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POSITIVE OPERATORS AND INTEGRAL REPRESENTATION

Wided Ayed and Habib Ouerdiane

Abstract. In this paper, we give a new and useful criterion for the positivity
of generalized functions and study positive operators on test function space of
entire functions on the dual space of a nuclear space with a certain exponen-
tial growth condition. This new criterion is used to prove that every positive
operator has an integral representation given by positive Borel measure, which
can be characterized by integrability conditions. Moreover, this new criterion
of positivity can be easily applied to operators such as the identity, the trans-
lation, the multiplication, and the convolution operators. This enable us to
obtain characterization and integral representation of the associated measure.
We also apply the above results to study regularity property of the solution of
some quantum stochastic differential equations.

1. INTRODUCTION

The main purpose of this paper is to introduce a new and useful criterion of
positivity of generalized functions and operators. This enable us to prove an integral
representation of such distributions and operators. In this section, we will quickly
summarize some known results needed in this paper. In the second section, we
reformulate the usual definition of positive generalized functions in two infinite
dimensional variables. Then we prove an integral representation of such generalized
functions by means of positive Borel measure. This result yields an equivalent
natural definition of positive generalized functions. The advantage of this new
criterion is that we can recognize positivity of generalized functions by their action
on a small class of test functions.

In the third section, we define positive operators in L(Fθ(N ′),Fϕ(M ′)∗) in
terms of the positivity of their kernels. Then we prove in Theorem 3.2 that every
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positive operator has an integral representation given by a Borel measure. The Borel
measures associated with positive generalized functions and positive operators are
characterized by integrability conditions of the Fernique type. For related work, see
the book [8] and the papers [9, 10].

In the last section, we will give some examples to demonstrate the advantage
of our new criterion. In particular, we give a necessary condition for the positivity
of the translation operators. Then we study necessary and sufficient conditions for
the positivity of the multiplication and convolution operators. We will provide a
characterization of the associated measure in terms of the Laplace transform. In
particular, we study the identity operator of Fθ(N ′) with our setup and recover the
results previously obtained by Obata [12]. Finally, we apply our results to prove
the regularity property of solutions of certain linear quantum stochastic differential
equations in Equation (4.3).

Now, we assemble a general framework which is necessary for this paper. For
detail, see [1-3, 7, 16].

Let N and M be two complex nuclear Fréchet spaces with topologies defined
by the families of increasing Hilbertian norms {| · |p; p ∈ N} and {‖ · ‖q; q ∈ N}),
respectively. For p, q ∈ N, we denote by Np (respectively, Mq) the completion of
N (respectively, M ) with respect to the norm | · |p (respectively, ‖ · ‖q). Let

N = proj-lim
p→∞

Np, M = proj-lim
p→∞

Mq.

Denote by N−p (respectively, M−q) the topological dual of the space Np (re-
spectively, Mq). Denote by | · |−p (respectively, ‖ · ‖−q) the associated norms to
N−p (respectively, M−q). Then by general duality theory, the strong dual space N′

(respectively, M′) can be obtained as

N ′ = ind-lim
p→∞ N−p, M ′ = ind-lim

p→∞ M−q .

Note that due to the nuclearity of N (respectively, M ), the strong and the inductive
limit topology of N′ (respectively, M′) coincide.

Let Mp ⊕ Np be the Hilbert space direct sum. Then the direct sum M ⊕ N is
given by M ⊕N = proj-lim

p→∞
Mp⊕Np. Similarly, we have (M ⊕N )′ = M ′⊕N ′ =

ind-lim
p→∞ M−p ⊕ N−p.

We recall the definition of Young function which will be used in the sequel

Definition 1.1. A Young function is a continuous, convex, and increasing func-
tion defined on R+ and satisfies the two conditions: θ(0) = 0 and limx→∞ θ(x)/x =
+∞.



Positive Operators and Integral Representation 1459

We fix a pair of Young functions (θ, ϕ) and define the following space of entire
functions of two variables:

Exp
[
N−p ⊕ M−p, (θ, ϕ), (m1, m2)

]
=

{
f ∈ H(N−p ⊕ M−p) ; ‖f‖(θ,ϕ),(m1,m2) < ∞}

,

where H(N−p ⊕M−p) is the space of entire functions on N−p ⊕ M−p (see [7] for
detail.) Define

‖f‖(θ,ϕ),(m1,m2) := sup
(z1,z2)∈N−p×M−p

|f(z1 ⊕ z2)|e−θ(m1|z1|−p)−ϕ(m2‖z2‖−p),

where p ∈ N and m1 > 0, m2 > 0. Then{
Exp

[
N−p ⊕ M−p, (θ, ϕ), (m1, m2)

]
; p ∈ N, m1 > 0, m2 > 0

}
becomes a projective system of Banach spaces. Put

F(θ,ϕ)(N
′ ⊕ M ′) = proj-lim

p→∞;m1,m2↓0
Exp

[
N−p ⊕ M−p, (θ, ϕ), (m1, m2)

]
,

which is called the space of entire functions on M ′ ⊕ N ′ with (θ, ϕ)-exponential
growth of minimal type. Similarly,{

Exp
[
Np ⊕ Mp, (θ, ϕ), (m1, m2)

]
: p ∈ N, m1 > 0, m2 > 0

}
becomes an inductive system of Banach spaces. The space of entire functions on
N ⊕ M with (θ, ϕ)-exponential growth of finite type is defined by

G(θ,ϕ)(N ⊕ M) = ind-lim
p→∞;m1,m2→∞Exp

[
Np ⊕ Mp, (θ, ϕ), (m1, m2)

]
.

