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IDEAL CONVERGENCE IN 2-NORMED SPACES

A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan

Abstract. In this paper we introduce and investigate Z—convergence in 2—
normed spaces, and also define and examine some new sequence spaces using
2—norm.

1. INTRODUCTION

The notion of ideal convergence was introduced first by P. Kostyrko et al. [6]
as an interesting generalization of statistical convergence [1, 11].

The concept of 2—normed spaces was initially introduced by Gahler [2] in the
1960’s. Since then, this concept has been studied by many authors, see for instance
3,10].

In a natural way, one may unite these two concepts, and study Z—convergence
in 2—normed spaces. This is actually what we offer in this article. Furthermore we
define and investigate some sequence spaces by using 2—norm.

Throughout this paper N will denote the set of positive integers. Let (X, |.|)
be a normed space. Recall that a sequence (z,,),,cy Of elements of X is called to
be statistically convergent to z € X if theset A(¢) = {n € N: ||z, — x| > £} has
natural density zero for each ¢ > 0.

A family Z c 2 of subsets a nonempty set Y is said to be an ideal in Y if (i)
0 €Z;(ii) A,BeZimply AUB € T; (iii) A € Z, B C A imply B € Z, while
an admissible ideal Z of Y further satisfies {«} € Z for each z € Y [7, 8].

Given Z C 2" be a nontrivial ideal in N. The sequence (z),,cy in X is said to
be Z—convergentto z € X, if foreache > Otheset A(e) = {n e N: ||z, — 2| > ¢}
belongs to Z [6, 7).

Let X be a real vector space of dimension d, where 2 < d < co. A 2—norm
on X is a function ||., .|| : X x X — R which satisfies (i) ||z, y|| = 0 if and only
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if z and y are linearly dependent; (ii) ||z, y|| = ||y, z|; (iii) ||z, y|| = || ||z, y||,
a € R; (iv) [|z,y+ 2| < |l=,yl| + ||z, 2| . The pair (X, ||.,.||) is then called a
2—normed space [2]. As an example of a 2—normed space we may take X = R?
being equipped with the 2—norm ||z, y|| := the area of the parallelogram spanned
by the vectors = and y, which may be given explicitly by the formula

HxvyH = \9512/2 - 3622/1\7 xr = (351,962)7 Y= (y17y2)-

Recall that (X, |.,.||) is a 2—Banach space if every Cauchy sequence in X is
convergent to some z in X.

2. IDEAL CONVERGENCE OF 2-NORMED SPACES

Throughout the paper we assume X to be a 2—normed space having dimension
d, where 2 < d < oo.

Definition 2.1. Let Z C 2~ be a nontrivial ideal in N. The sequence (z,,)
of X is said to be Z—convergent to z,if for each ¢ > 0 and z in X the set
A(e)={neN: ||z, —x,z| > e} belongs to Z.

If (z,) is Z—convergent to x then we write Z — lim |lx, —z,z| = 0 or
n—oo
T — lim ||z, z|| = ||z, z|| . The number = is Z—limit of the sequence (z,,) .
n—oo

Further we will give some examples of ideals and corresponding Z— conver-
gences.

(i) Let Z; be the family of all finite subsets of N. Then Z; is an admissible ideal
in N and Z; convergence coincides with usual convergence in [2] .

(if) PutZ; = {A C N: 6 (A) =0}. Then Zs is an admissible ideal in N and Z;
convergence coincides with the statistical convergence in [4].

Now we give an example of Z—convergence in 2—normed spaces.
Example 2.1. Let Z = Z;. Define the (x,,) in 2—normed space (X, ||.,.||) by

(0,n) ,n=k*kecN
Tp = .
(0,0) ,otherwise.

and let L = (0,0) and z = (21, 22). Then for every ¢ > 0and z € X
{neN:|z,—L, 2| >e} C {1,4,9,16,....n% ..}.

We have that § ({n € N : ||z, — L, z|]| > €}) = 0, for every ¢ > 0 and z € X. This

implies that st — lim ||z, z|| = || L, z|| . But, the sequence (z,,) is not convergent
n—oo

to L.
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We note that the stated claims given in Proposition 3.1 and Remark 3.1 of [6]
are also hold in 2—normed spaces.

We next provide a proof of the fact that Z—limit operation for sequences in 2—
normed space (X, ||.,.||) is linear with respect to summation and scalar multiplica-
tion.

Theorem 2.1. Let 7 be an admissible ideal. For each z € X,

(i) ¥Z — lim ||z, 2| = ||z, 2||, T — Um ||y, 2| = ||ly, 2| then Z — lim ||z,
n—oo n—oo n—oo
+un: 2| = llz +y, 25

(il) Z — lim |jaxy, 2| = |laz, z||, a € R;
n—oo

Proof. (i) Lete > 0. Then K, Ko € Z where

Ky =K (e) == {neN:Hxn—x,zuz;

I
——

and .
Ky = Ky (¢) := {neN: lym =92 = <

I
——

for each z € X. Let
K=K()={neN:|(zpn+yn) — (x+y), 2| >c}.

Then the inclusion X ¢ K1 U K5 holds and the statement follows.
(ii) LetZ — lim |jzp, 2|| =||L,2||, a € R and a # 0. Then
n—oo

{neN:Hxn—L,szﬁ}eI

Then by definition 2.1, we have

{neN: Hawn—aL,szg}:{neN: \|lzn — L, z|| Z‘%‘}.

