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SHARP MAXIMAL INEQUALITIES AND COMMUTATORS
ON MORREY SPACES WITH NON-DOUBLING MEASURES

Yoshihiro Sawano and Hitoshi Tanaka

Abstract. In this paper, we establish a sharp maximal inequality for Morrey
spaces with a Radon measure µ satisfying certain growth condition, which is
not necessarily doubling. As an application, we obtain the boundedness of
commutators generated by singular integral or fractional integrals with RBMO
functions in Morrey spaces.

1. INTRODUCTION

The aim of this paper is to establish the sharp maximal inequality for the Morrey
spaces with non-doubling measures. This inequality will be applied to obtain the
boundedness of the commutators.

Throughout this paper µ will be a (positive) Radon measure on Rd satisfying
the growth condition:

(1) µ(B(x, l)) ≤ C0 ln for all x ∈ supp (µ) and l > 0,

where C0 and n, 0 < n ≤ d, are some fixed numbers. We do not assume that µ is
doubling.

Recently the measure with growth condition has been shed light on because we
can recover the Calderón-Zygmund theory. Nazarov, Treil and Volberg developed the
theory of the singular integrals for the measures with growth condition to investigate
the analytic capacity on the complex plane [9, 10]. X. Tolsa showed that the analytic
capacity is subadditive and that it is bi-Lipschitz invariant [17, 18]. The research,
which was started from their pioneering works using the modified maximal operator,
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has been developed in many ways: Garcĺa-Cuerva and Eduardo Gatto defined a
potential operator for the measures with growth condition [4]. X. Tolsa defined for
the growth measures RBMO (regular bounded mean oscillation) space, the Hardy
space H1(µ) and the Littlewood-Paley decomposition [14, 16]. He also gave his
H1(µ) space in terms of the grand maximal operator [15]. Chen and Sawyer have
modified the definition of RBMO to investigate the commutator of the potential
operator and RBMO [1]. Deng, Han and Yang have defined the Besov-space and
the Triebel-Lizorkin space for the growth measures [5, 6]. Hu, Meng and Yang also
considered the multilinear operator [7, 8]. The authors also defined a Morrey space
for non-doubling measures [13]. Some definitions are recalled later.

We denote by M the Hardy-Littlewood maximal operator and by M� the sharp
maximal operator. Then the sharp maximal inequality is the one of the form:

‖Mf |Lp(Rd)‖ ≤ C ‖M �f |Lp(Rd)‖, 1 < p < ∞,

which was firstly introduced in [2]. It is well-known that this inequality does not
hold without some integrability assumption. Indeed, let us remark that if we take
f ≡ 1 then the inequality fails. So one assumes that min(1, Mf) ∈ Lp(Rd) or
that f ∈ Lq(Rd) for some q, 1 ≤ q ≤ p. In this paper we will also discuss the
integrability assumptions in terms of the Morrey spaces. Before stating our main
result, we fix some notation and define some terminologies.

By “cube” Q ⊂ Rd we mean a compact cube whose edges are parallel to the
coordinate axes. Its side length will be denoted by �(Q). For c > 0, c Q will denote
a cube concentric to Q with its sidelength c �(Q). The set of all cubes Q ⊂ Rd

with positive µ-measure will be denoted by Q(µ). We recall the definition of the
Morrey spaces with non-doubling measures.

Let k > 1 and 1 ≤ q ≤ p < ∞. We define a Morrey space Mp
q(k, µ) as

Mp
q(k, µ) :=

{
f ∈ Lq

loc(µ) | ‖f |Mp
q(k, µ)‖ < ∞} ,

where the norm ‖f |Mp
q(k, µ)‖ is given by

(2) ‖f |Mp
q(k, µ)‖ := sup

Q∈Q(µ)
µ(k Q)

1
p
− 1

q

(∫
Q
|f |q dµ

) 1
q

.

By using Hölder’s inequality to (2), it is easy to see that

(3) Lp(µ) = Mp
p(k, µ) ⊂ Mp

q1
(k, µ) ⊂ Mp

q2
(k, µ)

for 1 ≤ q2 ≤ q1 ≤ p < ∞. The definition of the spaces is independent of the
constant k > 1. The norms for different choices of k > 1 are equivalent. More
precisely, for k1 > k2 > 1, we have (see [13])
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(4) ‖f |Mp
q(k1, µ)‖ ≤ ‖f |Mp

q(k2, µ)‖ ≤ Cd

(
k1 − 1
k2 − 1

)d

‖f |Mp
q(k1, µ)‖.

Nevertheless, for definiteness, we will assume k = 2 in the definition and denote
Mp

q(2, µ) by Mp
q(µ).

Our BMO here is a RBMO (regular bounded mean oscillation) introduced by
X. Tolsa [14] which are the suitable substitutes for the classical BMO space. For
the definition and its various equivalent norms we refer to [14, Lemma 2.10]. We
list one of them.

Definition 1.1. [14, Sections 2.2 and 2.3]

(1) Given two cubes Q, R ∈ Q(µ) with Q ⊂ R, set KQ,R := 1+
NQ,R∑
k=1

µ(2kQ)
�(2kQ)n

,

where NQ,R is the least integer k ≥ 1 such that 2kQ ⊃ R.
(2) Q is called a doubling cube if µ(2Q) ≤ 2d+1µ(Q). One denotes by Q(µ, 2)

the set of all doubling cubes.
(3) Given Q ∈ Q(µ), set Q∗ as the smallest doubling cube R of the form R =

2jQ with j ∈ N0 := {0} ∪N.
(4) f ∈ L1

loc(µ) is said to belong to RBMO if it satisfies

sup
Q∈Q(µ)

1
µ
(

3
2Q
) ∫

Q
|f(y)−mQ∗(f)| dµ(y)+ sup

Q⊂R
Q,R∈Q(µ,2)

|mQ(f) − mR(f)|
KQ,R

<∞,

where mQ(f) :=
1

µ(Q)

∫
Q

f dµ. One denotes this quantity by ‖f‖∗.

