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ANNIHILATORS OF PRINCIPAL IDEALS
IN THE EXTERIOR ALGEBRA

Cemal Kog and Songul Esin

Dedicated to the memory of Professor Masatoshi Ikeda.

Abstract. In this paper we describe annihilators of principal ideals of ex-
terior algebras. For odd elements we establish formulae for dimensions of
their principal ideals and their annihilators. For even elements we exhibit
(multiplicative) generators for annihilator ideals.

1. INTRODUCTION

Given a form . and a form w the determination of whether w can be factorized
as w = u A7 by means of a number of exterior equations is proved to be a
significant factorization problem in differential geometry (see Section 2.4 in [1]).
Motivated by this factorization problem, in [1] I. Dibag determined annihilators of
2-vectors, by exhibiting its generators (as ideal). This is accomplished by setting
up a duality between left and right ideals of the exterior algebra, that is to say by
using Frobeniusean property of exterior algebras. Our motivation for this paper is
purely algebraic, our objective is to extend this result to arbitrary elements of the
exterior algebra. Throughout the text we fix a finite dimensional vector space V'
over a base field F| its exterior algebra £ = E(V) in which the multiplication is
denoted in the ordinary form ab in place of the common notation a A b, and we use
the following notations:

S ={1,..s}
M; = {(L‘Z‘l, ,.’L‘Z”?} ;i1 e S

s
i=1

i 1= T51..-Tin,; i1eS

fi= A e s

(1) : = EpE, the ideal of E generated by
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Anni(p) = {a € E : ap = 0}, the left annihilator of uin E
Ann,(p) = {a € E : pa = 0}, the right annihilator of x in E
Ann(p) = Anng(p) N Ann,.(p), the annihilator of x4 in E

G(w) : = the set of all the so-called standard generators of the form

g = (piy =ty ) (Bi, — g, ) Ukey - Uy,

where the z;; are linearly independent elements of V, equivalently ... # 0 and
the uy, are elements of M such that ye;, ... 10, 114, ... pt5,up, # 0.

It is well known that a Frobenius algebra is a finite dimensional algebra A over
a field F' which has a nondegenerate bilinear form B satisfying the associativity
condition B(zy, z) = B(x,yz) for all z,y,z € A. The existence of such a bilinear
form on A is equivalent to the existence of the duality map L — Ann, (L) (resp.
R — Anny(R)) from left ideals to their right annihilators (resp. from right ideals
to their left annihilators) in A which are inclusion preserving bijections between
lattices of left and right ideals of A satisfying

(@) Ann, (L1 + L) = Ann,(L1) N Ann,(Ls) ,
Ann, (L1 N Ly) = Ann,.(L1) + Ann,(L3)
(b) Anni(R1 + Ra) = Anni(R1) N Anny(R3) ,
Anni(R1 N Ry) = Anny(Ry) + Anny(R2)
(€) Anni(Ann,.(L)) =L and Ann,(Anni(R)) = R.
(d) dim L + dim Ann, (L) = dim R + dim Ann;(R) = dim A.
(For example see [2] or [3])
The most natural examples of Frobenius algebras are the group algebra of a
finite group and the exterior algebra £ (1), on a finite dimensional vector space V.

Our main concern is this exterior algebra. If {e1,---,e,} is taken to be a basis for
V', then products of the form
€] = €3y "€y, with 1<ii<ig <<z <n
constitute a basis {e;y | I C {1,2,---,n}} for the exterior algebra E(V") (For

example see [4] or [5]). The map B : E x E — F given by

B(a, b) := the coefficient of eje - - - e, in the product ab

becomes a bilinear form on E(V). Since B(er, e;) = £1 when J is the complement
of I'in{1,2,---,n}and B(er, e;) = 0 otherwise, this bilinear form is nondegener-
ate. Clearly it satisfies the associativity B(ab, ¢) = B(a, bc) and therefore E(V) isa
Frobenius algebra. Thus the duality constructed in [1] is an immediate consequence
of this fact and it is crucial for our proofs.
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In the first section we investigate the case where 1 is an odd element of E that is
to say ni, ne, ..., ns are odd numbers and we determine the ideals (x) and Ann(u)
in a complete manner. In Section 2, we handle the case where ny, no, ..., ns are all
even and determine the generators of the ideal Ann(u) under the assumption that
the base field F is of characteristic 0, thus we obtain a generalization of the results
of 1. Dibag in [1]. In concluding we indicate that the restriction Char(F) = 0
cannot be removed.

