
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 5, pp. 1485-1502, December 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

A SCHUR-NEWTON ALGORITHM FOR ROBUST POLE ASSIGNMENT

Tiexiang Li and Eric King-Wah Chu

Abstract. We propose an algorithm for the state feedback pole assignment
problem. The algorithm is the first of its kind, making use of the Schur
form and minimizing the departure from normality of the closed-loop poles
by Newton’s method. Eleven illustrative examples, comparing our algorithm
with three other existing ones, are given.

1. INTRODUCTION

Let (A, B) denote the control system

(1) ẋ = Ax + Bu

with the open-loop system matrix A ∈ R
n×n and the input matrix B ∈ R

n×m. The
state feedback pole assignment problem (SFPAP) seeks a control matrix F ∈ Rm×n

such that the closed-loop system matrix Ac ≡ A + BF has prescribed eigenvalues
or poles. Equivalently, we are seeking a control matrix F such that

(2) (A + BF)X = XΛ

for some given Λ with desirable poles and nonsingular matrix X . Notice that Λ
does not have to be in Jordan form, and X can be well-conditioned even with
defective multiple eigenvalues in some well-chosen Λ. This is similar in spirit to
the “synthesis problem” in [14]. The choice of Λ and X will be important in our
discussion. In [5, 6], Λ has been chosen to be upper triangular but X has not
been chosen to be unitary. In [19], poles have been assigned one (or one complex
conjugate pair) at a time, after assigned poles have been shifted away from the
lower-right corner of the (real) Schur form. In [8], from which our algorithm is

Received June 16, 2006, accepted July 12, 2006.
Communicated by Wen-Wei Lin.
2000 Mathematics Subject Classification: 15A22, 93B52, 93B55.
Key words and phrases: Robust pole assignment, Departure from normality measure, Schur form.

1485

1486 Tiexiang Li and Eric King-Wah Chu

developed, (Λ, X) in Schur form has been chosen together with the upper triangular
part of Λ (with norm equals the departure from normality ∆ν(Ac)) minimized.

The SFPAP is solvable for arbitrary closed-loop spectrum when (A, B) is con-
trollable, i.e., when [sI − A, B] (∀s ∈ C) or [B, AB, · · · , An−1B] are full-ranked.
The problem has been thoroughly investigated and everyone have their own favourite
approach; (see, e.g., [5, 7, 13, 19-21] or any standard textbook in control theory).
It is well known that the single-input case (m = 1) has a unique solution, while the
multi-input case has some degrees of freedom left in the problem. A notable effort
in utilizing these degrees of freedom sensibly was made by Kautsky et al. in [13],
with the conditioning of the closed-loop spectrum (or actually ‖X−1‖F where X
contains the normalized closed-loop eigenvectors) being optimized. When solving
the pole assignment problem with a particular robustness measure optimized, we
call it a robust pole assignment problem (RPAP). In this paper, we consider the
SFPAP as well as the RPAP for (1) with state feedback. It is important to realize
that there are many RPAPs, with different robustness measures. We are using the
departure from normality ∆ν(Ac), the size of the upper triangular part of the Schur
form, as our measure in our algorithm SCHUR. For other possibilities, see [7, 8] and
Section 4.1. It will be difficult to compare one measure to another. Thus, it will
be equally difficult to compare one method for a RPAP, associated with a particular
robustness measure, with another. Consequently, we claim no supremacy for our
method over others. We are merely trying to offer an alternative and we claim,
judging from our analysis and numerical experience, that our method is feasible and
has performance comparable to other methods.

When considering a particular control system, engineers will select a feedback
strategy based on a lot more than just pole assignment or robustness. Our method
will provide more solutions for users to choose from before applying other constraints
or requirements, which are usually difficult or impossible to incorporate within the
algorithms for the SFPAP or RPAP.

Various attempts have been made to minimize some measures of robustness in
the RPAP. The most notable attempt was by Kautsky et al. [13], where the SFPAP in
(2) was assumed to be solvable with a diagonal Λ. The problem can then be solved
with the eigenvector matrix X chosen so as to minimize a condition number (e.g.,
κF (X) = ‖X‖F‖X−1‖F , or equivalently ‖X−1‖F with the eigenvectors xj in X
normalized). The minimization processes (for different robustness measures) are
iterative, involve updating individual eigenvectors one (or two) at a time. Typically
(and similar to other comparable methods), updating one eigenvector involves O(n3)
flops and one sweep of all n eigenvectors requires O(n4) flops, with many sweeps
required for some badly behaved examples. This can make the general approach
relatively expensive. We may only want to find an acceptable suboptimal solution
without going through a full iterative optimization process, as in [8]. Our algorithm

A Schur-Newton Algorithm for Robust Pole Assignment 1487

is developed from the one in [8] with full optimization (by Newton’s iteration) of
the departure from normality measure of the close-loop system matrix Ac.

In [19], the open-looped system is transformed into a real Schur form. The
lower-right corner is then reassigned using state feedback. The assigned block is
then shifted up along the diagonal and other poles are then assigned in succession.
In each iterative step, the partial assignment is under-determined and the degrees of
freedom can be used to minimize some robustness measure.