By the growth condition (1) there are a lot of big doubling cubes. Precisely
speaking, given any cube Q ∈ Q(µ), we can find j ∈ N with 2jQ ∈ Q(µ, 2).
Meanwhile, for µ-a.e. x ∈ Rd, there exists a sequence of doubling cubes {Qk}k

centered at x with �(Qk) → 0 as k → ∞. So we can say that there are a lot of
small doubling cubes, too. (See [14].)

For f ∈ L1
loc(µ) we define two maximal operators due to Tolsa (see [14]): The

sharp maximal operator M�f(x) is defined as

M �f(x) := sup
x∈Q∈Q(µ)

1
µ
(

3
2Q
) ∫

Q
|f(y)−mQ∗(f)| dµ(y)+ sup

x∈Q⊂R
Q,R∈Q(µ,2)

|mQ(f)−mR(f)|
KQ,R

and Nf(x) is defined as Nf(x) := sup
x∈Q∈Q(µ,2)

mQ(|f |). The following proposition

is a sharp maximal inequality of Lp(µ) for these operators.
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Proposition 1.2. [14 p. 124]

(1) Suppose that f ∈ L1
loc(µ). Then, for µ-a.e. x ∈ Rd, we have |f(x)| ≤

Nf(x).
(2) Suppose that 1 < p < ∞. We assume that min(1, Nf) ∈ Lp(µ) when

µ(Rd) = ∞ and that f ∈ L1(µ) and
∫
Rd f dµ = 0 when µ(Rd) < ∞. Then

there exists a constant C > 0 independent on f such that ‖Nf |L p(µ)‖ ≤
C ‖M �f |Lp(µ)‖.

Now we state our main results on the sharp maximal inequality for the Morrey
space Mp

q(µ).

Theorem 1.3. Suppose that 1 < q ≤ p < ∞. Then, for any f ∈ L1
loc(µ), there

exists a constant C > 0 independent on f such that

‖Nf |Mp
q(µ)‖ ≤ C

(
‖M �f |Mp

q(µ)‖ + ‖f |Mp
1(µ)‖

)
.

It is known that N : Mp
q(µ) → Mp

q(µ) is a bounded operator (c.f. [13]).
Notice that we can use Theorem 1.3 for any locally integrable function f . This

is an advantage of this new sharp maximal inequality. In showing the Lp(µ)-
boundedness of some linear operator T one often has to assume that T is Lp(µ)-
bounded on the set of bounded functions with compact support. Combining with
the following theorem, we can recover the usual sharp maximal inequality with an
even weaker and unified assumption.

Theorem 1.4. Suppose that 1 ≤ q ≤ p < ∞ and there exist an increasing
sequence of concentric doubling cubes I0 ⊂ I1 ⊂ . . . ⊂ Ik ⊂ . . . such that

(5) lim
k→∞

mIk
(f) = 0 and

⋃
k

Ik = Rd.

Then there exists a constant C > 0 independent on f such that

‖f |Mp
1(µ)‖ ≤ C ‖M �f |Mp

q(µ)‖.

Corollary 1.5. Suppose that 1 < q ≤ p < ∞ and that the sequence of cubes
{Ik} satisfies the above conditions. Then there exists a constant C > 0 independent
on f such that

‖Nf |Mp
q(µ)‖ ≤ C ‖M �f |Mp

q(µ)‖.
As for this kind of approach in the case of Lp(Rd), N. Fujii obtained a result

in a different context [3].
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Remark 1.6. It would be interesting to restate Theorem 1.3 in the case of the
Lebesgue space Lp(Rd). Notice that if µ = dx then M �f(x) is equivalent to the
usual one in [2]. Applying our result with µ = dx and 1 < p = q < ∞, we have a
norm equivalence

(6) ‖f |Lp(Rd)‖ ≈
(
‖M �f |Lp(Rd)‖+ sup

Q⊂Rd

|Q| 1p−1
∫

Q
|f | dx

)

for all f ∈ L1
loc(R

d).

As an application of Theorem 1.3 we obtain the boundedness of commutators.
A commutator is an operator of the form [a, T ]f(x) = a(x)Tf(x)−T (af)(x),

where a is a function and T is a bounded operator. As was shown in the classical
results, [a, T ] is bounded from Lp(Rd) to Lp(Rd) if a ∈BMO and T is a Calderón-
Zygmund operator and is bounded from Lp(Rd) to Lq(Rd) if a ∈BMO and T is
a fractional integral operator, where p and q are a suitable pair. Fazio and Ragusa
[11] extended these results to the classical Morrey spaces. Our results and precise
definitions will be given later (Section 4).

2. PRELIMINARIES

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C1, C2, do not change in different
occurrences. We will assume that the large constant C0 in (1) has been chosen so
that the following estimate holds :

µ(Q) ≤ C0�(Q)n for all Q ∈ Q(µ).

Lemma 2.1. The following properties hold :

(1) Let Q ∈ Q(µ) and j ∈ N. Then we have KQ,2jQ ≤ 1 + C0j.