Denote by F(θ,ϕ)(N ′⊕M ′)∗ the strong dual of the test function space F(θ,ϕ)(N ′⊕
M ′). For any (ξ, η) ∈ N × M , we consider the exponential function e(ξ,η) :
N ′ ⊕ M ′ → C defined by

e(ξ,η)(z1, z2) := exp(〈z1, ξ〉+ 〈z2, η〉).
Obviously, we have e(ξ,η)(z1, z2) = eξ⊕η(z1 ⊕ z2) = (eξ ⊗ eη)(z1, z2). Moreover,
it is easily to see that e(ξ,η) ∈ F(θ,ϕ)(N ′ ⊕ M ′). The Laplace transform of a
generalized function Φ ∈ F(θ,ϕ)((N ⊕ M)′) is defined by

L(Φ)(ξ, η) = 〈〈Φ, eξ⊕η〉〉, ξ ∈ N η ∈ M.

We recall from [14] that there is a unique topological isomorphism

(1.1) F(θ,ϕ)((N ⊕ M)′) ∼= Fθ(N ′)⊗̂Fϕ(M ′),
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which extends the correspondence eξ⊕η ↔ eξ ⊗ eη.
Denote by X (respectively, Y ) the real Fréchet nuclear space whose complexifi-

cation is N (i.e. , N = X + iX) (respectively, M = Y + iY ). Let X′ (respectively,
Y ′) be the strong dual of X (respectively, Y ). We recall the next theorem from [7].

Theorem 1.2. Let M and N be complex nuclear Fréchet spaces and let
θ and ϕ be two Young functions. Then the Laplace transform is a topological
isomorphism:

L : F(θ,ϕ)(N
′ ⊕ M ′)∗ → G(θ∗,ϕ∗)(N ⊕ M),

where θ∗ and ϕ∗ are the conjugate functions respectively of θ and ϕ and they are
given by

θ∗(x) = sup
t�0

(tx − θ(t)), ϕ∗(x) = sup
t�0

(tx − ϕ(t)), x � 0.

If N = M and ϕ = θ, we write simply Fθ(N ′ ⊕ N ′) = F(θ,θ)(N ′ ⊕ N ′).
Denote by L(Fθ(N ′),Fθ(N ′)∗) the space of all linear continuous operators from
Fθ(N ′) into Fθ(N ′)∗. From the nuclearity of the space Fθ(N ′), we have by the
Schwartz- Grothendieck kernel theorem

(1.2) L(Fθ(N ′),Fϕ(M ′)∗) ∼= Fθ(N ′)∗⊗̂Fϕ(M ′)∗ ∼= F(θ,ϕ)(N
′ ⊕ M ′)∗.

Since the kernel ΞK of an operator Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗) is an element of
F(θ,ϕ)(N ′⊕M ′)∗, the symbol Ξ̂ of Ξ is by definition the Laplace transform of ΞK .
Hence we have the following relationship:

(1.3) Ξ̂(ξ ⊕ η) = 〈〈ΞK , eξ ⊗ eη〉〉 = L(ΞK)(ξ ⊕ η), ξ ∈ N η ∈ M.

We can then use Theorem 1.2 to get the following corollary:

Corollary 1.3. A function Θ : N ⊗ N → C is the symbol of some Ξ ∈
L(Fθ(N ′),Fθ(N ′)∗) if and only if Θ ∈ Gθ∗(N ⊕ N ).

We will assume that the Young functions θ and ϕ satisfy the additional growth
conditions:

(1.4) lim
x 	→∞

θ(x)
x2

< ∞, lim
x 	→∞

ϕ(x)
x2

< ∞,

then we have the following Gel’fand triples (see [3, 14] for detail):

(1.4) Fθ(N ′) ⊂ L2(X ′, γ) ⊂ Fθ(N ′)∗

(1.5) Fθ,ϕ(N ′ ⊕ M ′) ⊂ L2(X ′ × Y ′, γ1 ⊗ γ2) ⊂ Fθ,ϕ(N ′ ⊕ M ′)∗,
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where γi, i ∈ {1, 2}, are respectively the standard Gaussian measures on the strong
dual spaces of X and Y (see [5]).

We remark that if M = {0}, then Fθ,ϕ(N ′ ⊕ M ′) = Fθ(N ′). Therefore, the
results we obtain for the space Fθ,ϕ(N ′ ⊕ M ′) of two variable test functions are
also valid for Fθ(N ′).

2. POSITIVE GENERALIZED FUNCTIONS

In this section, we will use the involution defined in Equation (2.1) to obtain
a new criterion for positive generalized function in F(θ,ϕ)(N ′ ⊕ M ′)∗. Then we
give an integral representation of such generalized functions. First recall from [14]
that F(θ,ϕ)(N ′ ⊕ M ′)∗ is a nuclear algebra with the involution ∗ defined for any
f ∈ F(θ,ϕ)(N ′ ⊕ M ′)∗ by

(2.1) f∗(z, w) := f(z̄, w̄), z ∈ N ′ w ∈ M ′.

Note that the isomorphism in Equation (1.1) implies that f = f1⊗f2 ∈ F(θ,ϕ)(N ′⊕
M ′) for any f1 ∈ Fθ(N ′) and f2 ∈ Fϕ(M ′). Let A denote the subset of F(θ,ϕ)(N ′⊕
M ′) given by

A =
{
g = ff∗ , f = f1 ⊗ f2, f1 ∈ Fθ(N ′) f2 ∈ Fϕ(M ′)

}
.

