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BOOK REVIEW

Do Sang Kim, Gue Myung Lee and Nguyen Dong Yen

B. S. Mordukhovich
Variational Analysis and Generalized Differentiation, I. Basic Theory.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], A Series of Comprehensive Studies in Mathematics
Vol. 330, Springer-Verlag, Berlin, 2006, xxii+579 pp.

Variational Analysis and Generalized Differentiation, II. Applications,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], A Series of Comprehensive Studies in Mathematics
Vol. 331, Springer-Verlag, Berlin, 2006, xxii+610 pp.

The first Volume “Basic Theory” has four chapters: 1. Generalized Differ-
entiation in Banach Spaces, 2. Extremal Principle in Variational Analysis, 3. Full
Calculus in Asplund Spaces, 4. Characterizations of Well-Posedness and Sensitivity
Analysis; the second Volume “Applications” also has four chapters: 5. Constrained
Optimization and Equilibria, 6. Optimal Control of Evolution Systems in Banach
Spaces, 7. Optimal Control of Distributed Systems, 8. Applications to Economics.
The Volumes present a comprehensive and deep theory of generalized differentiation
based on the geometric dual-space approach and the extremal principle proposed
by the author. The theory has been developed very successfully in the last three
decades by the efforts of the author, his collaborators, and of many other researchers
around the world. Note that the present complete infinite-dimensional version of
the theory has been established quite recently. This self-contained two-volume book
can be considered as a wonderful continuation of the preceding book of the author
[B. S. Mordukhovich, Approximation Methods in Problems of Optimization and
Control, Nauka, Moscow, 1988, 360 pp., (in Russian); MR0945143 (89m:49001)].

Chapter 1 introduces the basic concepts of this generalized differentiation theory:
the (generally nonconvex) dual objects called the basic/limiting normal cone to
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a subset in a Banach space, the normal coderivative of a multifunction between
Banach spaces, the basic/limiting subdifferential of a extended-real-valued function
defined on a Banach space. As the author stresses in the book, there is no tangent
objects in the primal spaces corresponding to these dual objects. In fact, in whole
of the book, all the results are obtained without using tangent constructions (like
tangent cones to sets, tangent cones to graphs of multifunctions, tangent cones to
epigraphs of functions). The closely related notions of Fréchet/prenormal cone,
Fréchet/prenormal coderivative and Fréchet subdifferential, are also described and
studied in details. In order to have an idea about the dual objects used in this book,
let us consider some basic definitions. Given a subset Ω of a real Banach space X ,
one writes x

Ω−→ x̄ if and only if x → x̄ and x ∈ Ω. For any x ∈ Ω and ε ≥ 0, the
set of ε−normals to Ω at x is defined by

N̂ε(x; Ω) :=

{
x∗ ∈ X∗ ∣∣ lim sup

u
Ω−→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
.

If ε = 0, one writes N̂(x; Ω) instead of N̂0(x; Ω) and one calls it the Fréchet
normal cone or the prenormal cone to Ω at x. Elements of N̂ (x; Ω) are called the
Fréchet normals. If x /∈ Ω, one puts N̂ε(x; Ω) = ∅ for all ε ≥ 0. The basic normal
cone or the limiting normal cone (we would call it the Mordukhovich normal cone)
to Ω at x̄ ∈ Ω is defined by

N (x̄; Ω) := lim sup
x→x̄, ε↓0

N̂ε(x; Ω)

(Limsup denotes the sequential Painlevé-Kuratowski upper limit of a sequence of
sets); that is x∗ ∈ N (x̄; Ω) iff there exist sequences εk ↓ 0, xk

Ω−→ x̄, and x∗
k

weakly∗
−→

x∗ such that x∗
k ∈ N̂εk

(xk; Ω) for all k. If x̄ /∈ Ω, one puts N (x̄; Ω) = ∅. A crucial
fact is that this normal cone stores the most essential information about the structure
of Ω around x̄ in the dual code. Given a multifunction F : X ⇒ Y between Banach
spaces and a point z = (x, y) ∈ gph F := {(x, y) ∈ X × Y

∣∣ y ∈ F (x)}, one
defines the Fréchet/prenormal coderivative D̂∗F (z) : Y ∗ ⇒ X∗ and the normal
coderivative (we would call it the Mordukhovich coderivative) D ∗

NF (z) : Y ∗ ⇒ X∗

of F at z, respectively, by the formulas

D̂∗F (z)(y∗) := {x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N̂(z; gph F )} (∀y∗ ∈ Y ∗)

and

D∗
NF (z)(y∗) := {x∗ ∈ X∗ ∣∣ (x∗,−y∗) ∈ N (z; gphF )} (∀y∗ ∈ Y ∗).