As mentioned earlier, there are many different possibilities in measuring robust-
ness [7, 20]. Others prefer to minimize the size of the feedback matrix F (the
feedback gain) directly. Various optimization techniques can be applied directly to
these robustness or gain measures. See also the interesting approach using gradient
flow [12, 15].

As far as we know, the Schur form is only utilized directly and fully in [8, 19,
20]. Our approach chooses the closed-loop Schur form directly, without using the
indirect approach of partial assignment and shifting of poles in [19]. The algorithm
SCHUR in [8] is a primitive version of our algorithm SCHUR-NEWTON. In [8],
SCHUR minimized ∆F (Ac) using generalized singular value decompositions for a
given Schur vector x1 (the first column of X in (2)), and O-SCHUR selected x1

optimally using the MATLAB Optimization toolbox [16]. Note that the conditioning
or solvability of the SFPAP is independent of the (controllable) open-loop system, as
one can always apply a preliminary feedback, and we should try to avoid using the
(possibly ill-conditioned) open-loop system. Another feature of the Schur form is
that we do not have to restrict the structure of the eigenvalues. This allows defective
eigenvalues which are ill-conditioned, usually avoided but occasionally required, as
in deadbeat control.

In Section 2, we discuss briefly the perturbation results in terms of the departure
from normality measure. Our Schur-Newton method is developed in Section 3.
Eleven illustrative numerical examples are tested under eight robustness measures,
and the numerical results are presented in Section 4. Some concluding comments
are included in Section 5.

2. DEPARTURE FROM NORMALITY

Consider the Schur decomposition Ac = A + BF = XΛX� with Λ = D + N

where N is the off-diagonal part of Λ. The departure of normality measure ∆ν(A) ≡
‖N‖ν was first considered by Henrici [11] and the following perturbation result was
produced:

Theorem 2.1. (Henrici Theorem [11]). Let A, E ∈ Cn×n, E �= 0, µ ∈ λ(A +
E) and let ‖·‖ν be any norm stronger than the spectral norm (with ‖M‖ 2 ≤ ‖M‖ν

for all M). Then

1488 Tiexiang Li and Eric King-Wah Chu

min
λ∈λ(A)

|λ − µ| ≤ η

g(η)
||E||ν , η =

∆ν(A)
||E||ν

where g(η) is the only positive root of g + g 2 + · · ·+ gn = η (η ≥ 0).

Other related perturbation results involving the departure from normality measure
∆ν(A) can be found in [1-4, 9, 17].

Consequently, ∆ν(A) can be used as a robustness measure for the close-loop
spectrum, or when the conditioning of the eigenvalues of Ac has to be controlled,
as in the RPAP.

3. THE SCHUR-NEWTON ALGORITHM

Consider the closed-loop eigenvalue equation (2):

(A + BF)X = XΛ

assuming without loss of generality that the feedback matrix B has full rank and
possesses the QR decomposition

(3) B = [Q1, Q2]
[
RB

0

]
.

Pre-multiplying the eigenvalue equation (2), respectively, by B† = R−1
B Q�

1 and Q�
2 ,

we obtain

(4) Q�
2 (AX − XΛ) = 0

and

(5) F = R−1
B Q�

1 (XΛX−1 − A).

For a given Λ, we can select X from

[In ⊗ (Q�
2 A) − Λ� ⊗ Q�

2] v(X) = 0

where ⊗ denote the Kronecker product [9] and v(X) stacks the columns of X
(which is slightly different from Vec(·) defined later). For the selected X , the
solution to the SFPAP can then be obtained using (5).

A Schur-Newton Algorithm for Robust Pole Assignment 1489

3.1. Real Eigenvalues

Let us first consider the case when all the closed-loop eigenvalues are real,
with A + BF = XΛX� in Schur form. Here we have Λ = D + N with
D = diag{λ1, · · · , λn} being real, and N = [η1, η2, · · · , ηn] being strictly upper
triangular. Let Q denote Q2, then we arrive at:

Optimization Problem 1. Given A ∈ R
n×n, B ∈ R

n×m being full rank, Q� ∈
Rl×n (l = n − m) satisfying Q�B = 0 and D = diag{λ1, · · · , λn} ∈ Rn×n,
consider

min
X,N

‖N‖2
F

s.t.
{

Q�(AX − XD)− Q�XN = 0
X�X − I = 0

,
N is n × n strictly upper triangular,
X is n × n orthogonal .

In this paper, we denote C⊕D =
[
C 0
0 D

]
(where C, D need not to be square),

X = [x1, x2, · · · , xn] ∈ R
n×n, v(X) = [x�

1 , x�
2 , · · · , x�

n]�, v(AXB) = (B� ⊗
A) v(X),
Vec(I) = [1|0, 1|0, 0, 1| · · · |0, · · · , 0, 1]� ∈ Rn(n+1)/2≡q. Note that both v(·) and
Vec(·) stack columns of matrices but the latter discards zeroes for strictly upper
triangular matrices.

Optimization Problem 1 is equivalent to:

minX,N Vec(N)�Vec(N)

s.t.

 (I ⊗ Q�A − D� ⊗ Q� − N� ⊗ Q�) v(X) = 0

d0(X)�v(X)− Vec(I) = 0

where

N =


0 η12 η13 · · · η1n

0 0 η23 · · · η2n
...