Definition 2.1. A generalized function Φ ∈ F(θ,ϕ)(N ′ ⊕ M ′)∗ is said to be
A-positive if 〈〈Φ, g〉〉 � 0 for any g ∈ A.

Recall from ([14, 16, 17, 19]) that a generalized function Φ ∈ F(θ,ϕ)(N ′⊕M ′)∗

is positive in the usual sense, if it satisfies the following condition

〈〈Φ, f〉〉 � 0, ∀ f ∈ F(θ,ϕ)(N
′ ⊕ M ′)+.

where F(θ,ϕ)(N ′ ⊕ M ′)+ denotes the following set{
f ∈ Fθ,ϕ(N ′ ⊕ M ′) , f((x + i0) ⊕ (y + i0)) � 0, ∀(x, y) ∈ X ′ × Y ′}.

We also recall the notation F(θ,ϕ)(N ′ ⊕M ′)∗+ for the set of usual positive gen-
eralized functions. Denote by F(θ,ϕ)(N ′⊕M ′)∗+,A the set of A-positive generalized
functions given by Definition 2.1.

Lemma 2.2. Any positive generalized function Φ ∈ F (θ,ϕ)(N ′ ⊕ M ′)∗ is also
A-positive.

Proof. Let Φ ∈ F(θ,ϕ)(N ′⊕M ′)∗+ and consider f = f1⊗f2 with f1 ∈ Fθ(N ′)
and f2 ∈ Fϕ(M ′). Then we have 〈〈Φ, ff∗〉〉 � 0 because

(ff∗)((x + i0)⊕ (y + i0)) = |f((x + i0)⊕ (y + i0))|2 � 0
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for all (x, y) ∈ X ′ × Y ′. This proves the lemma.

Theorem 2.3. For any A-positive generalized function Φ ∈ F (θ,ϕ)(N ′⊕M ′)∗,
there exist a unique Borel measure µΦ on X ′⊕Y ′, positive on nonempty open sets,
such that for all f ∈ F (θ,ϕ)(N ′ ⊕ M ′),

(2.2) 〈〈Φ, f〉〉 =
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµΦ(x ⊕ y).

Moreover, the Fourier transform of µΦ is given by

FµΦ
(ξ ⊕ η) = 〈〈Φ, ei(ξ⊕η)〉〉, (ξ, η) ∈ X × Y.

Remark 2.4. Such a Borel measure µΦ is often called a Hida measure in white
noise theory, see the book [8].

Proof. Let Φ ∈ F(θ,ϕ)(N ′⊕M ′)∗+,A. The Fourier transform CΦ of Φ is defined
for each (ξ, η) ∈ X × Y by

CΦ(ξ, η) := 〈〈Φ, ei(ξ⊕η)〉〉 = (LΦ)(iξ ⊕ iη).

By Theorem 1.2, CΦ is a continuous function and CΦ(0, 0) is a finite number.
Moreover, CΦ is positive definite. In fact, for any αj ∈ C, ξj ∈ X, ηj ∈ Y, 1 ≤
j ≤ n, we have ∑

1≤i,j≤n

αiαjCΦ((ξi, ηi) − (ξj, ηj))

=
∑

1≤i,j≤n

αiαj〈〈Φ, ei(ξi+ηi)e−i(ξj+ηj)〉〉

=
〈〈

Φ,
( ∑

1≤i≤n

αiei(ξi+ηi)

)( ∑
1≤j≤n

αjei(ξj+ηj )

)∗〉〉
� 0.

Thus by the Bochner-Minlos theorem (see [5, 8, 11]), there exist a unique positive
Borel measure µΦ on X ′ ⊕ Y ′ such that for all (ξ, η) ∈ X × Y ,

(2.3) 〈〈Φ, ei(ξ⊕η)〉〉 =
∫

X ′⊕Y ′
ei(〈x,ξ〉+〈y,η〉) dµΦ(x ⊕ y).

Next we need to extend Equation (2.3) to f ∈ F(θ,ϕ)(N ′⊕M ′). It is clear that Equa-
tion (2.3) is satisfied on the linear span of the exponential functions {e i(ξ,η); (ξ, η) ∈
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X × Y }, which is dense in F(θ,ϕ)(N ′ ⊕ M ′). Let f ∈ F(θ,ϕ)(N ′ ⊕ M ′) and let
(fn)n∈N be a sequence in E converging to f in the topology of F(θ,ϕ)(N ′ ⊕ M ′).
Then

(2.4) 〈〈Φ, (fn − fm)(fn − fm)∗〉〉 =
∫

X ′⊕Y ′
|(fn − fm)(x⊕ y)|2 dµΦ(x ⊕ y).

Since (fn)n∈N converges to f , it is a Cauchy sequence in E . Then by the continuity
of Φ and the multiplication operator on F(θ,ϕ)(N ′ ⊕ M ′), we can take the limit in
Equation (2.4) to show that the sequence (fn)n∈N is also Cauchy in L2(X ′⊕Y ′, µΦ).
Let l denote the limit of (fn)n∈N with respect the norm in L2(X ′⊕Y ′, µΦ). Because
the topology of F(θ,ϕ)(N ′⊕M ′) is finer than the topology of L2(X ′⊕Y ′, µΦ), we
conclude that l = f , µΦ-a.e. Finally, we use the Lebesgue dominated convergence
theorem and the fact that µΦ is supported by X−p⊕Y−p for some p > 0 to conclude
that

〈〈Φ, f〉〉 = lim
n	→∞〈〈Φ, fn〉〉

= lim
n	→∞

∫
X ′⊕Y ′

fn(x⊕ y) dµΦ(x⊕ y)

=
∫

X ′⊕Y ′
l(x ⊕ y)dµΦ(x ⊕ y)

=
∫

X ′⊕Y ′
f(x ⊕ y) dµΦ(x ⊕ y).