(2) Let Q ⊂ R ∈ Q(µ) be concentric cubes such that there are no doubling cubes
of the form 2jQ, j≥0, with Q⊂2jQ⊂R. Then we have KQ,R≤1 + 2 C0.

(3) Let Q ∈ Q(µ) and α > 0. Suppose that, for some c > 0,

α ≤ µ(2jQ) ≤ c α, j = 0, 1, . . . , J.

Then we have KQ,2JQ ≤ 1 + c C0 cn, where cn :=
∞∑

j=0

2−nj .
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Proof. The assertion (1) is clear. We prove (2) firstly. Putting N = NQ,R, we
shall estimate KQ,R. The growth condition (1) implies d−n ≥ 0 and the assumption
and the definition of the doubling cubes imply 2d+1µ(2jQ) ≤ µ(2j+1Q). These
observations yield

KQ,R ≤ 1 +
µ(2NQ)
�(2NQ)n

N∑
j=1

(
2n−d−1

)N−j ≤ 1 + 2C0.

Next we prove (3). It follows by assumption that

KQ,2JQ ≤ 1+
J∑

j=0

µ(2jQ)
�(2jQ)n

≤ 1+c
α

�(Q)n

J∑
j=0

2−nj ≤ 1+c C0 cn.

The following lemmas will be needed in Section 4.

Lemma 2.2. Suppose that 1<q≤p<∞, 0≤α < n and 1/s=1/p−α/n > 0.

(1) For all f ∈ Mp
q(µ), a ∈RBMO, Q ∈ Q(µ) and x ∈ Q, we have∫

Rd\2Q

|(mQ∗(a)− a(y)) f(y)|
|x− y|n−α

dµ(y) ≤ C �(Q)−
n
s ‖a‖∗‖f |Mp

q(µ)‖.

(2) For all f ∈ Mp
q(µ), Q ∈ Q(µ) and x ∈ Q, we have∫

Rd\2Q

|f(y)|
|x − y|n−α

dµ(y) ≤ C �(Q)−
n
s ‖f |Mp

q(µ)‖.

To prove this lemma we need the John-Nirenberg lemma for RBMO due to
Tolsa.

Lemma 2.3. [14, Corollary 3.5]

(1) Let a ∈RBMO. For any cube Q ∈ Q(µ), we have

µ {x ∈ Q | |a(x)− mQ∗(a)| > λ} ≤ C µ

(
3
2
Q

)
exp

(
− C′λ
‖a‖∗

)
, λ > 0.

(2) For all 1 ≤ r < ∞, the following norm is equivalent to ‖a‖ ∗.

sup
Q∈Q(µ)

(
1

µ
(

3
2Q
) ∫

Q
|a(y)− mQ∗(a)|r dµ(y)

)1
r

+ sup
Q⊂R

Q,R∈Q(µ,2)

|mQ(a)− mR(a)|
KQ,R

.
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Proof of Lemma 2.2. We will tackle the first assertion, the second one being sim-

ilar. An elementary calculation yields
∫ ∞

0

χB(x,l)(y)
ln

lα−1 dl =
∫ ∞

|x−y|
lα−n−1 dl =

C

|x − y|n−α
, where χA is the indicator function of a set A ⊂ Rd.

This and Fubini’s theorem lead us to∫
Rd\2Q

|(mQ∗(a) − a(y)) f(y)|
|x − y|n−α

dµ(y)

≤
∫
Rd\B(x,�(Q)/2)

|(mQ∗(a)− a(y)) f(y)|
|x − y|n−α

dµ(y)

= C

∫
Rd\B(x,�(Q)/2)

(∫ ∞

0
χB(x,l)|(mQ∗(a) − a(y)) f(y)| · lα−n−1 dl

)
dµ(y)

= C

∫ ∞

0

(
lα−n−1

∫
B(x,l)\B(x,�(Q)/2)

|(mQ∗(a)− a(y)) f(y)| dµ(y)

)
dl

≤ C

∫ ∞

�(Q)/2


lα−n−1

(∫
B(x,l)

|a(y)− mQ∗(a)|q′ dµ(y)

) 1
q′

·
{∫

B(x,l)
|f(y)|q dµ(y)

)1
q


 dl,

where
1
q′

+
1
q

= 1. It follows from the growth condition (1) that

(ln)
1
p
− 1

q

(∫
B(x,l)

|f |q dµ

) 1
q

≤ C ‖f |Mp
q(µ)‖.

By using this estimate we have∫
Rd\2Q

|(mQ∗(a)− a(y)) f(y)|
|x − y|n−α

dµ(y)

≤ C ‖f |Mp
q(µ)‖

∫ ∞

�(Q)/2


l−

n
s
−1

(
1
ln

∫
B(x,l)

|a(y)− mQ∗(a)|q′ dµ(y)

) 1
q′

 dl.

We shall estimate the right-hand side of this inequality by using Lemma 2.3 (2).
Let k be the least integer satisfying 2kQ ⊃ B(x, l). Then we have by the growth

condition
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(
1
ln

∫
B(x,l)

|a(y)− mQ∗(a)|q′ dµ(y)

) 1
q′

≤ C

(
1

µ
(

3
22kQ

) ∫
2kQ

|a(y)− mQ∗(a)|q′ dµ(y)

) 1
q′

≤ C

((
1

µ
(

3
22kQ

) ∫
2kQ

|a(y)− m(2kQ)∗(a)|q′ dµ(y)

) 1
q′

+|m(2kQ)∗(a)− mQ∗(a)|
)

≤ C KQ∗,(2kQ)∗‖a‖∗.