2. ANNIHILATORS OF PRrINCIPAL IDEALS: ODD CASE

Throughout this section we assume that n1, ns, ..., ng are odd numbers. Anni-
hilators of odd elements pu = p1 + - - - + 15 can be described easily, even further in
this case dimensions of (x) and Ann(u) can be computed explicitly. In this di-
rection we first establish the following lemma which applies to linearly independent
odd elements of the exterior algebra.

Lemmal. If uq,1n,...,14 arealgebragenerators of any algebra A such
that

(i) viv; = —vju; forall i, 5;
(i) v2=0forall i;
(ii)) vivo..vp #0

then A is isomorphic the exterior algebra of any vector space of dimension k.

Proof. It is sufficient to note that the vector space generators v;, v;,...v;, of A
are linearly independent. To see this take a relation

61,2‘12‘2...1‘1,/1/2‘1 Vig---Vit =0

where {1, io, ..., 7,} runs over all subsets of {1,2,...,k}. Considering a nonzero
term a; i, ...i, Vi, Vi, ---Vi,., and multiplying the above relation through v, vj,...v;,
where {ji,j2, ..., jk—r} is the complementary set of {i1, o, ...,%.} in {1,2,...,k}
we obtain
Ajq4g -3, V1V2.. . V| = 0

Since aj, .5, # 0, this implies vjvs...14, = 0, which contradict our last assump-
tion. Now the result follows from the universal property of exterior algebras (see
for example [5]) by constructing a homomorphism from the exterior algebra of any
vector space of dimension & onto A. [ |

Lemma 2. The notation being as in the introduction, the ideal uA of the
subalgebra A of E generated by 11, ..., uus is of dimension 2571,
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Proof. By using Lemma 1, we can identify the algebra generated by 14, ..., us
with the exterior algebra of the vector space spanned by i, ..., . 1t is well known
(cf. 1.2.11. Lemma in [1]) and easy to prove that

dim(p) = dim Ann(pA) = %dimA = 2571 |

Lemma 3. Let A be the subalgebra of the exterior algebra generated by
1, ...y s, and let N be the set of all monomials in the x ;; which are not divisible
by any u. Then

E:@Al/ and ME:@MAI/.

veN veEN

Proof. By Lemma 1, A is an algebra isomorphic to the exterior algebra of the
space spanned by p1, ..., us, that is to say A is a vector space with a basis consisting
of products

Wy ---pij, Where 1 < < jo <...<jy <s.

Obviously, for any v € N, the product p;, ..., v is either zero or a nonzero mono-
mial, and further any two such nonzero products s, ...pi;,v  and g, ...pp, v are
different unless ¢ = w, pj, = pky s -y ftj, = My, and v = v/ . Since any monomial
of E can be written in this form (up to order of factors), such products form a
basis for E. This proves the first direct sum decomposition. The second one is an
immediate consequence of the first one since i € A. [ |

Now we are in a position to describe the principal ideal (1) and its annihilator.

Theorem 4. If all the n; are odd, then the principal ideal (1) of E is of
dimension

dim (p)

Proof. Completing M to a basis B of the underlying vector space V, say
B =MUM' with MNM" = ¢, and denoting by E,; (resp. E,;/) the subalgebra
of F generated by M (resp. M’) we can say that

(1) = EpE = pE = pEy @ Epyp

and thus we may assume WLG that dimV =n = ny +no +--- + ns; and
dim £ = 2", By Lemma 3, it is enough to determine dim(uAv) for each v € N.
For a fixed v with K = {k | ygv = 0} = {ki, ko, ..., ki}, the space pAv is
spanned by elements of the form

_dimF

(1= (1=2"m)(1=2072) (1= 21m)).