Thus the proof is complete.

Recall that by a positive Borel measure, we mean a Borel measure which is
positive on nonempty open sets.

Corollary 2.5. Every positive generalized function Φ has an integral repre-
sentation given by Equation (2.2). Moreover, we have

(2.5) Fθ,ϕ(N ′ ⊕ M ′)∗+ = Fθ,ϕ(N ′ ⊕ M ′)∗+,A.

Proof. The first part of the corollary is a direct consequence of Lemma 2.2
and Theorem 2.3. To prove the equality (2.5), it is sufficient to prove the following
inclusion in view of Lemma 2.2

Fθ,ϕ(N ′ ⊕ M ′)∗+,A ⊆ Fθ,ϕ(N ′ ⊕ M ′)∗+.

Let Φ ∈ Fθ,ϕ(N ′⊕M ′)∗+,A. Then by Theorem 2.3, Φ has an integral representation
given by

〈〈Φ, f〉〉 =
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµφ(x ⊕ y), f ∈ F(θ,ϕ)(N

′ ⊕ M ′).
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Let f ∈ F(θ,ϕ)(N ′ ⊕ M ′)+. Then by definition, f((x + i0)⊕ (y + i0)) � 0 for all
x ∈ X ′, y ∈ Y ′. Since µΦ is a positive Borel measure, we see that

〈〈Φ, f〉〉 =
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµφ(x ⊕ y) � 0.

Hence Φ ∈ Fθ,ϕ(N ′ ⊕ M ′)∗+.

We point out that Corollary 2.5 gives a new criterion of positive generalized
functions. This new criterion leads in a natural way to the standard definition
of positive generalized functions. Moreover, it enables us to recognize positive
generalized functions by their action on a smaller set of test functions. In fact, let
B be the subset of Fθ,ϕ(N ′ ⊕ M ′) defined by

B =
{
ff∗ ; f ∈ Fθ,ϕ(N ′ ⊕ M ′)

}
.

Then we have

(2.6) A ⊆ B ⊆ Fθ,ϕ(N ′ ⊕ M ′)+.

For the next corollary, we introduce the notation

Fθ,ϕ(N ′ ⊕ M ′)∗+,B =
{
φ ∈ Fθ,ϕ(N ′ ⊕ M ′)∗ ; 〈〈φ, h〉〉 � 0, ∀h ∈ B}

.

Corollary 2.6. The set of B-positive generalized functions coincides with the
set of positive generalized functions, i.e.,

Fθ,ϕ(N ′ ⊕ M ′)∗+ = Fθ,ϕ(N ′ ⊕ M ′)∗+,B.

Proof. Equation (2.6) yields the following inclusions:

Fθ,ϕ(N ′ ⊕ M ′)∗+ ⊆ Fθ,ϕ(N ′ ⊕ M ′)∗+,B ⊆ Fθ,ϕ(N ′ ⊕ M ′)∗+,A.

Then this corollary follows from Equation (2.5).

By using Equation (1.4), we can obtain the following triple:

(2.7) Fθ,ϕ(N ′ ⊕ M ′) ⊂ L2(X ′ × Y ′, γ1 ⊗ γ2) ⊂ Fθ,ϕ(N ′ ⊕ M ′)∗,

which implies that every Φ ∈ Fθ,ϕ(N ′ ⊕ M ′)∗ can be interpreted as a Gaussian
distribution. Let Φ ∈ Fθ,ϕ(N ′ ⊕ M ′)∗+ and let µΦ the associated measure given
by Equation (2.2). Then Φ can be interpreted as the generalized Radon Nikodym
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derivative of the measure µΦ with respect the standard Gaussian measure γ1 ⊗ γ2

and we can use the notation

(2.8) Φ =
dµΦ

d(γ1 ⊗ γ2)
.

Next we will give a characterization of those Borel measure specified in Theorem
2.3.

Theorem 2.7. Let µ a finite measure on X ′ ⊕ Y ′ equipped with the Borel
σ-algebra B(X ′ ⊕ Y ′). Then µ represents a positive generalized function Φ ∈
Fθ,ϕ(N ′ ⊕ M ′)∗+ if and only if it satisfies the two following conditions:

(1) There exist q > 0 such that µ is supported by X−q ⊕ Y−q .

(2) There exists m1, m2 > 0 such that

(2.8)
∫

X−q⊕Y−q

eθ(m1|x|−q)+ϕ(m2‖y‖−q) dµ(x ⊕ y) < ∞.

To prove this theorem, we need the following two lemmas, which can be proved
by similar arguments as those for one variable case in [16].

Lemma 2.8. Let µ be a measure which represents a positive generalized
function Φ. Then there exist m ′

1 > 0, m′
2 > 0 and p, q ∈ N satisfying q > p such

that for any (ξ, η) ∈ Xq × Yq and for any n, l ∈ N, we have:

(2.10)

∫
X−q⊕Y−q

〈x⊗n, ξ⊗n〉2〈y⊗l, η⊗l〉2 dµ(x ⊕ y)

≤‖ L(Φ) ‖θ∗,ϕ∗,−p,−p,m′
1,m′

2
(2n)!(2l)!m′2n

1 m′2l
2 θ∗2nϕ∗

2l|ξ|2n
p ‖η‖2l

p .