Let ϕ : X → R ∪ {±∞} be an extended-real-valued function with the epigraph
epi ϕ := {(x, α) ∈ X × R

∣∣ α ≥ ϕ(x)}. Let x̄ ∈ X be such that ϕ(x̄) ∈ R. The
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Fréchet subdifferential or the presubdifferential of ϕ at x̄ is given by

∂̂ϕ(x̄) := {x∗ ∈ X∗ ∣∣ (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ)}.
The basic subdifferential or the limiting subdifferential (we would call it the Mor-
dukhovich subdifferential) of ϕ at x̄ is given by

∂ϕ(x̄) := {x∗ ∈ X∗ ∣∣ (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)}.
From the above definitions it follows that, for any multifunction function and any
point in its graph, the normal coderivative (respectively, the Fréchet coderivative)
exists uniquely. Similar remarks are valid for subdifferentials. Thus, the main
questions here are how to construct basic calculus rules (sum rules, chain rules,
etc.), how to obtain key theorems (mean value theorems, open mapping theorems,
inverse mapping and implicit mapping theorems, etc.), and how to apply the theory
to the many classes problems of interest. A series of fundamental rules and theorems
of this kind are given in this chapter in the framework of general Banach spaces.
(A variety of principal applications is shown in Chapters 5–8.)

Chapter 2 is devoted to an extremal principle, which is a variational noncon-
vex counterpart of the separation theorem for convex sets. The extremal principle
plays a key role in establishing basic calculus rules for the abovementioned dual
constructions and in many applications.

Chapter 3 develops a full calculus for normal cones, coderivatives and subdif-
ferentials in the framework of Asplund spaces at the same level of perfection as in
finite dimensions. By definition, a Banach space X is an Asplund space if every
continuous convex function ϕ : U → R defined on an open convex set U of X

is Fréchet differentiable on a dense subset of U . All reflexive Banach spaces are
Asplund spaces.

Chapter 4 shows that the principles and calculus rules developed in the first three
chapters can lead to complete characterizations of such fundamental properties of
multifunctions as openness at a linear rate, metric regularity, Lipschitz-like (pseudo-
Lipschitz) continuity.

Chapter 5 derives necessary optimality conditions for the following constrained
optimization problems in an infinite-dimensional spaces setting: Mathematical pro-
gramming problems under geometric and functional constraints, vector optimization
problems, mathematical programming problems with equilibrium constraints.

In Chapter 6, the method of discrete approximations, due to the author of this
book, is applied to optimal control problems and dynamic optimization problems of
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the Bolza and Mayer types. The abstract theory here is illustrated and analyzed by
as many as 14 valuable examples.

Chapter 7 focuses on control systems with distributed parameters governed by
functional-differential relations and partial differential equations.

Chapter 8 applies the techniques of variational analysis and generalized differen-
tiation to equilibrium models of welfare economics involving nonconvex economies
with infinite-dimensional commodity spaces.

The book is well written. Besides the comments given in each section, there
are many useful comments at the end of each chapter. The comments provide the
interested reader with an opportunity of making interesting excursions to the history
of the subject via the large list of 1379 references. As an example, we would like
to quote the following comments, which are given at the end of Chapter 1.

1.4.1. Motivations and Early Developments in Nonsmooth Analysis. Nons-
mooth phenomena have been known for a long time in mathematics and in applied
sciences. To deal with nonsmoothness, various kinds of generalized derivatives were
introduced in the classical theory of real functions and in the theory of distributions;
see, e.g., Bruckner [182], Saks [1186], Schwartz [1197], and Sobolev [1218]. How-
ever, those generalized derivatives, which “ignore sets of density zero,” are of little
help for optimization theory and variational analysis, where the main interest is in
behavior of functions at individual points of maxima, minima, equilibria, and other
optimization-related notions.

The concepts of generalized differentiability appropriate for applications to opti-
mization were defined in convex analysis: first geometrically as the normal cone to
a convex set that goes back to Minkowski [882], and then – much later – analytically
as the subdifferential of an extended-real-valued convex function. The latter notion,
inspired by the work of Fenchel [441], was explicitly introduced by Moreau [981]
and Rockafellar [1140] who emphasized the set-valuedness of the new generalized
derivative with values in dual spaces and the decisive role of subdifferential calcu-
lus rules. The central result in this direction, called now the Moreau-Rockafellar
theorem on subdifferential sums, is based on the separation principle for convex
sets around which the whole convex analysis actually revolves.

Convex analysis and separation theorems play a crucial role not only in studying
convex sets, functions, and convex optimization problems but also in more general
nonconvex settings via convex approximations. This idea, largely motivated by
applications to optimal control, has been much explored in nonsmooth analysis and
optimization starting with the early 1960s. The initial inspiration came from the
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Pontryagin maximum principle and its proof given by Boltyanskii; see [124, 1102].
Note that a similar approach to abnormal problems in the calculus of variation was
developed by McShane [860] whose work didn’t receive a proper attention till the
formulation and proof of the maximum principle; compare, e.g., Bliss [119] and
Hestenes [565]. Roughly speaking, the underlying idea was to construct, by using
special needle-type control variations, a convex tangent cone approximating the
reachable set of system endpoints so that the optimal endpoint lies at its boundary
and thus can be separated by a supporting hyperplane. Such a convex approximation
approach was strongly developed and applied to new classes of extremal problems
by Dubovitskii and Milyutin [369, 370] (see also the book by Girsanov [507])
and then by Gamkrelidze [496, 497], Halkin [539, 541], Hestenes [565], Neustadt
[1001, 1002], Ioffe and Tikhomirov [618], and others.”

This book is an encyclopedia of the theory of generalized differentiation initiated
by B. S. Mordukhovich in the mid-70s. It has quickly become one of the most cited
books in variational analysis, set-valued analysis, and optimization theory.
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