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IDEAL CONVERGENCE IN 2-NORMED SPACES

A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan

Abstract. In this paper we introduce and investigate I−convergence in 2−
normed spaces, and also define and examine some new sequence spaces using
2−norm.

1. INTRODUCTION

The notion of ideal convergence was introduced first by P. Kostyrko et al. [6]
as an interesting generalization of statistical convergence [1, 11].

The concept of 2−normed spaces was initially introduced by Gähler [2] in the
1960’s. Since then, this concept has been studied by many authors, see for instance
[3, 10] .

In a natural way, one may unite these two concepts, and study I−convergence
in 2−normed spaces. This is actually what we offer in this article. Furthermore we
define and investigate some sequence spaces by using 2−norm.

Throughout this paper N will denote the set of positive integers. Let (X, ‖.‖)
be a normed space. Recall that a sequence (xn)n∈N

of elements of X is called to
be statistically convergent to x ∈ X if the set A (ε) = {n ∈ N : ‖xn − x‖ ≥ ε} has
natural density zero for each ε > 0.

A family I ⊂ 2Y of subsets a nonempty set Y is said to be an ideal in Y if (i)
∅ ∈ I; (ii) A, B ∈ I imply A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A imply B ∈ I, while
an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y [7, 8].

Given I ⊂ 2N be a nontrivial ideal in N. The sequence (xn)n∈N
in X is said to

be I−convergent to x ∈ X, if for each ε > 0 the set A (ε) = {n ∈ N : ‖xn − x‖ ≥ ε}
belongs to I [6, 7].

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2−norm
on X is a function ‖., .‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only
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if x and y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖ ; (iii) ‖αx, y‖ = |α| ‖x, y‖ ,

α ∈ R; (iv) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖ . The pair (X, ‖., .‖) is then called a
2−normed space [2]. As an example of a 2−normed space we may take X = R2

being equipped with the 2−norm ‖x, y‖ := the area of the parallelogram spanned
by the vectors x and y, which may be given explicitly by the formula

‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2) , y = (y1, y2) .

Recall that (X, ‖., .‖) is a 2−Banach space if every Cauchy sequence in X is
convergent to some x in X.

2. IDEAL CONVERGENCE OF 2-NORMED SPACES

Throughout the paper we assume X to be a 2−normed space having dimension
d, where 2 ≤ d < ∞.

Definition 2.1. Let I ⊂ 2N be a nontrivial ideal in N. The sequence (xn)
of X is said to be I−convergent to x, if for each ε > 0 and z in X the set
A (ε) = {n ∈ N : ‖xn − x, z‖ ≥ ε} belongs to I.

If (xn) is I−convergent to x then we write I − lim
n→∞ ‖xn − x, z‖ = 0 or

I − lim
n→∞ ‖xn, z‖ = ‖x, z‖ . The number x is I−limit of the sequence (xn) .

Further we will give some examples of ideals and corresponding I− conver-
gences.

(i) Let If be the family of all finite subsets of N. Then If is an admissible ideal
in N and If convergence coincides with usual convergence in [2] .

(ii) Put Iδ = {A ⊂ N : δ (A) = 0} . Then Iδ is an admissible ideal in N and Iδ

convergence coincides with the statistical convergence in [4].

Now we give an example of I−convergence in 2−normed spaces.

Example 2.1. Let I = Iδ. Define the (xn) in 2−normed space (X, ‖., .‖) by

xn =

{
(0, n) , n = k2, k ∈ N

(0, 0) , otherwise.

and let L = (0, 0) and z = (z1, z2) . Then for every ε > 0 and z ∈ X

{n ∈ N : ‖xn − L, z‖ ≥ ε} ⊂ {1, 4, 9, 16, ..., n2, ...
}

.

We have that δ ({n ∈ N : ‖xn − L, z‖ ≥ ε}) = 0, for every ε > 0 and z ∈ X. This
implies that st − lim

n→∞ ‖xn, z‖ = ‖L, z‖ . But, the sequence (xn) is not convergent
to L.
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We note that the stated claims given in Proposition 3.1 and Remark 3.1 of [6]
are also hold in 2−normed spaces.

We next provide a proof of the fact that I−limit operation for sequences in 2−
normed space (X, ‖., .‖) is linear with respect to summation and scalar multiplica-
tion.