Mgy - g, V= ((Mh + +Mir) + (M/ﬂ + +Mk't)
A (g, + - g, ) gy o,V
= ((piy + -+ ) + (g + oo ,)) gy o4,V
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where {i1, 49, ..., ir, J1, J2, ..., Ju} = S — K. That is to say,
pAv = ((piy + -+ pa,) + (gy + -+ p5,)) Ay

where A is the subalgebra of E generated by {4 I € S — K }. Since v has no
common factor x;; with any generator ;4 of A, it is clear that

dim(pAv) = dim(((pi, + -+ pi, ) + (g + -+ p,)) Axv)

= dim(((pay + -+ 4 pa) + (g, + -+ 13.)) Arc)
and therefore by Lemma 2, we have
dim(pAv) =dim(((pi, +- - 4, )+ (g, +- - +pg,))Ag) =201 =257071
Now, for each K = {ki, ko, ..., k¢}, letting
Ng={ve Nlypp,=0fork e K, vyy #0 forl ¢ K}

we see that it consists of products nyg, - --ny, where each ng, (p = 1,2,---,1)
is a product of elements of Mj,, different from 1 and 4. Therefore it contains
|INg| = (2™1 — 2)...(2"« — 2) elements, and that for each v € Nk, as we have
just seen dim(uAv) = 2571 provided ¢ < s. Thus, the dimension of @ pAvis

veNK
die = 2571712 — 2). (27 — 2)
= 25712 T 1)L (2" — 1) = 257 Mgy, ay,
and therefore d=dim(u) =dim( @ pAv)=dim( @ ( @ wnAv)) is obtained as
veN KCS veNg

KCf
=2 > Ay - Oy
(k1,eki}CS
=251 N agyag, — 25 tay.as

=251 +a) - (1+as) —2°tay...as
=925 11+ ay) -~ (1+ ay) (1_ TH)
By letting az, = 2™ ' — 1 one obtains

d = 23—1+(n1—1)+~~~+(ns—1)(1 — (1 — 21_”1)(1 — 21_”2)...(1 — 21_ns))

=g~ Hmbetne (] (1 -2ty (1 — 212 (1 - 217)

_ dim F
2

(I—(1=2""m)(1—2"") (1-2"""™))
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and the proof is completed. ]

Theorem 5. If all the n; are odd, then Ann(u) is generated by x and the
products Py = x1;,x2j,...Tsj, Where x;; € M; and is of dimension

_ dim F

dim(Ann(u)) 5

(T4 (1=2'""y(1—2"7") (1-2"™)).

Proof. Let A(yu) be the ideal generated by  and the P;. Since A(u) C Ann(p)
to prove the theorem it is enough to show that dim(A(p)) = dim Ann(p). As in
the proof of Theorem 4, we assume WLG that dimV =n =n; +ng + -+ - + ng
and we compute dim(.A(x)). Obviously the basis elements of the ideal generated
by the P; are of the form mims - - -mg where each m; is a product of elements
of M; different from 1. Of these elements, those in which some m; = u;, are of
the form

and hence they are in (11). As for elements myms - - -mg with m; # p; for all 4, they
span a subspace P such that PN (u) = 0. Since the number of such mymg - - -my’s
is (2™ —2)...(2™ — 2) we have

dim(A(p)) = dim(p) + (2™ —2)...(2" - 2)
= dim(p) + 2™ (1 =217 (1 - 2177
= dim(p) +dim E(1 — 217, (1 — 2177)

dim F n n e
= — (1— (1 =2y (1 =272 (1 —217™))
+dim B(1 — 27 (1 — 2177)

dim F

= ——(1+ (-2 -217).(1-21)

Now, we see that
dim(A(p)) + dim(p) = dim E,
and using the duality we mentioned in the introduction we obtain
dim(A(p)) = dim F — dim(p) = dim(Ann(u)).