... 0
. . .

...
...

...
... . . . ηn−1,n

0 0 0 · · · 0

 ∈ R
n×n, Vec(N) =



η12

η13

η23
...

η1n
...

ηn−1,n


∈ R

n(n−1)/2≡p,

(6)
d0(C) = c1 ⊕ [c1, c2] ⊕ [c1, c2, c3]⊕ · · · ⊕ [c1, . . . , cn] ∈ Rkn×q ,

C = [c1, c2, · · · , cn] ∈ R
k×n.

1490 Tiexiang Li and Eric King-Wah Chu

We then consider the Lagrange function of the Optimization Problem 1:

L(γ, δ, v(X), Vec(N)) = Vec(N)�Vec(N)

+ γ�(I ⊗ Q�A − D� ⊗ Q� − N� ⊗ Q�) v(X) + δ�[d0(X)�v(X)− Vec(I)]

where

γ = [
�
γ1︸︷︷︸
l

∣∣ �
γ2︸︷︷︸
l

∣∣ · · · ∣∣ �
γn︸︷︷︸
l

]� ∈ R
ln,

R =
[
γ1, γ2, · · · , γn

]
,

δ = [
�
δ1︸︷︷︸
1

∣∣ �
δ2︸︷︷︸
2

∣∣ · · · ∣∣ �
δn︸︷︷︸
n

]� = [δ11

∣∣δ21, δ22

∣∣ · · · ∣∣δn1, δn2, · · · , δnn]� ∈ R
q.

The derivatives of L satisfy

(7) ln
∂L

∂γ
= (I ⊗ Q�A − D� ⊗ Q� − N� ⊗ Q�) v(X) = 0,

(8) q
∂L

∂δ
= d0(X)�v(X)− Vec(I) = 0,

(9) n2 ∂L

∂v(X)
= (I ⊗ A�Q − D ⊗ Q − N ⊗ Q) γ + v(X∆) = 0,

(10) p
∂L

∂Vec(N)
= 2 Vec(N)− d1(Q�X)�γ = 0

where

(11)

∆ =


2δ11 δ21 δ31 · · · δn1

δ21 2δ22 δ32 · · · δn2
...

... 2δ33 · · · ...
...

...
... · · · δn,n−1

δn1 δn2 δn3 · · · 2δnn

 ,

d1(C) =
[

0 · · · · · · · · · · · · 0
c1 ⊕ [c1, c2]⊕ · · · ⊕ [c1, . . . , cn−1]

]
∈ R

kn×p.

Let

f1(γ, δ, v(X),Vec(N)) ≡ (I ⊗ Q�A − D� ⊗ Q� − N� ⊗ Q�) v(X) = 0,

f2(γ, δ, v(X),Vec(N)) ≡ d0(X)�v(X)− Vec(I) = 0,

f3(γ, δ, v(X),Vec(N)) ≡ (I ⊗ A�Q − D ⊗ Q − N ⊗ Q) γ + v(X∆) = 0,

f4(γ, δ, v(X),Vec(N)) ≡ 2 Vec(N)− d1(Q�X)�γ = 0.

A Schur-Newton Algorithm for Robust Pole Assignment 1491

We can apply Newton’s method to

f ≡ (f�
1 , f�

2 , f�
3 , f�

4)� = 0

which can be formulated as

(12)


γ
δ

v(X)
Vec(N)


new

=


γ
δ

v(X)
Vec(N)

 −


∂f1

∂γ

∂f1

∂δ

∂f1

∂v(X)
∂f1

∂Vec(N)
...

...
...

...
∂f4

∂γ

∂f4

∂δ

∂f4

∂v(X)
∂f4

∂Vec(N)


−1

︸ ︷︷ ︸
≡[Jf]−1


f1

f2

f3

f4



where the symmetric

Jf =


0 0 I ⊗ Q�A − D� ⊗ Q� − N� ⊗ Q� −d1(Q�X)
∗ 0 d0(X)� + d2(X�) 0
∗ ∗ ∆� ⊗ I −d3 (Q[γ2, · · · , γn])
∗ ∗ ∗ 2 Ip


and

(13) d2(C�) =



c�1
c�2 ⊕ c�2
c�3 ⊕ c�3 ⊕ c�3

...
c�n ⊕ · · · ⊕ c�n


∈ R

q×kn,

(14)

d3(Q[γ2, · · · , γn])

=
n{

[
Qγ2 Qγ3 ⊕ Qγ3 Qγ4 ⊕ Qγ4 ⊕ Qγ4 · · · Qγn ⊕· · ·⊕ Qγn

0 · · · · · · · · · 0

]
∈ R

n2×p.

Now, we can write down the algorithm SCHUR-NEWTON for the RPAP with real
eigenvalues:

Algorithm 1.

1. Use SCHUR [8] to find the initial X0 and N0.
2. Substitute X0, N0 into (9) and (10), producing an over-determined linear

system for (γ�
0 , δ�0)�:

1492 Tiexiang Li and Eric King-Wah Chu

(15)
n2

{
p

{
 ln︷ ︸︸ ︷

I ⊗ A�Q − D ⊗ Q − N0 ⊗ Q

q︷ ︸︸ ︷
d0(X) + d2(X)�

d1(Q�X)� 0

 [
γ0

δ0

]
=

[
0

2 Vec(N0)

]

where l, p, q are defined as before and n2 + p ≥ ln + q.