It follows from Lemma 2.1 (1) and (2) that KQ∗,(2kQ)∗ ≤ C (1 + k) ≤ C
(
1+

log l
�(Q)/2

)
. Thus, we obtain
∫
Rd\2Q

|(mQ∗(a) − a(y)) f(y)|
|x − y|n−α

dµ(y)

≤ C ‖a‖∗‖f |Mp
q(µ)‖

∫ ∞

�(Q)/2

l−
n
s
−1

(
1 + log

l

�(Q)/2

)
dl

≤ C �(Q)−
n
s ‖a‖∗‖f |Mp

q(µ)‖.
This is what we desired.

For f ∈ L1
loc(µ), κ > 1 and 0 ≤ α < n, a fractional maximal operator Mα

κ f(x)
is defined as

Mα
κ f(x) := sup

x∈Q∈Q(µ)

1
µ(κQ)1−

α
n

∫
Q
|f | dµ.

We will denote M 0
κ by Mκ. As for the boundedness of this operator on the Morrey

spaces, the following lemma is known.

Lemma 2.4. [13] Suppose that κ > 1, 0 < α < n, 1 < q ≤ p < ∞,
1 < t ≤ s < ∞, 1/s = 1/p− α/n and t/s = q/p. Then we have

‖Mα
κ f |Ms

t(µ)‖ ≤ C ‖f |Mp
q(µ)‖.

3. PROOF OF THEOREMS 1.3 AND 1.4

Proof of Theorem 1.3

In this section we shall prove Theorem 1.3 by using a good-λ inequality for the
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Morrey spaces. For this purpose we may assume (at least) f ∈ Mp
1(µ).

Let Q0 ∈ Q(µ) and f ∈ Mp
1(µ). For the time being we shall fix them. We

define Q0 and Q1 as

Q0 : = {R ∈ Q(µ, 2) | R meets Q0 and is not contained in 8Q0 },
Q1 : = {R ∈ Q(µ, 2) |R meets Q0 and is contained in 8Q0 }.

We also define Λ as Λ := ΛQ0(f) = sup
R∈Q0

mR(|f |), which will be a key to our

arguments. Since we have assumed that f ∈ Mp
1(µ), we observe µ(Q0)

1
p Λ ≤

C ‖f |Mp
1(µ)‖ < ∞.

In fact, we have that if R ∈ Q0, then R ∈ Q(µ, 2), 2R ⊃ Q0 and, hence,

µ(Q0) ≤ C µ(R). This implies that µ(Q0)
1
p mR(|f |) ≤ C µ(R)

1
p
−1
∫

R
|f | dµ

for all R ∈ Q0 and hence

(7) µ(Q0)
1
p Λ ≤ C ‖f |Mp

1(µ)‖ < ∞.

Lemma 3.1. Suppose that λ > Λ. Then, for all ε > 0, there exists C1 > 0
such that for any sufficiently small δ > 0 we have

µ{x ∈ Q0 |Nf(x) > (1 + ε)λ, M �f(x) ≤ δλ} ≤ C1δ

ε
µ{x ∈ 8Q0 |Nf(x) > λ}.

The proof is standard and similar to those of Tolsa [14] except for the argument
involved with Λ. Fix ε > 0 and choose δ > 0 sufficiently small. We set

Eλ :={x ∈ Q0|Nf(x)>(1+ε)λ, M �f(x)≤δλ} and Ωλ := {x ∈ 8Q0|Nf(x)>λ}.
For all x ∈ Eλ, we can select a doubling cube Qx � x that satisfies Qx ∈ Q1

and mQx(|f |) > (1+ ε/2)λ. By replacing larger one, if necessary, we may assume
that mQ(|f |) < (1+ε/2)λ for any cube Q with 2Qx ⊂ Q ∈ Q1. Let Sx = (4Qx)∗.
We claim that if δ is small enough we have mSx(|f |) > λ. Indeed, using Lemma
2.1 we see that KQx,Sx ≤ C and noting M �|f |(x) ≤ C2M

�f(x) (For the proof of
this estimate we refer to [14] Remark 6.1), we obtain that

mSx(|f |) ≥ mQx(|f |)− |mQx(|f |)− mSx(|f |)| ≥ (1 + ε/2)λ − C C3δλ > λ.

Thus, we have

(8) Sx ∈ Q1 and (1 + ε/2)λ > mSx(|f |) > λ.

In particular, Sx ⊂ Ωλ for all x ∈ Eλ and sup
x∈Eλ

�(Sx) < ∞.
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By Besicovitch’s covering lemma there exists a countable subset {xj}j∈J ⊂ Eλ

such that

(9) Eλ ⊂
⋃
j∈J

Sxj and
∑
j∈J

χSxj
≤ C4χΩλ

.

To simplify the notation, we write Sj = Sxj and Qj = Qxj . Now we claim the
following:

Claim 3.2. If δ is small enough, then we have

µ(Sj ∩ Eλ) ≤ Cδ

ε
µ(Sj) for all j ∈ J .

Accepting the claim, we finish the proof of the lemma. By using this claim and
(9) we have

µ(Eλ) ≤
∑
j∈J

µ(Sj ∩ Eλ) ≤ Cδ

ε

∑
j∈J

µ(Sj) ≤ C C4δ

ε
µ(Ωλ).

Thus, the proof is over modulo the claim.