This completes the proof. ]
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As a corollary we give the following strengthened generalization of Lemma
1.2.11 in [1].

Corollary 6. The notation being as in the introduction, the following statements
are equivalent:

(i) One of the p; In = p1 + ... + us is of degree one
(i) (n) = Ann(p)
(iii) dim(p) = dim(Ann(p))

Proof. Supposing p1 = 11, we observe that for any J = {j1 = 1, jo, ...., Js}
we have

PJ = xljlxgjg...xsjs = ulxgjg...xsjs = ungg...xsjs € (M)

so that Ann(u) C (u). The other inclusion is obvious and thus it follows that (i)
implies (ii). Trivially (ii) implies (iii). Finally, by equating the two dimensions in
Theorems 4 and 5 we obtain

(T=21"m)(1 -2 (1-217") =0

which forces n; = 1 for some i. |

3. ANNIHILATORS OF PRrRINCIPAL IDEALS: EVEN CASE

The investigation of this even case is more subtle. We make use of Dibag’s
techniques basically with some generalizations. Throughout this section we assume
that the base field F' is of characteristic zero as well as ni,no,...,ns are even
numbers. We constantly use elements of the form g = (i, — p5,)...(1ti, —
[, Uk, - uk,_,, Which will be referred to as “standard generators”. As we in-
dicated in the introduction their set will be denoted by G (1) and the ideal generated
by elements of G(u) will be denoted by A(u).

Definition 7.
(a) The product wy,...ur, in the generator

9= (Mh - Mji)"'(uir - Mjr)ukr"ukt where 2r +t = s,
is called the tail of g. Two generators g; and g2 in G(x) which have the same
tail are said to be equivalent.

(b) For each zy; € My, the product g1k - - - Tp—1)Tk(i41) * * * Thn,, 1S Called
the complement of x; and it is denoted by z7;.
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(c) For agenerator g = (14, — 5, )--- (i, — 145, )k, ---uk, iN G(1), its companion
g* is defined by

g* = (Mh - Mjl)"'(uit - th)uzl"'uzt'

(d) For an element u =xy; in M, the product ux = (—1)""'uu* is denoted by
P

Lemma 8.

(a) If ki, ko, -+, km, -,k are distinct, the annihilator of the product
Uy Uky * Uk, Uy, -+~ up, I the subalgebra generated by p1, ..., us s
equal to the annihilator of the product fu g, fir, - - - fikey, ks - - Mk 1N this
subalgebra.

(b) For any two generators g1 and g2 in G(u) there is an integer n such that
9195 = nuipe - - - ps. Further, n = 0 unless g; and go are equivalent.

Proof.
(a) Let A be the subalgebra generated by uy, ..., s Of our exterior algebra E
and let a be an element in A. Obviously

AU, Uky * - Uk, UF, .- -u’,;t =0

m—+1

implies that ajug, fik, -« Py, Bkpsy - - 1k, = 0. Conversely, writing a as a
linear combination of linearly independent products fu;, pt, - - - pti,, S8y a =

D @iy iy iy - - - i, AND SUPPOSING Gfiky iy =+ * [k My~ Mk, = O, WE Ob-
tain from
Ahlley [y P gy *** By = @iy v iy iy (kg *** Bk By " My ) =0

that each term must be equal to zero. This amounts to saying that in each
term of « one of the 1, occurs. It follows from this that

Mgy g =« + Hg, Uky Ug * 'uknLuZ,,L+1 o 'uzt =0
since each uy; and u’,;j contains at least one factor xy; of My,. Hence
* *
auk‘l uk‘Q . 'ukfnLuk:nL+1 o 'uk‘t - 0
Thus we see that

. . * *
a’/’“ﬂ/’bl@. : 'MkfnLMkfnL+1 o '/’th :0 Imp“es aukluk‘Q. : 'ukfnLuk:nL+1 o 'uk‘t :0
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(b) Let
91 = (fiy — By ) (R — 1, ) Uy - Uk,

and
92 = (i — pjp)---(par, = e, gy -V,

with 2r +¢ = 2r' ++ = s. There are two cases to consider:

Case 1. t=¢ and Uk, Uk, --Vf = Fpiky -1k, Which means that g1 and

g2 are equivalent. Then the expansion of the product g, g5 is a linear combination of
products of the ux with integral coefficients. Each product involves 2r +t¢ factors.
Since 2r+t = s is the total number of the 1, each product is either 0 or £, ...us,
that is to say we have

9193 = Nfly ... bs
for some integer n, as asserted.