Lemma 2.9. Let µ be a measure which represents a positive generalized
function Φ. Then there exist m ′

1 > 0, m′
2 > 0 and p, q ∈ N satisfying q > p such

that for any n, l ∈ N, we have:

(2.11)

∫
X−q⊕Y−q

|x|n−q‖y‖l−q dµ(x ⊕ y)

≤ C
(√

em′2
1 ‖ ip,q ‖HS

)n (√
em′2

2 ‖ ip,q ‖HS

)l
,

where C =
{‖L(Φ)‖θ∗,ϕ∗,−p,−p,m1,m2(2n)!(2l!)θ∗2nϕ

∗
2l

}1/2 and ‖ ip,q ‖HS is the
Hilbert-Schmidt norm of the injection

ip,q : Nq ⊕ Mq → Np ⊕ Mp.
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Proof of Theorem 2.7. To prove the sufficiency part, let µ be supported by
X−q ⊕ Y−q for some q > 0 and there exist m1, m2 > 0 such that∫

X−q⊕Y−q

eθ(m1|x|−q)+ϕ(m2‖y‖−q) dµ(x ⊕ y) < ∞.

Then the linear functional Φµ defined by

〈〈Φµ, f〉〉 :=
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµ(x⊕ y)

is continuous on Fθ,ϕ(N ′ ⊕ M ′). Hence Φµ is positive generalized function.
Conversely, suppose that µ satisfies

〈〈Φ, f〉〉 =
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµΦ(x ⊕ y)

for a generalized function Φ ∈ Fθ,ϕ(N ′ ⊕ M ′)∗+. Since there exists p ∈ N such
that

(2.12) CΦ(ξ, η) = 〈〈Φ, ei(ξ,η)〉〉 ∈ Exp
[
Np ⊕ Mp, θ

∗, ϕ∗, m′
1, m

′
2

]
.

The characteristic function CΦ is continuous with respect to the family of norms
{‖ · ‖(θ,ϕ),(m1,m2)}. Then the Bochner-Minlos theorem which asserts the existence
of µ, also ensures the existence of q > p such that µ is supported by X−q ⊕ Y−q .
Moreover, the injection

ip,q : Nq ⊕ Mq → Np ⊕ Mp

is a Hilbert-Schmidt operator. For n ∈ N, let

θ∗n = inf
r>0

eθ∗(r)

rn
, ϕ∗

n = inf
r>0

eϕ∗(r)

rn
.

To complete the proof, it is enough to find m1 > 0, m2 > 0 such that∫
X−q⊕Y−q

eθ(m1|x|−q)+ϕ(m2‖y‖−q) dµ(x ⊕ y) < ∞.

Since the Young functions θ and ϕ are convex, we have (θ∗)∗ = θ and (ϕ∗)∗ = ϕ.
So it is enough to find m1 > 0, m2 > 0 such that∫

X−q⊕Y−q

sup
t≥0

{
etm1|x|−q−θ∗(t)

}
sup
t′≥0

{
et′m2‖y‖−q−ϕ∗(t′)} dµ(x⊕ y) < ∞.
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In fact, for any m1 > 0, m2 > 0, we have

etm1|x|−q−θ∗(t)=e−θ∗(t)
∑
n≥0

(tm1)n

n!
|x|n−q,

et′m2‖y‖−q−ϕ∗(t′)=e−ϕ∗(t)
∑
l≥0

(tm2)l

l!
‖y‖l

−q.

Note that tne−θ∗(t)θ∗n � 1 for t > 0 and n ∈ N, and tle−ϕ∗(t)ϕ∗
l � 1 for t > 0 and

l ∈ N. Therefore,

sup
t≥0

{
etm1|x|−q−θ∗(t)

}≤∑
n∈N

(m1|x|−q)n

n!θ∗n
,

sup
t′≥0

{
et′m2‖y‖−q−ϕ∗(t′)}≤∑

l∈N

(m2‖y‖−q)l

l!ϕ∗
l

.

By Lemma 2.9 and the inequalities θ∗2n � 2nθ∗n and ϕ∗
2l � 2lϕ∗

l for all n, l ∈ N, we
obtain

(2.13)

∫
X−q⊕Y−q

sup
t≥0

{
etm1|x|−q−θ∗(t)

}
sup
t′≥0

{
et′m2‖y‖−q−ϕ∗(t′)} dµ(x ⊕ y)

≤ L
∑

n,l∈N

√
(2n)!(2l)!

n!l!(
2
√

em1m
′
1 ‖ iq,p ‖HS

)n (
2
√

em2m
′
2 ‖ iq,p ‖HS

)l
,

where L = {‖ L(Φ) ‖θ∗,ϕ∗,−p,−p,m′
1,m′

2
}1/2. Since

√
(2n)!(2l)!

n!l! � 2n2l

(πn)
1
4 (πl)

1
4

as

n, l → ∞, it follows for m1 > 0, m2 > 0 such that 4m′
1
√

em1 ‖ iq,p ‖HS< 1 and
4m′

2
√

em2 ‖ iq,p ‖HS< 1, the series in Equation (2.13) converges to K. Hence we
get ∫

X−q⊕Y−q

sup
t≥0

{etm1|x|−q−θ∗(t)}{sup
t′≥0

et′m2‖y‖−q−ϕ∗(t′)} dµ(x⊕ y)

≤ K
√
‖ L(Φ) ‖θ∗,ϕ∗,−p,−p,m′

1,m′
2 .