Theorem 2.1. Let I be an admissible ideal. For each z ∈ X,

(i) If I − lim
n→∞ ‖xn, z‖ = ‖x, z‖ , I − lim

n→∞ ‖yn, z‖ = ‖y, z‖ then I − lim
n→∞ ‖xn

+yn, z‖ = ‖x + y, z‖ ;

(ii) I − lim
n→∞ ‖axn, z‖ = ‖ax, z‖ , a ∈ R;

Proof. (i) Let ε > 0. Then K1, K2 ∈ I where

K1 = K1 (ε) :=
{
n ∈ N : ‖xn − x, z‖ ≥ ε

2

}
and

K2 = K2 (ε) :=
{
n ∈ N : ‖yn − y, z‖ ≥ ε

2

}
for each z ∈ X. Let

K = K (ε) := {n ∈ N : ‖(xn + yn) − (x + y) , z‖ ≥ ε} .

Then the inclusion K ⊂ K1 ∪ K2 holds and the statement follows.

(ii) Let I − lim
n→∞ ‖xn, z‖ = ‖L, z‖ , a ∈ R and a 
= 0. Then

{
n ∈ N : ‖xn − L, z‖ ≥ ε

|a|
}

∈ I.

Then by definition 2.1, we have

{n ∈ N : ‖axn − aL, z‖ ≥ ε} =
{

n ∈ N : ‖xn − L, z‖ ≥ ε

|a|
}

.

Hence, the right hand side of above equality belongs to I. Hence, I− lim
n→∞ ‖axn, z‖=

‖aL, z‖ for every z ∈ X.

Fix u = {u1, ..., ud} to be a basis for X. Then we have the following:

Lemma 2.2. Let I be an admissible ideal. A sequence (xn) in X is I−conver-
gent to x in X if and only if I − lim

n→∞ ‖xn − x, ui‖ = 0 for every i = 1, ..., d.

Using Lemma 2.2 and the norm ‖.‖∞ , we have:



1480 A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan

Lemma 2.3. Let I be an admissible ideal. A sequence (xn) in X is I−conver-
gent to x in X if and only if I − lim

n→∞ ‖xn − x‖∞ = 0.

Using open balls Bu (x, ε) , Lemma 2.3 becomes:

Lemma 2.4. Let I be an admissible ideal. A sequence (xn) in X is I−conver-
gent to x in X if and only if A (ε) = {n ∈ N : xn /∈ Bu (x, ε)} belongs to ideal.

Now we introduce the concept I−Cauchy sequence in 2−normed spaces X.

Definition 2.2. Let I ⊂ 2N be a nontrivial ideal in N. The sequence (xn) of
X is said to be I−Cauchy sequence in X, if for each ε > 0 and z ∈ X there exists
a number N = N (ε, z) such that{

k ∈ N :
∥∥xk − xN(ε,z), z

∥∥ ≥ ε
} ∈ I.

We give a similar result as in [3, Lemma 1.2].

Theorem 2.5. Let I be an admissible ideal. For a given I−Cauchy sequence
(xn) in X with any of the norms ‖., .‖ or ‖.‖∞ , the following are equivalent.

(i) (xn) is I−convergent in (X, ‖., .‖) .

(ii) (xn) is I−convergent in (X, ‖.‖∞).

Proof. From Lemma 2.3, I−convergence in the 2−norm is equivalent to that
in the ‖.‖∞ norm. That is,

I − lim
n→∞ ‖xn − x, z‖ = 0, ∀z ∈ X ⇔ I − lim

n→∞ ‖xn − x‖∞ .

It is sufficient to show that (xn) is I−Cauchy sequence with respect to the 2−norm
iff it is I−Cauchy sequence with respect to the norm ‖.‖∞ . However the proof
of the latter can be obtained in a very similar way as in [3, Lemma 2.6] by using
ideals.

Note that all of these results imply the similar theorems for convergence of
sequences in 2−normed space X which are investigated in [3].

3. NEW SEQUENCE SPACES

In this section we introduce some new sequence spaces and verify some of their
properties.
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Let (X, ‖., .‖) be any 2−normed spaces and S (2 − X) denotes X− valued
sequences spaces. Clearly S (2 − X) is a linear space under addition and scalar
multiplication.