Case 2. uy,. ukt”k/- ”k/ # +pg, ...k, that is g; and go are not equivalent.

Then combining the wy, and their complements when they appear in the tails of g;
and g5 respectively, we can write

* * * ; !
Uk -+ Uk Uy Vgt = Hy weebly, Uy - UpyUp - Uy, withg+¢q #0

9195 = (iy = 0 ) iy = 1) (g, = gy ) Cptar, = e, bty ooty Uy oo U U -0

q

with ¢ 4 ¢' # 0. Now, if Up, .- Up,vr, .07, = 0 We are done, so we may assume it
1 q’

is non zero and therefore by (a)

R O S L T L
is zero when

(htiy = b ) oo i = g, )y = gy ) (ptir, = 131, ), ool Hipy o Fipy oy bt = 0.

However, when we expand the expression

(bt = g oo i = g, ) iy, = gy ) Cptir, = Bgr, Doy, eebby B <y ) bt = 0

we see that each term contains 7 + 1" +m +q+¢ = s+ 2L > s factors, since
s =2r+m+q = 2r' +m+q . Hence in each term at least one ;; will be repeating.
It follows that each of its terms is 0 and thus g g5 = 0. ]

Lemma 9. (u) N (us) = [Ann(py + ... + ps—1) + (p1 + oo + ps—1)] phs-
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Proof. Suppose that w € [Ann(py + ... + ps—1) + (1 + o + ps—1)] ps, Say
w = (Oé +ﬁ)ﬂs such that a(ul +... +M8_1) =0 and 0= (/J,l + ... +M8_1)T. Also

aps = alpn + oo+ prs—1 + ps) = ap and Bus = (p1 + oo + ps—1)Tps = UTHs,
consequently w € (u). Since w € (ps) is obvious, w € () N (ps)-
For the reversed inclusion, let w = pur = psp; then

W=uUTr =W Tiy..ipTsiy-+-Lsi + T1ls
p p

i1 <...<ip
p<ns

where the 7;,._;, and 7 are in the subalgebra of £ generated by the set M — M;.
For each 7, ;, @i, ...zsi, With p < n, there exists z; such that

Til...ipxsz‘l ...xsipxsi 7& 0.

This yields

WTg = WU E Tilmipxsil...xsip Ty — 0

i1 <...<ip
p<ns

and therefore,

(Ml “+ ...+ Ms—l) Z Tiy..ipTsiy - Lsip | Tsi = 0

i1<...<ip
p<ns

Z (Ml + ...+ Ms—l)Tz‘l...z‘pxsz‘l - Tsiplsi | = 0
i1 <...<ip
p<ns
implying (1 + ... + pts—1)7i,..5, = 0 and finally implying 7, _;, € Ann(py + ... +
is—1). Then letting

'Lﬂ = E Tiy...ipTsiy - Lsip c Ann(ul + ...+ Ms—l)
i1 <...<ip
p<ns

we see that

w = (Ml +o T ps—1 Ms)w + pTips = Phis + (Ml o+ Ms—l)'rlﬂs
= [+ (1 + o+ ps—1)71]pts
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and hence w € [Ann(py + ... + ps—1) + (1 + oo + pis—1)] s [ |

Lemma 10. Ann(A(p))N(us) = Ann{A(p1 + ... + ps—2) phs—1+ ... + A2+
o 1)} s

Proof. Letw € Ann(A(u)) N (us). Since w € (us) We can write w = 7
and we may assume that 7 is in the subalgebra generated by the set M — M.