This completes the proof of the theorem.

3. POSITIVE OPERATORS

We now use the results in the previous section to study positive operators in
L(Fθ(N ′),Fϕ(M ′)∗) and give an integral representation for such operators. The
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case N = M and ϕ = θ corresponds to the white noise operators studied in
[7]. For every Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗), the associated kernel, denoted by ΞK ∈
(Fθ(N ′)⊗̂Fϕ(M ′))∗, satisfies the following equality:

(3.1) 〈〈Ξf, g〉〉 = 〈〈ΞK , f ⊗ g〉〉, f ∈ Fθ(N ′) g ∈ Fϕ(M ′).

The symbol of Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗) is defined by:

Ξ̂(ξ, η) = 〈〈ΞK , eξ ⊗ eη〉〉 = L(ΞK)(ξ, η), ξ ∈ N η ∈ M.

Definition 3.1. An operator Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗) is positive if its kernel
ΞK is an element of Fθ,ϕ(N ′ ⊕ M ′)∗+.

Theorem 3.2. For any positive operator Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗), there
exists a unique positive Borel measure µΞ on X ′ ⊕ Y ′ such that for all f ∈
Fθ,ϕ(N ′ ⊕ M ′),

〈〈ΞK , f〉〉 =
∫

X ′⊕Y ′
f((x + i0)⊕ (y + i0)) dµΞ(x ⊕ y).

The Laplace transform of µΞ is given by

L(µΞ)(ξ, η) = 〈〈ΞK , eξ ⊗ eη〉〉 = Ξ̂(ξ, η), ξ ∈ N, η ∈ M.

Moreover, µΞ is characterized by the following integrability conditions:

(1) There exists q > 0 such that µΞ is supported by X−q ⊕ Y−q .

(2) There exist m1, m2 > 0 such that

(3.2)
∫

X−q⊕Y−q

eθ(m1|x|−q)+ϕ(m2‖y‖−q) dµΞ(x⊕ y) < ∞.

Since ΞK ∈ Fθ,ϕ(N ′⊕M ′)∗+, we can apply Theorem 2.3 to get a unique positive
Borel measure µΞ on X ′ ⊕ Y ′ such that

〈〈ΞK , f〉〉 =
∫

X ′⊕Y ′
f((x + i0) ⊕ (y + i0)) dµΞ(x ⊕ y)

for all f ∈ Fθ,ϕ(N ′ ⊕ M ′). Thus the characterization of µΞ is a consequence of
Theorem 2.7.

The next corollary can be easily deduced from Theorem 3.2 and Equations (2.8)
and (3.1).
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Corollary 3.3. Let Ξ ∈ L(Fθ(N ′),Fϕ(M ′)∗) be a positive operator. Then for
any f ∈ Fθ(N ′), g ∈ Fϕ(M ′), we have

〈Ξf, g〉 = 〈ΞK , f ⊗ g〉 =
∫

X ′⊕Y ′
f(x + i0)g(y + i0) dµΞ(x ⊕ y).

Moreover, the Gaussian distribution Ξ K can be interpreted as a generalized Radon
Nikodym derivative of the measure µΞ with respect the standard Gaussian measure
γ1 ⊗ γ2, namely,

(3.3)
dµΞ

d(γ1 ⊗ γ2)
= ΞK .

4. EXAMPLES AND APPLICATIONS

We will give several examples to show the advantage of our new criterion of the
positivity of generalized functions. At the same time, we will study the positivity of
some operators. We need to point out that in some examples, the available theorems
in the literature cannot be easily applied because the explicit expression of kernels
might be hard to derive.

4.1 Multiplication operators

Let Φ ∈ Fθ(N ′)∗ and let MΦ ∈ L(Fθ(N ′),Fθ(N ′)∗) be the multiplication
operator by Φ defined in [2] by

〈〈MΦf, h〉〉 = 〈〈Φ, fh〉〉, f, h ∈ Fθ(N ′).

Moreover, the multiplication operator Mg by test function g ∈ Fθ(N ′) is defined
by Mg(f) = gf, f ∈ Fθ(N ′). Using the Gel’fand triple (1.5), we can consider the
operator Mg as an element of L(Fθ(N ′),Fθ(N ′)∗).

Proposition 4.1. (1) The multiplication operator MΦ is positive if and only if
Φ ∈ (Fθ(N ′))∗+. In this case, MΦ has an integral representation given by Theorem
3.2 and the Laplace transform of the associated measure µ MΦ

is given by

L(µMΦ
)(ξ, η) = L(Φ)(ξ, η), ξ, η ∈ N.

(2) The multiplication operator M g by a test function g is positive if and only if
g ∈ Fθ(N ′)+. In this case, Mg has an integral representation given by Theorem
3.2 and the Laplace transform of the associated measure µ Mg is given by

〈〈MK
g , eξ ⊗ eη〉〉 = L(µMg)(ξ, η).
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In particular, for every τ ∈ X and g = eτ ∈ Fθ(N ′)+, we have

L(µMg )(ξ, η) = e〈τ+ξ,η〉, ξ, η ∈ N.