Recall that a map g : X → R is called a paranorm (on X) if it satisfies
the following conditions : (i) g (θ) = 0 (Here θ is zero of the space); (ii) g (x) =
g (−x) ; (iii) g (x + y) ≤ g (x)+g (y) ; (iv) λn → λ (n → ∞) and g (xn − x) → 0
(n → ∞) imply g (λnxn − λx) → 0 (n → ∞) for all x, y ∈ X [9].

Now we define the following sequence space.

Definition 3.1.

l (2 − p) =

{
x ∈ S (2 − X) :

∑
k

‖xk, z‖pk < ∞, ∀z ∈ S (2 − X)

}
.

Lemma 3.1. The sequence space l (2 − p) is a linear space.

Proof. Let pk > 0, (∀k) , H = sup pk and ak, bk ∈ C (complex numbers).
Then

|ak + bk|pk ≤ C {|ak|pk + |bk|pk} , C = max
{
1, 2H−1

}
,

[9]. Hence, if |λ| ≤ L and |µ| ≤ M ; L, M integers, x, y ∈ l (2 − p) (omitting
subscript k) then we get

‖λx + µy, z‖pk ≤ CLH (‖x, z‖)pk + CMH (‖y, z‖)pk .

The desired result is obtained by taking sum over k.

Definition 3.2. Let tk =
k∑

i=1
‖xi, z‖pi and I be an admissible ideal. Then we

define the new sequences space as follows:

lI (2 − p) = {x ∈ S (2 − X) : {k ∈ N : ‖tk − t, z‖ ≥ ε ∀z ∈ S (2 − X)} ∈ I} .

Theorem 3.2. Let I an admissible ideal. lI (2 − p) sequences space is a
linear space.

Proof. This can be easily verified by using properties of ideal and partial sums
of sequences as in the above Lemma 4.1.

Theorem 3.3. l (2 − p) space is a paranormed space with the paranorm
defined by g : l (2 − p) → R,

g (x) =

(∑
k

‖xk, z‖pk

) 1
M

,
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where 0 < pk ≤ sup pk = H, M = max (1, H) .

Proof.

(i) g (θ) =
(∑

k

‖θk, z‖pk

) 1
M

= 0

(ii) g (−x) =
(∑

k

‖−xk, z‖pk

) 1
M

=
(∑

k

|−1| ‖xk, z‖pk

) 1
M

= g (x)

(iii) Using well known inequalities

g (x + y) =

(∑
k

‖xk + yk, z‖pk

) 1
M

≤
(∑

k

(
‖xk, z‖

pk
M

)M
) 1

M

+

(∑
i

(
‖yk, z‖

pk
M

)M
) 1

M

= g (x) + g (y) .

(iv) Now let λn → λ and g (xn − x) → 0 (n → ∞) . We have

g (λnxn−λx) =

(∑
k

‖λnxn
k − λxk, z‖pk

) 1
M

≤ |λ|H
M

(∑
k

‖xn
k−xk, z‖pk

) 1
M

+

(∑
k

|λn−λ| ‖xk, z‖pk

) 1
M

.

In this inequality, the first term of the right hand side tends to zero because
g (xn − x) → 0 (n → ∞) . On the other hand, since λn → λ (n → ∞) , the
second term also tends to zero by Lemma 4.1.

Theorem 3.4. If (X, ‖., .‖) is finite dimensional 2−Banach space then (l (2−p) ,
g) is complete.

Proof. Let (xn) be a Cauchy sequence in (l (2 − p) , g). Then for each ε > 0
there exists some N0 ∈ N such that for each m, n > N0 we have

g (xn − xm) =

(∑
k

‖xn
k − xm

k , z‖pk

) 1
M

< ε,
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which implies (‖xn
k − xm

k , z‖pn)
1
M

< ε. So, (xn) is a Cauchy sequence in (X, ‖., .‖)
and since (X, ‖., .‖) is a 2−Banach space, there exists an x in X such that
‖xn

k − xk, z‖ → 0 (n → ∞) (∀z ∈ X) .
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1484 A. Şahiner, M. Gürdal, S. Saltan and H. Gunawan

Hendra Gunawan
Department of Mathematics,
Bandung Institute of Technology,
Bandung 40132,
Indonesia
E-mail: hgunawan@dns.math.itb.ac.id