On the other hand w € Ann(A(u)) vyields gijw = 0 for any generator
g1 = (i, — g, ) (i, — 5, )Wk -0k, _,, OF A(p), in particular for those in which
s ¢ {ki,...,ks—or}. Suppose g is such a generator and assume WLG that j, = s.
Then

0 = g1w = (Kiy — ) (M, — Hj ) oWy - Ukiy 5, T
= (fiy = gy ) oo (Pip_y — By )iy fhsUkey - Ukey o, T
= [(hiy = By ) o (B g — By )Wk - Ui, |13, T
= gyti, Tis

where g1 € Ay + ... + g, + oo+ ps—1) , (1 <iép < s—1). Since gip;, 7 is in
the subalgebra generated by the set M — M, the equality g1, 7ius = O implies
g1, 7 = 0. Thus

7€ Ann{A(p1 + ... + [tq, + .. + ps—1) i, } for all i,.

7€ Ann{ A1 + ... + prs—2)pts—1} N oo. N Ann{ A(pa + ... + ps—1)pa }
Since, E is a Frobenius algebra, we have
Ann{ A(p1 + ... + ps—2) prs—1} N oo NV Ann{ A(p2 + ... + ps—1) 1 }
= Ann{A(pm + ... + prs—2)prs—1 + .. + A(pi2 + ... + prs—1) 11 },
and it follows that
7€ Ann{A(p1 + .. + ps—2)pts—1 + oo + Alpiz + o+ prs—1) 1 }
and hence
w € Ann{A(p1 + .o 4 prs—2)phs—1 + oo + A(pi2 4 oo 4 frs—1) 1 } s
For the reversed inclusion take

w € Ann{A(py + ... + prs—2) phs—1 + .. + Ao + .+ ps—1) p s
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= [[Ann{A(ps + -+ [ + -+ po1) i} s

say w = Tus Where 7 € (Y Ann{A(uy + -+ i + -+ - + ps—1) 15 }, and take any
generator '
g1 = (piy = B50) (B = 15 ) Uty - Uk,

of A(u).

Ifse {kl, . ks_gr}, the equality giw = (Mh — gy )"'(Mir_ujr)u/ﬂ v Uy o, Tlhs
0 is obvious. So it is enough to consider the case s ¢ {ki,..., ks_2,}. Again we
may assume WLG that j,. = s. Then

g1w = (phiy = fgy ) (B — g, )y - Uk, o, Tl
:[(Mzd - Mj1)"'(uir—1 - /’Ljr—l)uk'l "'uks—Qr/’Lir]/’LsT =0

since 7 € (Ann{A(p1 + -+ + [t + -+ ps—1)p; }. Thus in any case giw = 0,
showing that w = s € Ann(A(w)) N (us). [

Proposition 11.  Let {fm,, ..., tm,, } e a subset of {u1,..., s} and let
U be the subspace of E spanned by the products (i, — g, )... (s, — pj,) where
{i1, ey iy J1y ooey Jr} = {ma, ..., ma,}. Then the bilinear form ¥ on U defined by
wv = (—=1)"W(u, V)b, ---fmy, 1S POSitive definite and hence it is nondegenerate
provided that the base field F' is formally real field.

Proof. Let u= > ak,. K, tk,---pk, €U, then form u' = Zakl...krﬂk;---ﬂk;
with {k}, ..., k.} = {m,...,ma.} — {k1, ..., k.}. Then we note that u’ = (—1)"u
and hence

wu = (—1)%2 = <Z a’%‘l---’ﬂ”) My - Hmo,

which yields u? = (=1)" Zazl...krﬂml---ﬂmzr- Thus W(u,u) = Y aj, , Wwhich
is positive for each nonzero u in U. ]

Corollary 12. Let G= {g,} be a linearly independent subset of G(x) and
let n,3 be the integer such that 9agj = Naphl.--fs for each pair g,, g €G. If
the base field F' is of characteristic zero, then the n g form an invertible matrix
N = [nqg).