Use the least squares method to solve the over-determined system (15) for γ0

and δ0.

3. With [γ�
0 , δ�0 , v(X0)�, Vec(N0)�]� being the initial starting point, run New-

ton’s iteration (12) until convergence to X and N .

4. Substitute the X and N into (5) to obtain the feedback matrix F .

3.2. Complex Eigenvalues

When some of the closed-loop eigenvalues are complex, we assume that the
given eigenvalues being L = {λ1, · · · , λn−2s, α1 ± β1i, · · · , αs ± βsi}, where λi

(i = 1, · · · , n − 2s), and αj and βj (j = 1, · · · , s) are real. We now start from
the Real Schur Decomposition A + BF = XΛX� where Λ = Ω + N and X is
orthogonal. Here, Ω = D + E where

D = diag{λ1, λ2, · · · , λn−2s, ν1, ν2, · · · , ν2s} with


ν1, · · · , ν2s ∈ R

ν1 + ν2 = 2α1 ∈ R

...
ν2s−1 + ν2s = 2αs ∈ R

,

E = 0 ⊕ · · · ⊕ 0 ⊕
[

0 µ2

µ1 0

]
⊕

[
0 µ4

µ3 0

]
⊕ · · · ⊕

[
0 µ2s

µ2s−1 0

]

with


ν1ν2 − µ1µ2 = α2

1 + β2
1

...
ν2s−1ν2s − µ2s−1µ2s = α2

s + β2
s

.

So we arrive at the optimization problem with complex eigenvalues:

Optimization Problem 2. Given A ∈ R
n×n, B ∈ R

n×m being full rank, Q� ∈
Rl×n(l = n − m) satisfying Q�B = 0, L = {λ1, · · · , λn−2s, α1 ± β1i, · · · , αs ±
βsi}, consider

minX,N,Ω Vec(N)�Vec(N)

A Schur-Newton Algorithm for Robust Pole Assignment 1493

s.t.



(I ⊗ Q�A − D� ⊗ Q� − E� ⊗ Q� − N� ⊗ Q�) v(X) = 0
d0(X)�v(X)− Vec(I) = 0 ν1 + ν2 − 2α1 = 0

...
ν2s−1 + ν2s − 2αs = 0

 ν1ν2 − µ1µ2 − (α2
1 + β2

1) = 0
...

ν2s−1ν2s − µ2s−1µ2s − (α2
s + β2

s) = 0


where D and E are defined as before, d0 as defined in (6) and

η2 η3 · · · ηn−2s ηn−2s+1 ηn−2s+2 · · · ηn−1 ηn

↓ ↓ ↓ ↓ ↓ ↓ ↓

N=



0 η1,2 η1,3 · · · η1,n−2s η1,n−2s+1 η1,n−2s+2 · · · η1,n−1 η1,n

0 η2,3 · · · η2,n−2s η2,n−2s+1 η2,n−2s+2 · · · η2,n−1 η2,n

0
. . .

...
...

...
...

...
...

. . . ηn−2s−1,n−2s

...
...

...
...

...

0 ηn−2s,n−2s+1 ηn−2s,n−2s+2

...
...

...

0 0
...

...
...

0 0
. . .

...
...

. . . ηn−2,n−1 ηn−2,n

0 0
0 0



.

We then consider the Lagrange function for Optimization Problem 2:

(17)

L(γ, δ, ε, ω, v(X), ν, µ,Vec(N))

= Vec(N)�Vec(N) + γ�(I ⊗ Q�A − D� ⊗ Q� − E� ⊗ Q�

−N� ⊗ Q�) v(X) + δ�(d0(X)�v(X)− Vec(I))

+
s∑

j=1

εj(ν2j−1+ν2j − 2αj)+
s∑

j=1

ωj [ν2j−1ν2j−µ2j−1µ2j−(α2
j + β2

j)]

where
ε = (ε1, ε2 · · · , εs)�,

ω = (ω1, ω2 · · · , ωs)�,

µ = (µ1, µ2, · · · , µ2s)�,

1494 Tiexiang Li and Eric King-Wah Chu

ν = (ν1, ν2, · · · , ν2s)�,

Vec(N) = (η�
2 , η�

3 , · · · , η�
n−2s, · · · , η�

n)�.

The derivatives of L satisfy

(18) f1 ≡ ∂L

∂γ
= (I ⊗ Q�A − D� ⊗ Q� − E� ⊗ Q� − N� ⊗ Q�) v(X) = 0,

(19) f2 ≡ ∂L

∂δ
= d0(X)�v(X)− Vec(I) = 0,

(20) f3 ≡ ∂L

∂ε
= [ν1 + ν2 − 2α1, · · · , ν2s−1 + ν2s − 2αs]� = 0,

(21) f4 ≡ ∂L

∂ω
=

 ν1ν2 − µ1µ2 − (α2
1 + β2

1) = 0
...