Proof of Claim 3.2. Let y ∈ Sj ∩ Eλ. There exists a doubling cube Ry � y

that satisfies Ry ∈ Q1 and mRy(|f |) > (1+ ε)λ. If �(Ry) >
1
8
�(Sj), then we have

64Ry ⊃ Sj ⊃ Qj and KRy,(64Ry)∗ ≤ C. Hence,

(1 + ε/2)λ > m(64Ry)∗(|f |)
≥ mRy(|f |)− |m(64Ry)∗(|f |)− mRy(|f |)| ≥ (1 + ε)λ − C C2δλ.

Hence, if δ <
ε

2C C2
= C3ε, we have �(Ry) ≤ 1

8
�(Sj). Thus, if δ < C3ε, we have

N
(
χ5

4
Sj

f
)

(y) > (1 + ε)λ for all y ∈ Sj ∩ Eλ.

From (8) we obtain that N
(
χ5

4
Sj

(f − mSj(f))
)

(y) > ελ/2 for all y ∈ Sj ∩ Eλ.

An application of the the weak-(1, 1) boundedness of N yields

µ(Sj ∩ Eλ)

≤ µ
{
y ∈ Rd |N

(
χ5

4
Sj

(f − mSj(f))
)

(y) > ελ/2
}

≤ C

ελ

∫
5
4
Sj

|f(y)− mSj (f)| dµ(y).
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Noting that

1
µ
(

15
8 Sj

) ∫
5
4
Sj

|f(y)− mSj (f)| dµ(y)

≤ 1
µ
(

15
8 Sj

) ∫
5
4
Sj

|f(y)− m( 5
4
Sj)∗(f)| dµ(y) +

∣∣∣m( 5
4
Sj)∗(f)− mSj(f)

∣∣∣ ≤ C δλ,

we see µ(Sj ∩ Eλ) ≤ Cδ

ε
µ(2Sj) ≤ Cδ

ε
µ(Sj).

Proof of Theorem 1.3. It is clear that instead of considering ‖Nf |Mp
q(µ)‖

directly, we have only to estimate

‖Nf |Mp
q(32, µ)‖L := sup

Q∈Q(µ)
�(Q)≤L

µ(32Q)
1
p
− 1

q

(∫ L

0
qλq−1µ{x ∈ Q |Nf(x) > λ} dλ

)1
q

, L � 1,

with constants independent on L. Note that this quantity is finite because of the
growth condition (1).

Let Q0 ∈ Q(µ) and �(Q0) ≤ L. Let Λ = ΛQ0(f) be the quantity defined in
the previous lemma. We will estimate

µ(32Q0)
1
p
− 1

q

(∫ L

0
qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

according as L ≥ 2Λ or not.
Suppose first that 2Λ ≥ L. In this case we have by (7)

µ(32Q0)
1
p
− 1

q

(∫ L

0

qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

≤ µ(32Q0)
1
p
− 1

q

(∫ 2Λ

0
qλq−1µ(Q0) dλ

)1
q

≤ 2µ(32Q0)
1
p
− 1

q µ(Q0)
1
q Λ ≤ 2µ(Q0)

1
p Λ ≤ C‖f |Mp

1‖.
Suppose instead that we have L ≥ 2Λ. In this case we will separate the integral.

1
2

(∫ L

0
qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

=

(∫ L/2

0

qλq−1µ{x ∈ Q0 |Nf(x) > 2λ} dλ

)1
q
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≤ µ(Q0)
1
q Λ +

(∫ L/2

Λ
qλq−1µ{x ∈ Q0 |Nf(x) > 2λ} dλ

)1
q

≤ µ(Q0)
1
q Λ +

(∫ L/2

Λ
qλq−1µ{x ∈ Q0 |Nf(x) > 2λ, M �f(x) ≤ δλ} dλ

)1
q

+

(∫ L/2

Λ
qλq−1µ{x ∈ Q0 |Nf(x) > 2λ, M �f(x) > δλ} dλ

)1
q

.

Using Lemma 3.1 with ε = 1 and δ > 0 sufficiently small, we see that

1
2

(∫ L

0

qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

≤ µ(Q0)
1
q Λ +

(
C1δ

∫ L

0
qλq−1µ{x ∈ 8Q0 |Nf(x) > λ} dλ

)1
q

+
(∫ ∞

0
qλq−1µ{x ∈ Q0 |M �f(x) > δλ} dλ

)1
q

= µ(Q0)
1
q Λ +

(
C1δ

∫ L

0
qλq−1µ{x ∈ 8Q0 |Nf(x) > λ} dλ

)1
q

+
1
δ

(∫
Q0

(
M �f

)q
dµ

) 1
q

.

Hence, we have obtained the following estimate

(10)

1
2

(∫ L

0
qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

≤ µ(Q0)
1
q Λ + C1

1
q δ

1
q

(∫ L
0 qλq−1µ{x ∈ 8Q0 |Nf(x) > λ} dλ

)1
q

+1
δ

(∫
Q0

(
M �f

)q
dµ
) 1

q
.

Divide equally 8Q0 into the 16d cubes Q1, Q2, . . . , Q16d with their sidelength
equal to �(Q0)/2. Noting that 32Qj ⊂ 32Q0, we have

(11) µ(32Q0)
1
p
− 1

q ≤ µ(32Qj)
1
p
− 1

q , for all j = 1, 2, . . . , 16d.

We have also

(12) µ(32Q0)
1
p
− 1

q ≤ µ(Q0)
1
p
− 1

q .
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Multiplying µ(32Q0)
1
p
− 1

q to the both sides of (10) and using (11) and (12), we
obtain that

1
2

µ(32Q0)
1
p
− 1

q

(∫ L

0
qλq−1µ{x ∈ Q0 |Nf(x) > λ} dλ

)1
q

≤ µ(Q0)
1
p Λ + 16d(C1δ)

1
q ‖Nf |Mp

q(32, µ)‖L + δ−1‖M �f |Mp
q(32, µ)‖.