Proof. (1) For any f = f1 ⊗ f2 ∈ Fθ(N ′ ⊕ N ′), the kernel MK
Φ satisfies

〈〈MK
Φ , ff∗〉〉 = MK

Φ (f1f
∗
1 ⊗ f2f

∗
2 ) = 〈〈MΦ(f1f

∗
1 ), f2f

∗
2 〉〉

= 〈〈Φ, f1f
∗
1 f2f

∗
2 〉〉 = 〈〈Φ, (f1f2)(f1f2)∗〉〉.

It follows that 〈〈MK
Φ , ff∗〉〉 � 0 if and only if Φ ∈ (Fθ(N ′))∗+. In this case, by

Theorem 3.2, we get

L(µMΦ
)(ξ, η) = 〈〈MK

Φ , eξ ⊗ eη〉〉 = 〈〈MΦeξ, eη〉〉
= 〈〈Φ, eξ ⊗ eη〉〉 = L(Φ)(ξ, η), ξ, η ∈ N.

(2) For any f = f1 ⊗ f2 ∈ Fθ(N ′) ⊗Fθ(N ′), the kernel MK
g of Mg satisfies

〈〈MK
g , ff∗〉〉 = 〈〈Mg(f1f

∗
1 ), f2f

∗
2 〉〉 = 〈gf1f

∗
1 , f2f

∗
2 〉

=
∫

X ′
g(x + i0)|f1(x + i0)|2|f2(x + i0)|2 dγ(x) � 0.

This proves the assertion (2).

Corollary 4.2. The identity map I of Fθ(N ′) is a positive element of the space
L(Fθ(N ′),Fθ(N ′)∗) and is associated with a measure µ I such that

〈〈IK , f〉〉 =
∫

X ′⊕X ′
f((x + i0)⊕ (y + i0)) dµI(x ⊕ y), f ∈ Fθ(N ′ ⊕ N ′).

The Laplace transform of the measure µ I is given by

(4.1) L(µI)(ξ, η) = 〈〈eξ, eη〉〉 = e〈ξ,η〉, ξ, η ∈ N.

Proof. Note that I = Me0 and e0 ∈ Fθ(N ′)+. Hence by Proposition 4.1, I is
a positive operator and we get the assertion.

Obata [12] has used a different method to prove that for any ξ, η ∈ N ,

Î(ξ, η) =
∫

N ′
e〈z̄,ξ〉+〈z,η〉ν′ (dz) = e〈ξ,η〉 = L(ν′)(ξ, η) = L(µI)(ξ, η),

where ν′ = µ 1
2
×µ 1

2
, and µ 1

2
is the Gaussian measure on X ′ with variance 1

2 . Upon
comparing this equation with Equation (4.1) and using the isomorphism property of
the Laplace transform in Theorem 1.2, we immediately conclude that µI = ν′.
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4.2 Translation operators

Let z ∈ N ′, the translation operator τ−z is an element of L(Fθ(N ′),Fθ(N ′)∗)
defined for any f ∈ Fθ(N ′) by

(τ−zf)(λ) = f(z + λ), λ ∈ N ′.

Proposition 4.3. For any z ∈ X ′, the translation operator τ−z is a positive
operator of Fθ(N ′). In this case, τ−z has an integral representation given by
Theorem 3.2 and the Laplace transform of the associated measure µ τ−z is

L(µτ−z)(ξ, η) = e〈ξ,z+η〉, ξ, η ∈ N.

Proof. Let f = f1 ⊗ f2 ∈ Fθ(N ′ ⊕ N ′). Then

〈〈τK
−z, ff∗〉〉 = 〈〈τK

−z, f1f
∗
1 ⊗ f2f

∗
2 〉〉 = 〈τ−z(f1f

∗
1 ), f2f

∗
2 〉

=
∫

X ′
(f1f

∗
1 )(x + z)|f2(x)|2dγ(x)

=
∫

X ′
|f1(x + z)|2|f2(x)|2 dγ(x) � 0.

Hence the kernel τK−z of τ−z is positive. Then we apply Theorem 3.2 to get a unique
positive measure such that

L(µτ−z)(ξ, η) = 〈〈τK
−z, eξ ⊗ eη〉〉 = 〈τ−zeξ, eη〉

= e〈ξ,z〉〈eξ, eη〉 = e〈ξ,z+η〉, ξ η ∈ N.

Thus the proposition is proved.

4.3 Convolution operators

A convolution operator on the the space Fθ(N ′) of test functions is a continuous
linear operator from Fθ(N ′) into itself which commutes with translation operators.
It was proved in [1] that T is a convolution operator on Fθ(N ′) if and only if there
exists ΦT ∈ Fθ(N ′)∗ such that Tf = ΦT ∗ f for all f ∈ Fθ(N ′). Moreover, the
convolution Φ1 ∗ Φ2 of Φ1, Φ2 ∈ Fθ(N ′)∗ is an element of ∈ Fθ(N ′)∗.

Proposition 4.4. A convolution operator T acting on F θ(N ′) is positive if and
only if the associated generalized function Φ T ∈ Fθ(N ′)∗+. In this case, T has an
integral representation and the Laplace transform of the associated measure µ T is
given by

L(µT )(ξ, η) = L(ΦT )(ξ)e〈ξ,η〉, ξ, η ∈ N.
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Proof. We first prove the positivity of the kernel TK of the convolution operator
T . For f = f1 ⊗ f2 ∈ Fθ(N ′ ⊕ N ′), we have

〈〈TK , ff∗〉〉 = 〈T (f1f
∗
1 ), f2f

∗
2 〉 = 〈ΦT ∗ (f1f

∗
1 ), f2f

∗
2 〉

=
∫

X ′
(ΦT ∗ (f1f

∗
1 ))(x)(f2f

∗
2 )(x) dγ(x)

=
∫

X ′
〈〈ΦT , τ−x(f1f

∗
1 )〉〉|f2(x)|2 dγ(x).