ν2s−1ν2s − µ2s−1µ2s − (α2
s + β2

s) = 0

 ,

(22) f5 ≡ ∂L

∂v(X)
=(I ⊗ A�Q−D ⊗ Q−E ⊗ Q−N ⊗ Q) γ+v(X∆)=0,

(23)

f6 ≡ ∂L
∂ν =


ε1

ε1
...
εs

εs

 +


ω1ν2

ω1ν1
...

ωsν2s

ωsν2s−1



−

γ�
n−2s+1

. . .
γ�

n

 v(Q�[xn−2s+1, · · · , xn]) = 0,

(24)

f7 ≡ ∂L
∂µ = −


ω1µ2

ω1µ1
...

ωsµ2s

ωsµ2s−1



−

γ�
n−2s+1

. . .
γ�

n

 Πs v(Q�[xn−2s+1, · · · , xn]) = 0,

A Schur-Newton Algorithm for Robust Pole Assignment 1495

(25) f8 ≡ ∂L

∂Vec(N)
= 2 Vec(N)− d̂1(Q�X)�γ = 0

where d̂1(C) =
 0 · 0

c1 ⊕ · · ·⊕ [c1, · · · , cn−2s−1] ⊕
[
c1, · · · , cn−2s 0

0 c1, · · · , cn−2s

]
⊕ · · · ⊕

[
c1, · · · , cn−2 0

0 c1, · · · , cn−2

] ,

Πs =

[
0 I
I 0

]
⊕ · · · ⊕

[
0 I
I 0

]
︸ ︷︷ ︸

s

.

We can then obtain the symmetric gradient matrix of f ≡ [f�
1 , f�

2 , · · · , f�
8]�:

Jf =



0 0 0 0
∑ −d̂4(Q�X) −d4(Q�X) −d̂1(Q�X)

0 0 0 Ξ� 0 0 0
0 0 0 d5(e) 0 0

0 0 d5(ν) −d5(µ) 0
∆� ⊗ I −d̂4(QR) −d6(QR, s) −d8(QR, s)�

∗ d7(ω) 0 0
−d7(ω) 0

2 Ip̂



} ln
} q

} s
} s

} n2

} 2s

} 2s
} p̂

where ∑
= I ⊗ Q�A − D� ⊗ Q� − E� ⊗ Q� − N� ⊗ Q�,

p̂ = (n − 2s)(n− 2s − 1)/2 + 2s(n − s − 1),

e = [1, 1, · · · , 1︸ ︷︷ ︸
2s

]� , Ξ = d0(X) + d2(X�)�,

d4(Q
�X) =


0 · · · · · · 0
...

...
0 · · · · · · 0[

Q�xn−2s+2

Q�xn−2s+1

]
⊕ · · ·⊕

[
Q�xn

Q�xn−1

]


}
l(n − 2s)

}
l(2s)

,

d̂4(Q
�X) =


0 · · · · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · · · · 0

Q�xn−2s+1 ⊕ Q�xn−2s+2 ⊕ · · ·⊕ Q�xn−1 ⊕ Q�xn


}

l(n − 2s)

}
l(2s)

,

d5(µ1, · · · , µ2s) ≡ d5(µ�) = [µ2, µ1] ⊕ [µ4, µ3]⊕ · · · ⊕ [µ2s, u2s−1],

1496 Tiexiang Li and Eric King-Wah Chu

d6(QR, s) =


0 · · · · · · 0
...

...
0 · · · · · · 0[

0 Qγn−2s+2

Qγn−2s+1 0

]
⊕ · · ·⊕

[
0 Qγn

Qγn−1 0

]


}
l(n − 2s)

}
l(2s)

,

d7(ε) =

[
0 ε1

ε1 0

]
⊕

[
0 ε2

ε2 0

]
⊕ · · · ⊕

[
0 εs

εs 0

]
,

d8(QR, s) =



(Qγ2)
� 0

(Qγ3)
� ⊕ (Qγ3)

� 0

(Qγ4)
� ⊕ (Qγ4)

� ⊕ (Qγ4)
� 0

...

(Qγn−2s)
� ⊕ · · · ⊕ Qγn−2s)

� 0

(Qγn−2s+1)
� ⊕ · · · ⊕ (Qγn−2s+1)

� 0

(Qγn−2s+2)
� ⊕ · · · ⊕ (Qγn−2s+2)

� 0

...
(Qγn−1)

� ⊕ · · · ⊕ (Qγn−1)
� 0

(Qγn)� ⊕ · · · ⊕ (Qγn)� 0



} 1
} 2
} 3

} n − 2s − 1
} n − 2s
} n − 2s

} n − 2
} n − 2

.

Modifying Algorithm 1, we solve Optimization Problem 2 by Newton’s iteration
to obtain a real feedback matrix F :

Algorithm 2.
1. Use Schur [8] to find the initial X0 and N0.
2. Substitute X0, N0 into (20-24) and (25), we obtain [γ�

0 , δ�0 , ε�0 , ω�
0 , ν�

0 , µ�
0]�

for the Newton iterations.
3. Let [γ�

0 , δ�0 , ε�0 , ω�
0 , v(X0)�, ν�

0 , µ�
0 , Vec(N0)�]� be the initial guess, apply

Newton’s iteration (12) until convergence to X, N .
4. Substitute the X , N and Λ into (5) to obtain the feedback matrix F .