Proof. Let K be the prime subfield of . The coefficients of the g, are in K
and K can be embedded into a formally real field R since Char(F') = 0. Thus we
may assume WLG that F is a formally real field. By Lemma 8(b), n,g = 0 unless
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g and gg are equivalent. Now, we select an ordering of G such that the matrix of
the nqg is of the form

Ny 0 0

0 Na 0
N = : :

0 O Ny

where each block N; corresponds to an equivalence class of G. As for an equivalent
pair go = gaT, gg = gpT With the same tail 7 = uy, - - -uy, We have

9095 = (1) gagptir, ---tik, = (=1)"V(ga, Ga)p1 - ths

where ¢ depends on the tail = only, and ¥ is the bilinear form in Proposition 11.
Therefore each block N; is of the form N; = [(—1)"U(ga, g3)] and hence it is
invertible by Proposition 11. ]

Lemma 13. A(p) N Ann(A(p)) = @ Alpr + .+ [ + .+ ps) s

Proof. In order to prove the inclusion O we take a generator g € A(uy + ... +
f; + ...+ ps) for any ¢ and show that gu; € A(p) N Ann(A(w)). This generator is

of the form g = (i, — 5, ).+ (i, — 15, ) Uky - Uky 5, Where all iy, jin, Ky # .
Then obviously

g = (piy — fjy) - (Bip = g, )Wky - Uk g5, Ti1 Tige-Tin, € A(p).
We claim that gu; € Ann(A(w)) that is to say, for any generator
g1 = (t, — Mtl)---(ﬂlp - Mtp)vql---vqs_gp
of A(n) we have g;gu; = 0. Because otherwise we would have
9191 = gty — piay) - (b, — Bty )Vgy Vg, g, 7 0

for some g;. Now, among such g¢;’s pick up the one with smallest p. Then we
must have vy, ...vq, _, pi 7 0 implying p; = p; (or ) for some ¢ (or 7). We may
assume WLG that u; = py, and hence

919 = Egpi(p, — Mtl)---(mp_l - Mtp_l)ﬂlpvql---vqs_zp #0

that is to say gigu; # 0 for go = (i, — pety ). (i, — ity )Vgy Vg, o,V With
v = xy,1 Which contradicts the minimality of p.
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As for the inclusion C, take w € A(u) N Ann(A(p)) and write w = )" aqga 8S

an element in A(y). Since we also have w € Ann(A(u)), for each generator g, of
A(w) we have wg, = 0 and hence wgj; = 0 for all 5. By Lemma 8(b), we obtain,

0= WQZ = Z aagagz = Z AaNafly s = Z Aafhy ---fsNag
a a a

for all gg . Since the matrix [ng] is invertible by Corollary 12, it follows that

Ao ph1---phs = 0
for all a. So a, is in the ideal generated by the x;;. Since

0 if i€ {ki,.. ko_ar}

xz‘jgoc:xij(ﬂh _Mjl)"'(M’ir_ujr)uk‘l"'uk‘s—Qr:{ (G Tij if ’i¢{k1,...,k3_2r}

where goz;; is a generator of A(u1 + ... + fiar + ... + ps). Hence we see that
taga € D A(ur + ... + i + ... + ps) s and the required inclusion follows. m
i

Theorem 14. If Char(F') = 0, then Ann(A(n)) = (1), equivalently Ann(u) =
A(p).-

Proof.  The inclusion (1) C Ann(A(w)) is obvious. Now, for the reversed
inclusion we use induction on s. For s = 1, u = x11212...Z1,,,, generators of A(u)
are x11, 12, ..., T1n, and therefore (u) = Ann(A(w)). Suppose that the assumption
is true for s — 1. Let = p1 + ... + ps. Since A(pq + ... + ps—1) N (Ts1y -y Tsn,) C
A(p) and E is a Frobenius algebra, we have

Ann(A(M)) - Ann{A(Ml + ...+ Ms—l) N (xslv ceey xsns)}
= Ann{A(u1 + ... + ps—1) } + Ann{(zs1..., Tsp,) }