But by assumption, the associated generalized function ΦT ∈ Fθ(N ′)∗ is positive.
Therefore,

(4.2) 〈〈ΦT , τ−x(f1f
∗
1 )〉〉 = 〈〈ΦT , f1(x + .)f∗

1 (x + .)〉〉 � 0, ∀f1 ∈ Fθ(N ′).

Moreover, by Theorem 3.2, we have

L(µT )(ξ, η) = 〈〈TK, eξ ⊗ eη〉〉 = 〈〈Teξ, eη〉〉
= 〈〈ΦT ∗ eξ, eη〉〉 = Φ̂T (ξ)e〈ξ,η〉, ξ, η ∈ N,

which proves the assertion of the proposition.

Corollary 4.5. Suppose that f ∈ Fθ(N ′)+ and Φ ∈ Fθ(N ′)∗+. Let Mf be
the multiplication operator by f and let T Φ be the convolution operator associated
with Φ. Then the operator L = MfTΦ is positive.

Proof. Let f = f1 ⊗ f2 ∈ Fθ(N ′ ⊕ N ′). Use Equation (4.2) and the fact that
f ∈ Fθ(N ′)+ and Φ ∈ Fθ(N ′)∗+ to show that

〈〈LK , ff∗〉〉 = 〈L(f1f
∗
1 ), f2f

∗
2 〉 = 〈Mf (Φ ∗ (f1f

∗
1 )), f2f

∗
2 〉

= 〈f(Φ ∗ (f1f
∗
1 )), f2f

∗
2 〉

=
∫

X ′
f(x)(Φ ∗ (f1f

∗
1 ))(x)(f2f

∗
2 )(x) dγ(x)

=
∫

X ′
f(x)〈〈Φ, τ−x(f1f

∗
1 )〉〉|f2(x)|2 dγ(x) � 0.

Hence L is a positive operator in L(Fθ(N ′),Fθ(N ′)).

4.4 Quantum Stochastic Differential Equations

As a final application in this paper, we consider a special type of quantum
stochastic differential equations.
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First recall some results from [2] about the convolution product of operators.
Let T1 and T2 be two operators in L(Fθ(N ′),Fθ(N ′)). The convolution product
of T1 and T2, denoted by T1 ∗ T2, is defined by

T1 ∗ T2 = σ−1
[
σ(T1)(σT2)

]
,

where σ is the Wick symbol given by

σ(T1)(ξ, η) = 〈〈T1eξ, eη〉〉e−〈ξ,η〉, ξ, η ∈ N.

Let f, g, Φ, and Ψ be continuous positive stochastic processes with

f, g : [0, T ]× Ω −→ Fθ(N ′)+,

Φ, Ψ : [0, T ]× Ω −→ Fθ(N ′)∗+.

Put Lt = Mf(t)TΦ(t) and Ft = Mg(t)TΨ(t). Consider the following linear quantum
differential equation (see [1, 11] and [7]:

(4.3)
dXt

dt
= Lt ∗ Xt + Ft, X0 ∈ L(Fθ(N ′),Fθ(N ′)).

Theorem 4.6. For any positive initial condition X 0, Equation (4.3) has a
unique positive solution X t ∈ L(F(eθ∗)∗(N

′),Feθ(N ′)) given by

Xt = X0 ∗ e∗(
∫ t
0

Lsds) +
∫ t

0
e∗(

∫ t
0

Ludu) ∗ Fs ds.

Moreover, Xt has the following integral representation

〈〈XK
t , f〉〉 =

∫
X ′⊕X ′

f((x + i0)⊕ (y + i0)) dµXt(x ⊕ y)

for all f ∈ F((eθ∗)∗,eθ)(N
′ ⊕ N ′). Here µXt is the positive Borel measure on

X ′ ⊕ X ′ uniquely determined by the following integrability conditions:

(1) There exists q > 0 such that the measure µXt is supported by X−q ⊕ X−q.

(2) There exist m1, m2 > 0 such that

(4.3)
∫

X−q⊕X−q

e(eθ∗)∗(m1|x|−q)+eθ(m2‖y‖−q) dµXt(x⊕ y) < ∞.

Proof. We use the same technique as that in [2] to prove this theorem. Note
that for T1 = Mf1TΦ1 and T2 = Mf2TΦ2 , we have
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T1 ∗ T2 = Mf1f2TΦ1∗Φ2 .

It follows that if T = MfTΦ, then for every n ∈ N we have T∗n = MfnTΦ∗n . By
Corollary 2.5 and [15], we have Φ1 ∗ Φ2 ∈ Fθ(N ′)∗+ if Φ1, Φ2 ∈ Fθ(N ′)∗+. Apply
the Wick symbol map σ to Equation (4.3) to show the existence and uniqueness of
a solution, (see Theorem 3 in [2]). Then use Corollaries 2.5 and 4.5 to see that
e∗(

∫ t
0 Ls ds) is a positive operator. Thus we have the positivity of the solution. The

integral representation and the integrability conditions can be shown by applying
Theorem 3.2 for θ = (eθ∗)∗ and ϕ = eθ .
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d’integrabilité, Infinite Dimensional Analysis, Quantum Probability and Related Top-
ics, 3(2) (2000), 297-302.
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