Hence, the right hand side of above equality belongs to Z. Hence, Z— lim |lax,,, z||=
n—oo
|laL, z|| for every z € X. ]

Fix u = {uq, ..., uq} to be a basis for X. Then we have the following:

Lemma 2.2. LetZ be an admissible ideal. A sequence (x,,) in X is Z—conver-
gentto z in X ifand only if Z — lim ||z, — x, ;|| =0 forevery i =1, ...,d.
n—oo

Using Lemma 2.2 and the norm ||.|| , we have:
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Lemma 2.3. Let Z be an admissible ideal. A sequence (x,,) in X is Z—conver-
gentto z in X if and only if Z — lim ||z, — x|, = 0.
n—oo

Using open balls B, (z,¢), Lemma 2.3 becomes:

Lemma 2.4. LetZ be an admissible ideal. A sequence (z,,) in X is Z—conver-
gentto z in X ifand only if A(e) ={n € N:z, ¢ B, (x,¢)} belongs to ideal.

Now we introduce the concept Z—Cauchy sequence in 2—normed spaces X.

Definition 2.2. Let Z c 2N be a nontrivial ideal in N. The sequence (x,,) of
X is said to be Z—Cauchy sequence in X, if for each ¢ > 0 and z € X there exists
a number N = N (g, z) such that

{k eN: ka — xN(E,z),zH > 5} el
We give a similar result as in [3, Lemma 1.2].

Theorem 2.5. Let Z be an admissible ideal. For a given Z—Cauchy sequence
() in X with any of the norms ||, .|| or ||.|| ., the following are equivalent.

(i) (zp) is Z—convergent in (X, |.,.||)-
(it) (zy) is Z—convergent in (X, ||.||)-

Proof. From Lemma 2.3, Z—convergence in the 2—norm is equivalent to that
in the ||.|| . norm. That is,

7 - lim ||z, —z,2|| =0,Vz e X &7 — lim |z, —z| -
n—oo n—oo

It is sufficient to show that (x,,) is Z—Cauchy sequence with respect to the 2—norm

iff it is Z—Cauchy sequence with respect to the norm ||| . However the proof

of the latter can be obtained in a very similar way as in [3, Lemma 2.6] by using

ideals. ]

Note that all of these results imply the similar theorems for convergence of
sequences in 2—normed space X which are investigated in [3].
3. NEw SEQUENCE SPACES

In this section we introduce some new sequence spaces and verify some of their
properties.
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Let (X, |.,.]|) be any 2—normed spaces and S (2 — X) denotes X — valued
sequences spaces. Clearly S (2 — X) is a linear space under addition and scalar
multiplication.

Recall that a map g : X — R is called a paranorm (on X) if it satisfies
the following conditions : (i) g (#) = 0 (Here @ is zero of the space); (ii) g () =
g(—x); (iii) g(z +y) < g(2)+g (y); (iv) \" = A (n — o0)and g (2" — x) — 0
(n — o0) imply g (A\"2™ — Ax) — 0 (n — oo) for all z,y € X [9].

Now we define the following sequence space.

Definition 3.1.

l(2—p):{xGS(Q—X):Zka,sz’“<oo, VZES(Q—X)}.

k

Lemma 3.1. The sequence space [ (2 — p) is a linear space.

Proof. Let py > 0, (Vk), H = sup pi and ay, b € C (complex numbers).
Then
lag + b7 < C{Jagl™* + |br*}, € =max {1,277},

[9]. Hence, if |A\| < L and |u| < M ; L, M integers, z,y € (2 — p) (omitting
subscript k) then we get

IAa + py, 2| < CLY (||z, 2|7 + CM™ ([ly, =])™ .

The desired result is obtained by taking sum over k. ]

k
Definition 3.2. Let ¢, = Y |ja;, z||"* and Z be an admissible ideal. Then we

=1
define the new sequences space as follows:

FR-p={recS2-X):{keN: |ty —t,z]|>ecVzeS2-X)}cT}.

Theorem 3.2. Let Z an admissible ideal. I (2 — p) sequences space is a
linear space.

Proof. This can be easily verified by using properties of ideal and partial sums
of sequences as in the above Lemma 4.1. [ |

Theorem 3.3. (2 —p) space is a paranormed space with the paranorm
defined by g : 1 (2 — p) — R,

1
M

g(x) = (Z Hwk,ZHP’“> ,
k
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where 0 < py < suppy = H, M = max (1, H).

Proof.

0 96) = (5 Hek,zupk)% 0

k
(il) g (—a) = ;H—wk,zupk) :(;—mm,zupk) (@)

(iii) Using well known inequalities

&l-

g(a+y) = (Zuwmyk zupk>
s( . zHM)M> +<Z(rryk,zrr%)]”>

(2

=g(z
(iv) Now let \* — X and g (z" —x) — 0 (n — oo) . We have
1
M

g\ =) = (Z A"z} — )\xk,sz’“>
k
A3 (Zuxz—wk,zupk>
k

1
M

IN

+<Z I A ||, zupk>
k

In this inequality, the first term of the right hand side tends to zero because
g(@™”—z) — 0 (n— o0). On the other hand, since A\ — X (n — o0), the
second term also tends to zero by Lemma 4.1. [ |

Theorem 3.4. If (X, ||.,.||) is finite dimensional 2—Banach space then (I (2—p) ,
g) is complete.

Proof. Let (x™) be a Cauchy sequence in (1 (2 —p),g). Then for each ¢ > 0
there exists some Ny € N such that for each m,n > Ny we have

1
M

§(a — o) = (z g - x;r,zupk) -
k
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L
Y4

which implies (||} — 2}, z|P)" < e. So, (2") isa Cauchy sequencein (X, |, .||)

and since (X, ||.,.]|) is a 2—Banach space, there exists an = in X such that

|z} — xk, 2| = 0 (n — o00) (V2 € X). ]
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