A few remarks are in order:

• At step 2, we set ν0 = [α1, α1, · · · , αs, αs]� and µ0 = [β1,−β1, · · · , βs,−βs]�,
and obtain γ0 by substituting X0, N0 into (25). Then from (22-24), we obtain
δ0, ε0 and ω0.

• At step 3, the initial point [γ�
0 , δ�0 , ε�0 , ω�

0 , v(X0)�, ν�
0 , µ�

0 , Vec(N0)�]� is
often far away from the optimal point. In such an event, we apply the GBB
Gradient method [10] to decrease the objective function sufficiently, before
Newton’s iteration is applied.

A Schur-Newton Algorithm for Robust Pole Assignment 1497

• At step 4, since the matrix X is orthogonal, we can use X� in place of X−1.

These remarks also hold for Algorithm 1.

4. NUMERICAL EXAMPLES

We shall compare our method with O-SCHUR, PLACE (the MATLAB command
implementing method 1 in [13]) and RONPOLE [18], in terms of eight different
robustness measures for eleven examples (EX1-11, quoted from [8] but appeared
elsewhere earlier). It is important to keep in mind that comparing different methods,
each designed for a particular robustness measure, is difficult.

4.1. Robustness Measures

For each test examples, the following condition numbers were used to investigate
the finial closed-loop system, with the real feedback matrix F :

1. (Condition number) κ(X) = ‖X‖F‖X−1‖F , where the columns of X con-
tains the normalized closed-loop eigenvectors of the closed-loop system matrix
Ac. The condition number for closed-loop eigenvalues has been commonly
used as a robustness measure for feedback pole assignment problems.

2. (Feedback gain) ‖F‖F , favoured by some engineers, representing the amount
of energy required for the corresponding control action.

3. (Entropy) E ≡ 1
2‖X‖2

F−ln|detX |, closed related to ω below and is convenient
to work with as X−1 is not present explicitly.

4. (Byers-Nash measure) BN ≡
√
‖X‖2

F + ‖X−1‖2
F .

5. ω ≡ ‖X‖F/(
√

n|det X|1/n), the square-root of the ratio between the arith-
metic and geometric means of the singular values of X , with its logarithm
obviously related to E .

6. σ ≡ |λ(X)|/(|det X|1/n), the ratio between the largest singular value and the
geometric mean of the singular values of X .

7. τ ≡ ‖X‖F/(
√

n|λn(X)|), the ratio between the arithmetic mean of the sin-
gular values and the smallest singular value of X .

8. (Departure from normality) ∆F (Ac) = ‖N‖F , the robustness measure for
SCHUR and our SCHUR-NEWTON method.

Note that the robustness measure for PLACE [13] is ‖X−1‖F and for ROBPOLE
[18] is −|det(X)|, which is closely related to the measures involving determinants
(in (3), (5) and (6) in the above list).

1498 Tiexiang Li and Eric King-Wah Chu

4.2. Numerical Results

We have applied Algorithm SCHUR [8] with u1 chosen to be ONES(m,1) (the
m-vector filled with ones), and applied PLACE and ROBPOLE with In as the ini-
tial matrix. Then we use the result of Algorithm SCHUR as the initial guess in
SCHUR-NEWTON. The convergence tolerance is 10−5. The numerical computa-
tions were carried out on a MATLAB 7.01 [16] with machine accuracy equals
2.22×10−16.

Tables 1-4 have eleven rows (for the eleven examples) and nine columns (for
the eight robustness measures and the cputime).

Table 1 contains the robustness measures of the closed-loop systems for the
eleven examples and the CPU-times after applying SCHUR-NEWTON.

Table 1. m(SCHUR-NEWTON)

Ex κF ‖F ‖F E BN ω σ τ ‖N‖F cputime

1 7.2 1.4 3.3 4.2 1.3 1.2 1.9 1.2(1) 1.5(-2)

2 5.5(1) 2.8(2) 7.0 2.4(1) 2.4 2.1 6.9 2.6(1) 5.0(-1)

3 1.1(2) 3.5(1) 8.7 5.5(1) 5.4 5.6 3.1(1) 1.8(1) 1.5(-2)

4 1.3(1) 9.4 3.1 7.9 1.7 2.2 9.0(-1) 1.0(1) 1.5(-2)

5 2.3(2) 3.0 1.0(1) 1.0(2) 5.0 5.2 2.5(1) 6.8(-1) 1.5(-2)

6 1.6(1) 2.6(1) 4.6 8.6 1.9 1.4 2.5 4.9(1) 4.7(-2)

7 9.7(1) 5.4(2) 3.0 3.4(1) 1.9 1.8 1.3(1) 1.3 2.0(-1)

8 3.4(1) 4.7(1) 5.3 1.7(1) 2.3 9.0(-1) 1.2 5.5 3.1(-2)

9 7.3(2) 1.7(3) 6.7 3.6(1) 3.3 7.0(-1) 1.1 7.3 3.1(-2)

10 4.0 1.5 2.0 2.8 1.0 1.0 1.0 7.5(-5) 1.5(-2)

11 5.0(5) 1.1(3) 2.0 2.5(5) 1.2(2) 8.4(1) 3.8(4) 5.0(2) 1.8(-1)

Table 2, as suggested by label m(SCHUR-NEWTON)/m(ROBPOLE), contains the
ratios of robustness measures from the feedback matrices and the CPU-times ob-
tained respectively by SCHUR-NEWTON and ROBPOLE. Similar ratios m(SCHUR
-NEWTON)/m(PLACE) and m(SCHUR-NEWTON PA)/ m(O-SCHUR) are presented,
respectively, in Tables 3-4. Noting that comparing CPU-times in MATLAB is risky
and Tables 1-4 only provide a rough indication of the relative speed of the algorithms,
with their different implementations and varying degree of code optimization.