Lastly, as we have seen in (7), the estimate µ(Q0)
1
p Λ ≤ C ‖f |Mp

1(µ)‖ holds.
Choosing δ small enough, we obtain that

‖Nf |Mp
q(32, µ)‖L ≤ C

(
‖M �f |Mp

q(32, µ)‖+ ‖f |Mp
1(µ)‖

)
.

This proves the theorem.

3.2 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Let R ∈ Q(µ). We shall estimate

µ(2R)
1
p
−1
∫

R
|f | dµ. It follows by Lemma 2.1 and Hölder’s inequality that

µ(2R)
1
p
−1
∫

R
|f | dµ

≤ µ(2R)
1
p
−1
∫

3
2
R

(
1

µ
(

3
2R
)∫

R
|f(y)−mR∗(f)| dµ(y)+|mR∗(f)−m(2R)∗(f)|

)
dµ

+µ(2R)
1
p |m(2R)∗(f)|

≤ C µ(2R)
1
p
−1
∫

3
2
R

(
1

µ
(

3
2R
)∫

R
|f(y)−mR∗(f)|dµ(y)+

|mR∗(f)−m(2R)∗(f)|
KR∗,(2R)∗

)
dµ

+µ(2R)
1
p |m(2R)∗(f)|

≤ C ‖M �f |Mp
q(4/3, µ)‖+ µ(2R)

1
p |m(2R)∗(f)|.

So we shall concentrate ourselves on estimating the second term :

(13) µ(2R)
1
p |m(2R)∗(f)|.

We choose a cube inductively. Let R0 = (2R)∗ and Rj = (2Rj−1)∗, j =
1, 2, . . .. Let d be the distance between the center of I0 and that of R. We select
K0 ∈ N so big that �(RK0) ≥ 2d and there exists some IK1 such that RK0 ⊂ IK1 ,
RK0+1 �⊂ IK1 and

µ(2R)
1
p |mIK1

(f)| ≤ ‖M �f |Mp
q(µ)‖.
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This is possible since f is not identically equal to a nonzero constant by assumption.
Then a simple geometric observation shows that RK0 ⊂ IK1 ⊂ RK0+3, and hence,

(14) KRK0
,IK1

≤ KRK0
,RK0+3

≤ C.

We put for i = 0, 1, . . .

Ji :=
{
j ∈ N0 ∩ [0, K0] | 2iµ(2R) ≤ µ(Rj) < 2i+1µ(2R)

}
.

Discarding all empty sets, we obtain a finite sequence of nonnegative integers 0 ≤
i1 < i2 < . . . < iK2 such that

Jik �= ∅, k = 1, 2, . . . , K2 and that Jl = ∅ if l /∈ {i1, . . . , iK2}.

Set a(ik) := min Jik and b(ik) := max Jik . Note that b(iK2) = K0 by the defini-
tion. From Lemma 2.1 we see that

KRa(ik),Rb(ik)
≤ C and KRb(ik) ,Ra(ik+1)

≤ C.

This implies that

µ(2R)
1
p

(
|mRa(ik)

(f) − mRb(ik)
(f)|+ |mRb(ik)

(f)− mRa(ik+1)
(f)|

)
≤ C 2−

ik
p µ(Ra(ik))

1
p
−1

×
∫

Ra(ik)

( |mRa(ik)
(f) − mRb(ik)

(f)|
KRa(ik),Rb(ik)

+
|mRb(ik)

(f)− mRa(ik+1)
(f)|

KRb(ik),Ra(ik+1)

)
dµ

≤ C 2−
ik
p µ(2Ra(ik))

1
p
− 1

q

(∫
Ra(ik)

(M �f)q dµ

) 1
q

≤ C 2−
ik
p ‖M �f |Mp

q(µ)‖.

From (14) we also have

µ(2R)
1
p

(
|mRa(iK2

)
(f)− mRK0

(f)| + |mRK0
(f) − mIK1

(f)|
)

≤ C 2−
iK2

p ‖M �f |Mp
q(µ)‖.

Using the triangle inequality to (13), we deduce
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µ(2R)
1
p |m(2R)∗(f)|

≤ µ(2R)
1
p

K2−1∑
k=1

(
|mRa(ik)

(f)−mRb(ik)
(f)|+|mRb(ik)

(f)−mRa(ik+1)
(f)|

)

+µ(2R)
1
p

{(
|mRa(iK2

)
(f)−mRK0

(f)|+|mRK0
(f)−mIK1

(f)|
)
+|mIK1

(f)|
}

≤ C

K2∑
k=1

(
2−

ik
p ‖M �f |Mp

q(µ)‖
)

+ µ(2R)
1
p |mIK1

(f)|.

Note that
K2∑
k=1

2−
ik
p ≤ C,

since 0 ≤ i1 < i2 < . . .. This and the above inequalities imply the desired
inequality:

µ(2R)
1
p |m(2R)∗(f)| ≤ C ‖M �f |Mp

q(µ)‖.

4. AN APPLICATION TO COMMUTATORS

Definitions and Known Results. In this section we list some definitions and
known results needed to state our commutator theorems.

