inner and d(f(z))f(x) — Af(z)d(f(z)) —
f(z)|a, f(x)] € Z for all x € I™. Recall that d can be extended uniquely to
a derivaion d on @ [9]. We denote by f¥(Xi, ..., X,,) the polynomial obtained

from f(Xji,...,X,) by replacing each coefficient o with d(a - 1). Since

(fd(x) + zi: [y, ., d(x;), ---790n)> f(z)

—Af(z) (fd(x) + Y flan, . d(x), xn)> — f(@)la, f(z)] € 2

=1

for all x = (21, ...,x,) € I"™, we have

(fd(:c) —I-zn:f(xl, cees Yis ,xn)>f(:v)
i=1
—Af(z) <fd($) +Y f(a, yzxn)> = f(@)[a, f(x)] € 2

=1
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forall x = (x1,...,zy,) and y = (y1, ..., yn) in R™ by Kharchenko’s theorem [10].
In particular,

Fh@) f(@) = Af(@) [ (@) = f(@)]a. f(x)] € 2

and
f($17 oy Yiy axn)f(x) - )‘f($)f(xla o Yiy 7:En) €z

for all z = (z1,...,2,) and y = (y1,...,yn) in R™ and for each i = 1,...,n.
Choosing b € R with b ¢ Z, setting y; = [b, z;] in each of the last n relations,
and summing up over i, we have [b, f(x)]f(z) — f(x)[\b, f(z)] € Z for all
x € R"™. By the preceding paragraph, we have (1 + A)b € Z and so A = —1.
Also, by the first paragraph, f(z)? € Z for all x = (x1,...,2,) € R". Thus,
d(f(x))f(z)+ f(z)d(f(z)) € Z and so the hypothesis

d(f () f(2) + f(2)d(f(x)) = f(z)[a, f(z)] € Z

implies f(z)[a, f(x)] € Z for x € R™. Again, it follows from the inner case
that a € C and so § = —d as expected. The situation when d = Aé + ad,, is
slmilar.

Finally, assume that d and § are C-independent modulo Q-inner deriva-
tions. Since neither d nor § is Q-inner, the relation

(fd(m) —i—if(xl, ...,d(mi),...,:cn)> f(z)

=1

for all x = (1, ..., ) € I"™ yields

(fd(x) —{—zn:f(xl, s Ui ,:nn)) f(x)

=1

—f(z) <f5(x) + zn:f(xl, s Zi,s ...,xn)> €z

=1

forall x = (z1,...,2n), ¥y = (Yy1,...,yn) and z = (21, ..., 2, ) in R™. In particular,
fd(ﬂi‘)f(l')—f(l')fé(l‘) € Zv f(mlv - Yis 7xn)f(x) € Z and f(x)f(mla ey Ry ey
xn) € Z for all z, y, z € R™, and for each i = 1,...,n. As before, choosing
be R, b¢ Z, setting z; = [b, ;] in the last n relations and summing up over
i, we obtain that f(x)[b, f(z)] € Z for all z € R", a contradiction again. This
completes the proof.
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It was proved in [13] that if [d(f(z1,...,2n)), f(21,...,2n)], = 0 for all z;
in some nonzero ideal of R then either d = 0 or f(Xjy, ..., X}) is central-valued
on R except when char R = 2 and R satisfies s4. The case when k& = 1 follows
easily from our Theorem 1. A fact about power-central polynomial is needed
for our purpose.

Lemma 2. LetRbe a prime K-algebra of characteristic 2 and f(X1, ..., Xp)
a multilinear polynomial over K. Subppose that f(Xl,...,Xn)QT is central-
valued on R for some r. Then f(Xi,...,X,) is central-valued on R unless
R satisfies s4.

Proof. Since R satisfies the polynomial identity (PT)[f(X1, ..., X»)%", Xn11],
the central quotient Rz of R is a finite-dimensional central simple algebra sat-
isfying the same PI’'s as R does. Without loss of generality, we may assume
that R = M,,(D) for some division algebra D which is finite-dimensional over
its center. Suppose first that D is a field; then m > 2 if R does not satisfy s4.
Since char D = 2, the field D contains no 2"-th roots of unity other than 1, so
f(X1,...,X,) is central-valued on R by [15, Theorem 10]. Suppose next that
D is not a field; then the center Z must be infinite and so R® K = Mi(K)

Z
satisfies the same PI's as R does, where K is a maximal subfield of D and
k = (dimz R)Y/? > 2 if R does not satisfy s4. Thus f(X1, ..., X,) is central-
valued on R®K as well as R.
Z

Theorem 2. Let R be a prime K-algebra with center Z and let f(X1, ..., Xp)
be a multilinear polynomial over K. Suppose that d is a derivation on R such
that [d(f(z1, ..., xn)), f(21, ..., xn)] € Z for all x; in some nonzero ideal I of R.
Then either d = 0 or f(Xi,...,X,) is central-valued on R except when char
R =2 and R satisfies sy4.

Proof. Assume that f(X1,...,X,) is not central-valued on R and either
char R # 2 or R does not satisfy s4. By Theorem 1, either d =0 or d = —d
and f(X1,..., X,)? is central-valued on R. In the later case, char R = 2 if
d # 0, and so f(Xji,...,X,) must be central-valued on R by the preceding
lemma. With this contradiction the theorem is proved.
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