— (Ml —+ ...+ Ms—l) + (MS)

by the induction hypothesis. Thus any w € Ann(A(x)) is of the form w = 7(u; +
ot ps—1) + 7' ps Or w = T + aus, where o = 7' — 7. Now,

aps =w — 7 € Ann(A(p)) N (1s).
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On the other hand

Ann(A(p)N(ps) = Ann{ A+ +ps—2) prs—1 4.+ A2+ ps—1) pa s

by Lemma 10 (1)
= Ann{A(r + o+ pe1) O Ann(AGu + .+ 1)) b

by Lemma 13 (2)
= {Ann(A(pr + ..+ ps—1)) + Al + o+ ps—1) Hts

by Frobenius property (3)
= {(m + o+ ps—1) + A(pr + o+ ps—1) Hts

by induction hypothesis (4)
= () N (ps)by Lemma 9. (5)

Therefore aps € (1)N(ps) - Thus w = Tu+aus € () whichyields Ann(A(u)) C
(1) u

Now we give a proposition which allows us to discuss the nonzero characteristic
cases.

Proposition 15. Let Char(F) = p. FOr w = p1 - -+ fhnUamUom1 - - - us With
u; € M;, we have

(a) w € Ann(A())
(b) w e Ann(u) ifand only if m < p

Proof.

(a) w € Ann(A(p)) means that wg = 0 for all g € G(u). In fact, for any
9= (piy — 1) -+ (B, — 11, )Vk; -+ Vky_y, 1N G (1) We have

WG = 1+ fimUzmU2m1 - Us(thiy — Ky ) o (B — M, )Vky " Uk g,

which is zero unless p1,-- -, iy, appear in distinct factors of the product
(i, — py) - - (i, — pj,). Therefore wg # 0 implies that m < r and the
above expression for wg is a linear combination of nonzero terms containing
factors taken from at least ¢ distinct M//s where

t=m+r+(s—2m+1)=s+(r—m)+1

since s — 2m + 1 > s — 2r. However, the number of all the distinct M; is

s and therefore ¢ > s+ 1 is impossible. Hence wg = 0 for all g € G(u) as
asserted.
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(b) Suppose that m < p and let

a=prt- At fmy B= g+ F pome1

We obtain o™ = m!lug---pm, and B = 0 since m is greater than the
number of terms of 3. Therefore it follows that

g = % = " — ()"
= (a+p) (@t —am 244 (1))

since Char(F') = p > m, it follows that m! # 0 and hence by letting

V= %(am—l — a4 ()"

we obtain
p i = (@4 B)7,
that is

P anU2m s Us = U Us (1 + o o+ 1 o fl2me1)Y
= Ugm **Us(1 + o F fim + i o Bome
+M2m+"'+ﬂs)7
= U, + * * Uglh7Y-

To complete the proof it remains to show that w ¢ (1) when p < m. Suppose
on the contrary that w € (u1). Then w = p~y implies that wuP—! = pP~. Since

uP =0 and
PN = g ()P
= 1 fmUom o Us(fmyr + 0+ M2m_1)p—1 £ 0
we obtain a contradiction. [ ]

Corollary 16. If Char(F) > % then any element of the form w = pq---
LU, * + - Ug 1S 1N ().

Proof. Since the number of w; which occur in w is s —2m+1 > 0, we obtain
m < 3L < p = Char(F) and the result follows from the proposition. ]

This proposition shows that the hypothesis Char(F') = 0 of Theorem 14 can not
be removed, for counter examples in the case Char(F) = p < ££L are abundant.
However if Char(F) = p > =51 we conjecture that the assertion of Theorem 14



Annihilators of Principal Ideals in the Exterior Algebra 1035

is true. In an earlier version of this paper whose abstract appeared in [6] we stated
this result but we noticed a gap which still awaits proof. However, the proof of
Corollary 12 can also be adopted to assert that the result is true for sufficiently large
prime characteristics.
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