A Schur-Newton Algorithm for Robust Pole Assignment 1499

Table 2. Ratios m(SCHUR-NEWTON)/m(ROBPOLE)

Ex κF ‖F ‖F E BN ω σ τ ‖N‖F cputime

1 1.0 1.0 1.9 1.0 1.0 9.2(-1) 1.0 9.2(-1) 4.4(-2)

2 1.1 1.7 2.8 1.1 1.1 1.1 3.4(-1) 8.4(-1) 1.8

3 1.9(-1) 7.1(-1) 3.6 1.9 2.0 2.0 1.7 4.6(-1) 1.9(-1)

4 1.0 1.0 1.6 9.8(-1) 9.4(-1) 1.0 1.2(-1) 9.1(-1) 3.8(-1)

5 1.6 8.7(-1) 3.2 1.5 1.1 7.6(-1) 7.3(-1) 9.2(-1) 6.5(-2)

6 2.7 1.3 2.8 2.4 1.6 1.0 1.6 1.0 3.4(-1)

7 8.1 2.3 1.3 6.7 1.6 1.3 7.4 3.8(-1) 8.0(-2)

8 2.6 1.7 2.7 2.4 1.5 6.0(-1) 2.6(-1) 7.1(-1) 2.2(-1)

9 3.0(1) 2.0 3.1 3.0 1.8 2.6(-1) 2.2(-1) 6.1(-1) 3.9(-1)

10 1.0 1.0 1.4 1.0 1.0 1.0 1.0 9.5(-1) 1.5(-1)

11 3.3(1) 1.7(-1) 5.9(-1) 3.4(1) 1.0(1) 7.6 1.4(1) 8.9(-2) 1.0

Table 3. Ratios m(SCHUR-NEWTON)/m(PLACE)

Ex κF ‖F ‖F E BN ω σ τ ‖N‖F cputime

1 1.0 9.3(-1) 1.9 1.1 1.0 8.0(-1) 1.2 9.2(-1) 3.0(-1)

2 1.0 7.4(-1) 2.6 1.0 1.0 1.0 1.0 8.7(-1) 2.6

3 2.0 5.6(-1) 3.6 2.0 2.0 3.7 7.5 4.9(-1) 7.5(-1)

4 1.0 9.2(-1) 1.7 1.0 9.4(-1) 1.0 1.2(-1) 9.0(-1) 1.5

5 1.5 6.2(-1) 3.2 1.5 1.1 7.8(-1) 9.2(-1) 9.2(-1) 3.8(-1)

6 2.7 1.2 2.8 2.4 1.6 1.1 1.7 9.8(-1) 1.2

7 8.0 1.6 1.3 6.7 1.6 1.4 8.5 1.5 2.2(-1)

8 2.6 1.5 2.8 2.4 1.5 6.0(-1) 2.6(-1) 7.1(-1) 7.5(-1)

9 3.0(1) 2.0 3.2 3.0 1.8 2.5(-1) 2.2(-1) 6.1(-1) 3.1

10 1.0 1.0 1.4 1.0 1.0 1.0 1.0 8.9(-4) 5.0(-1)

11 3.3(1) 1.6(-1) 5.9(-1) 3.4(1) 1.0(1) 7.6 2.3(1) 8.8(-2) 18

1500 Tiexiang Li and Eric King-Wah Chu

Table 4. Ratios m(SCHUR-NEWTON)/m(O-SCHUR)

Ex κF ‖F ‖F E BN ω σ τ ‖N‖F cputime

1 1.0 1.0 1.9 1.0 1.0 7.5(-1) 7.9(-1) 9.2(-1) 7.5(-1)

2 8.5(-1) 1.1 2.6 8.2(-1) 9.6(-1) 1.1 5.7(-1) 6.7 1.6

3 2.0 4.3(-1) 3.5 1.9 1.8 3.1 5.7 3.7(-1) 1.5

4 1.0 9.6(-1) 1.7(1) 1.0 9.4(-1) 1.1 1.2(-1) 9.0(-1) 1.5

5 1.6(-1) 7.1(-1) 2.8 1.6(-1) 6.2(-1) 6.7(-1) 9.6(-2) 9.6(-1) 1.5

6 4.0(-1) 1.7 2.7 2.2 1.5 1.2 1.8 4.5 1.9(-1)

7 6.4(-1) 7.3(-1) 1.0 6.3(-1) 1.1 1.0 9.3(-1) 1.6 2.3

8 1.4 1.3 2.5 1.4 1.2 4.7(-1) 1.4(-1) 5.5(-1) 2.3

9 1.3(1) 2.0 2.9 1.3 1.5 3.7(-1) 8.4(-2) 4.3(-1) 3.1

10 1.0 1.0 1.4 1.0 1.0 1.0 1.0 8.7(-1) 1.5

11 2.0(1) 1.6(-1) 5.7(-1) 2.0(1) 9.2 6.5 1.9(1) 8.6(-2) 1.8

5. COMMENTS ON NUMERICAL EXPERIMENTS

From Tables 1-4 (and Tables 1-10 in [8]), we have the following comments:

(1) From Table 1, our SCHUR-NEWTON algorithm produced the Schur decom-
position (Λ, X) efficiently. Unlike SCHUR, PLACE and ROBPOLE, which
update one or two eigenvalues/eigenvectors at a time, our algorithm update
all the eigenvalues and Schur vectors simultaneously.