Definition 4.1. ([10] p. 466) The singular integral operator T is a bounded
linear operator on L2(µ) with a kernel function K that satisfies the following three
properties :

(1) For some appropriate constant C > 0, we have

(15) |K(x, y)| ≤ C

|x − y|n ,

where n is a constant in the growth condition (1).
(2) There exist constants ε > 0 and C > 0 such that

(16) |K(x, y)−K(z, y)|+|K(y, x)−K(y, z)|≤C
|x−z|ε

|x−y|n+ε
if |x−y|>2|x−z|.

(3) If f is a bounded measurable function with a compact support, then we have

(17) Tf(x) =
∫
Rd

K(x, y)f(y) dµ(y) for all x /∈ supp (f).
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Definition 4.2. [4, Definition 3.1] For α with 0 < α < n, we define a fractional
integral operator Iα by

Iαf(x) :=
∫
Rd

f(y)
|x − y|n−α

dµ(y),

where n is a constant in the growth condition (1).
It is well-known that T is a bounded operator on Lp(µ) if 1 < p < ∞ (see

[10]) and Iα is a bounded operator from Lp(µ) to Lq(µ) if 1 < p < q ≤ ∞ and
1/q = 1/p− α/n (see [4]). In [13] it is also proved that T is a bounded operator
on Mp

q(µ) if 1 < q ≤ p < ∞ and Iα is a bounded operator from Mp
q(µ) to Ms

t(µ)
if

(18) 1 < q ≤ p < ∞, 1 < t ≤ s < ∞, 1/s = 1/p − α/n and t/s = q/p.

Now we recell the commutator results for these operators.

Proposition 4.3. [14, Theorem 9.1] Suppose that a ∈RBMO. Let 1 < p < ∞
and T be a singular integral operator with associated kernel K. Then

[a, T ]f(x) := lim
ε→0

∫
|x−y|>ε

(a(x)− a(y))K(x, y)f(y) dµ(y)

defines a bounded operator on L p(µ).

Proposition 4.4. [1, Theorem 1][ Suppose that a ∈RBMO. If 0 < α < n,
1 < p < q ≤ ∞ and 1/q = 1/p − α/n, then

[a, Iα]f(x) := lim
ε→0

∫
|x−y|>ε

(a(x)− a(y))
|x − y|n−α

f(y) dµ(y)

defines a bounded operator from L p(µ) to Lq(µ).

Main Results. In this section we shall extend Propositions 4.3 and 4.4 to the
Morrey spaces.

Theorem 4.5. Suppose that a ∈RBMO. Let 1 < q ≤ p < ∞ and T be a
singular integral operator with associated kernel K. Then

[a, T ]f(x) := lim
ε→0

∫
|x−y|>ε

(a(x)− a(y))K(x, y)f(y) dµ(y)

can be extended to a bounded operator on M p
q(µ).
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Theorem 4.6. Suppose that a ∈RBMO. If the parameters satisfy (18), then

[a, Iα]f(x) := lim
ε→0

∫
|x−y|>ε

(a(x)− a(y))
|x − y|n−α

f(y) dµ(y)

can be extended to a bounded operator from M p
q(µ) to Ms

t(µ).

In Appendix we consider another type of commutators. The proof of Theorem
4.5 will be somehow easier than that of Theorem 4.6. Firstly we will prove Theorem
4.6 and we add a remark to the proof of Theorem 4.5.

To prove the theorem we need the following pointwise estimate of [a, Iα]f . The
definition and the estimate are due to Chen and Sawyer [1].

Definition 4.7. [1, p. 1291] Let 0 ≤ α < n and Q ⊂ R ∈ Q(µ). Then we set

K
(α)
Q,R := 1 +

NQ,R∑
j=1

(
µ(2jQ)
�(2jQ)n

)1−α/n

and we define the corresponding sharp maximal operator by

M �,αf(x) : = sup
x∈Q∈Q(µ)

1
µ
(

3
2Q
) ∫

Q
|f(y)− mQ∗(f)| dµ(y)

+ sup
x∈Q⊂R

Q,R∈Q(µ,2)

|mQ(f) − mR(f)|
K

(α)
Q,R

.

Let us remark that all the theorems on M �, especially Theorem 1.3, are still
available even if we replace M� by M�,α.

Lemma 4.8. [1, p. 1293] We have for almost µ-a.e. x ∈ supp (µ)

(M �,α[a, Iα]f)(x) ≤ C ‖a‖∗
(
Mα

( 9
8
)
f(x) + (M( 3

2
)Iαf)(x) + Iα|f |(x)

)
.

Proof of Theorem 4.6. Let u > 1 be an auxiliary constant such that 1/u =
1/q − α/n. Applying Theorem 1.3 with the boundedness of Iα and Lemmas 2.4
and 4.8, we have only to prove

‖[a, Iα]f |Ms
1(µ)‖ ≤ C ‖f |Mp

q(µ)‖.

This can be reduced by (3) to

‖[a, Iα]f |Ms
u(µ)‖ ≤ C ‖f |Mp

q(µ)‖.
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Let us remark that u ≤ t.
Fix a cube Q ∈ Q(µ). We decompose f ∈ Mp

q(µ) according to 2Q: We put
f1 = χ2Qf and f2 = χ(2Q)cf . We shall estimate

µ(4Q)
1
s
− 1

u

(∫
Q
|[a, Iα]f(x)|u dµ(x)

) 1
u

.