(2) From Table 2-3, SCHUR-NEWTON performed well, comparing with ROBPOLE
and PLACE. It performed generally better in terms of the departure from
normality measure ∆F (Ac), but slightly worse in the measure κF for most
examples. Robustness measures of similar magnitudes were produced, but
our algorithm required less CPU-time.

(3) From Table 4, SCHUR-NEWTON performed well comparing with O-SCHUR,
especially in term of the departure from normality measure in the real-eigenvalues
case. Robustness measures of similar magnitudes were produced. However,
SCHUR -NEWTON required more CPU-time on most examples.

ACKNOWLEDGMENT

We would like to thank Professors Wen-Wei Lin and Shu-Fang Xu for various
interesting discussions and much encouragement.

A Schur-Newton Algorithm for Robust Pole Assignment 1501

REFERENCES

1. C. Beattie and I. C. F. Ipsen, Inclusion regions for matrix eigenvalues, Lin. Alg.
Appl., 358 (2003), 281-291.

2. T. Braconnier and Y. Saad, Eigenvalue bounds from the Schur form, Research Report,
University of Minnesota Supercomputing Institute, UMSI 98/21 (1998).

3. G. E. Cho and I. C. F. Ipsen, If a matrix has only a single eigenvalue, how sensitive
is this eigenvalue? CRSC Technical Report, North Carolina State University, Raleigh
NC, TR97-20 (1997).

4. G. E. Cho and I. C. F. Ipsen, If a matrix has only a single eigenvalue, how sensitive is
this eigenvalue? II, CRSC Technical Report, North Carolina State University, Raleigh
NC, TR98-8 (1998).

5. E. K.-W. Chu, A pole assignment algorithm for linear state feedback, Syst. Control
Letts., 49 (1986), 289-299.

6. E. K.-W. Chu, A canonical form and a state feedback pole assignment algorithm for
descriptor systems, IEEE Trans. Automat. Control, AC-33 (1988), 1114-1125.

7. E. K.-W. Chu, Optimization and pole assignment in control system, Int. J. Applied
Maths. Comp. Sci., 11 (2001), 1035-1053.

8. E. K.-W. Chu, Pole assignment via the Schur form, Syst. Control Letts., 56 (2007),
303-314.

9. G. H. Golub and C. F. van Loan, Matrix Computations, 2nd Ed., Johns Hopkins
University Press, Baltimore, MD, 1989.

10. L. Grippo and M. Sciandrone, Nonmonotone globalization techniques for the Barzilai-
Borwein gradient method, Comput. Optim. Applics., 23 (2002), 143-169.

11. P. Henrici, Bounds for iterates, inverses, spectral variation and the field of values of
nonnormal matrcies, Numer. Math., 4 (1962), 24-40.

12. S. Hu and J. Wang, A gradient flow approach to on-line robust pole assignment for
synthesizing output feedback control systems, Automatica, 38 (2002), 1959-1968.

13. J. Kautsky, N. K. Nichols and P. van Dooren, Robust pole assignment via in linear
state feedback, Int. J. Control, 41 (1985), 1129-1155.

14. m. m. konstantinov, p. hr. petkov and n.d. christov, Sensitivity analysis of the
feedback synthesis problem, IEEE Trans. Autom. Control, AC-42 (1997), 568-573.

15. J. Lam and H. K. Tam, Pole assignment with minimum eigenvalue differential sen-
sitivity, Proc. Instn. Mech. Engrs., 211 (1997), 63-74.

16. mathworks, MATLAB User’s Guide, 2002.

17. G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New
York, 1990.

1502 Tiexiang Li and Eric King-Wah Chu

18. A. Tits and Y. Yang, Globally convergent algorithms for robust pole assignment by
state feedback, IEEE Trans. Autom. Control, TAC-41 (1996), 1432-1552.

19. A. Varga, A Schur method for pole assignment, IEEE Trans. Automat. Control,
AC-27 (1981), 517-519.

20. A. Varga, Robust pole assignment techniques via state feedback, Proc. CDC’2000,
Sydney, Australia, 4655-4660.

21. B. A. White, Eigenstructure assignment: a survey, Proc. Instn. Mech. Engrs., 209
(1995), 1-11.

Tiexiang Li
LMAM,
School of Mathematical Sciences,
Peking University,
Beijing 100871,
P. R. China
E-mail: feco@math.pku.edu.cn

Eric King-wah Chu
School of Mathematical Sciences,
Building 28,
Monash University,
VIC 3800,
Australia
E-mail: eric.chu@sci.monash.edu.au