Along this decomposition it suffices to estimate

µ(4Q)
1
s
− 1

u

(∫
Q

|[a, Iα]f1(x)|u dµ(x)
) 1

u

and µ(4Q)
1
s
− 1

u

(∫
Q

|[a, Iα]f2(x)|u dµ(x)
) 1

u

respectively.
The estimate of the first term is over by Proposition 4.4 :

µ(4Q)
1
s
− 1

u

(∫
Q
|[a, Iα]f1(x)|u dµ(x)

) 1
u

≤ µ(4Q)
1
s
− 1

u

(∫
Rd

|[a, Iα]f1(x)|u dµ(x)
) 1

u

≤ C µ(4Q)
1
p
− 1

q

(∫
2Q

|f |q dµ

) 1
q

≤ C ‖f |Mp
q(µ)‖.

So, we shall estimate the second term. We see that for x ∈ Q

|[a, Iα]f2(x)|
≤
∫
Rd\2Q

|(a(x)− a(y))f(y)|
|x − y|n−α

dµ(y)

≤ C

(∫
Rd\2Q

|(a(x)− mQ∗(a)) f(y)|
|zQ − y|n−α

dµ(y)

+
∫
Rd\2Q

|(mQ∗(a)− a(y)) f(y)|
|zQ − y|n−α

dµ(y)

)
,

where zQ is the center of Q.
The growth condition (1), Lemma 2.2 (2) and Lemma 2.3 (2) yield

µ(4Q)
1
s
− 1

u

(∫
Q

(∫
Rd\2Q

|(a(x)− mQ∗(a)) f(y)|
|zQ − y|n−α

dµ(y)

)u

dµ(x)

) 1
u

= µ(4Q)
1
s
− 1

u

(∫
Q
|(a(x)− mQ∗(a))|u dµ(x)

) 1
u

·
∫
Rd\2Q

|f(y)|
|zQ − y|n−α

dµ(y)

≤ C ‖a‖∗‖f |Mp
q(µ)‖.
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The growth condition and Lemma 2.2 (1) yield

µ(4Q)
1
s
− 1

u

(∫
Q

(∫
Rd\2Q

|(mQ∗(a) − a(y)) f(y)|
|zQ − y|n−α

dµ(y)

)u

dµ(x)

) 1
u

≤ C ‖a‖∗‖f |Mp
q(µ)‖.

Thus, the estimate of the second term is finished. Putting these estimates all together,
we have the desired.

Proof of Theorem 4.5. We keep the same notation as in the previous proof. By
using Proposition 4.3 and

|[a, T ]f2(x)| =

∣∣∣∣∣
∫
Rd\2Q

(a(x)− a(y))K(x, y)f(y) dµ(y)

∣∣∣∣∣
≤ C

∫
Rd\2Q

|(a(x)− a(y))f(y)|
|x − y|n dµ(y),

which follows from (15) and (17), the proof is the same as Theorem 4.5.

5. APPENDIX

Self-improvement of Theorem 1.3. Theorem 1.3 has a self-improvement by
using Theorem 1.4, if µ(Rd) < ∞.

Theorem 5.1. Suppose that µ(Rd) < ∞ and that the parameters are the same
as in Theorem 1.3. Then we have

‖f |Mp
q(µ)‖ ∼ ‖f |L1(µ)‖ + ‖M �f |Mp

q(µ)‖.

Remark 5.2. Since µ(Rd) is finite, we have L1(µ) ⊃ Mp
1(µ). Thus this

theorem is somehow stronger than Theorem 1.3, if µ is finite measure.

Proof. All we have to prove is that

‖f |Mp
q(µ)‖ ≤ C

(
‖f |L1(µ)‖ + ‖M �f |Mp

q(µ)‖
)

,

the converse inequality being trivial. So that we may assume that the right-hand
side is finite. In particular we may assume that f ∈ L1. In this case the function
f − mRd(f) satisfies the assumption of Theorem 1.4. So that we have

‖(f − mRd(f)) |Mp
q(µ)‖≤C‖M �(f − mRd(f)) |Mp

q(µ)‖ = ‖M �f |Mp
q(µ)‖.
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This estimate readily yields ‖f |Mp
q(µ)‖ ≤ C

(
‖f |L1(µ)‖+‖M �f |Mp

q(µ)‖
)

.

Boundedness of Different Commutators on Morrey Space.
Finally we consider another commutator with Lipschitz function and singular

integral operator T or with Lipschitz function and fractional integral operator. Shirai
[12] considered a commutator with b ∈ Λγ and T and proved the boundedness of
[b, T ] with Lebesgue measure. The same proof also holds in our nonhomogeneous
space. For completeness we supply the proof.

Theorem 5.3. Assume that the parameters satisfy that

1 < q ≤ p, 1 < t ≤ s,
p

q
=

s

t
,

1
s

=
1
p
− α + γ

n
, 0 < α < n, 0 < γ ≤ 1

Suppose that a continuous function b satisfies

(19) |b(x)− b(y)| ≤ C|x − y|γ

for C > 0. Then we have [b, Iα] is bounded from Mp
q(µ) to Ms

t(µ).

Proof. In fact by the definition of the commutator [b, Iα] together with (19),
we have

(20) |[b, Iα]f(x)| ≤ CIα+γf(x).

Thus we have, using the boundedness of Iα+γ , we have the desired result.

Theorem 5.4. Assume that the parameters satisfy that

1 < q ≤ p, 1 < t ≤ s,
p

q
=

s

t
,

1
s

=
1
p
− γ

n
, 0 < γ ≤ 1.

Suppose that b is the same function as in the previous theorem. Then [b, T ] is
bounded from Mp

q(µ) to Ms
t(µ).

Proof. Similar to the previous theorem by virtue of the boundedness of Iγ .
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