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WELL-POSEDNESS IN THE GENERALIZED SENSE OF THE FIXED
POINT PROBLEMS FOR MULTIVALUED OPERATORS

Adrian Petruşel, Ioan A. Rus and Jen-Chih Yao

Abstract. The purpose of this paper is to define the concept of well-posedness
in the generalized sense of a fixed point problem for multivalued operators.
Several conditions under which the fixed point problem is well-posed in the
generalized sense are given. Some new fixed point theorems are also proved.

1. INTRODUCTION

Throughout this paper, the standard notations and terminologies in nonlinear
analysis are used. For the convenience of the reader we recall some of them here.

Let (X, d) be a metric space. We will use the following symbols:

P (X) = {Y ⊂ X | Y is nonempty} , Pb(X) := {Y ∈ P (X)| Y is bounded }
Pcl(X) : = {Y ∈ P (X)| Y is closed} , Pb,cl(X) := Pb(X) ∩ Pcl(X),

Pcp(X) : = {Y ∈ P (X)| Y is compact }.

If T : X → P (X) is a multivalued operator, then

T (Y ) :=
⋃
x∈Y

T (x), for Y ∈ P (X)

will denote the image of the set Y .
The set of all nonempty invariant subsets of T will be denoted by

I(T ) := {Y ∈ P (X)|T (Y ) ⊂ Y },
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904 Adrian Petruşel, Ioan A. Rus and Jen-Chih Yao

while the graph of the multivalued operator T is denoted by

GraphT := {(x, y) ∈ X × X | y ∈ T (x)}.

Also
T 1(x) := T (x), . . . , Tn+1(x) = T (T n(x)), n ∈ N, x ∈ X

denote the iterate operators of T .
For T : X → P (X) the symbol

FT := {x ∈ X | x ∈ T (x)}

denotes the fixed point set, while

(SF )T := {x ∈ X | {x} = T (x)}

is the strict fixed point set of the multivalued operator T .
The following functionals are used in the main section of the paper.
The gap functional

(1) Dd : P (X)×P (X) → R+∪{+∞}, Dd(A, B) := inf{d(a, b)|a ∈ A, b ∈ B}.
The δ generalized functional

(2) δd : P (X)×P (X) → R+∪{+∞}, δd(A, B) := sup{d(a, b)|a ∈ A, b ∈ B}.
The excess generalized functional

(3) ρd : P (X) × P (X) → R+ ∪ {+∞}, ρd(A, B) := sup{Dd(a, B)| a ∈ A}.
The Pompeiu-Hausdorff generalized functional

(4) Hd : P (X)×P (X) → R+∪{+∞}, Hd(A, B) := max{ρd(A, B), ρd(B, A)}.
It is well-known that (Pb,cl(X), Hd) is a complete metric space provided (X, d)

is a complete metric space.

Also, we denote by

V (Y ; ε) := {x ∈ X | D(x, Y ) < ε}

the ε-neighborhood of the set Y ∈ P (X).
If (X, d) is a metric space, then T : X → P (X) is said to be

(a) closed if G(T ) is a closed set in X × X ;
(b) compact if T (X) is compact.

Also, if T : X → Pcl(X) is a multivalued operator, then T is called

(i) contractive if Hd(T (x), T (y)) < d(x, y), for all x, y ∈ X, with x �= y;
(ii) a-Lipschitz if a > 0 and Hd(T (x), T (y)) ≤ ad(x, y), for all x, y ∈ X ;
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(iii) a-contraction if it is a-Lipschitz with a ∈ (0, 1).

For more details and basic results concerning the above notions see for example
[8,9,13,17] and the references therein.

The purpose of this paper is to define the concept of well-posedness in the gen-
eralized sense of a fixed point problem for multivalued operators. Several conditions
under which the fixed point problem is well-posed are given. Some new fixed point
theorems are also proved. The notions and the results of the paper extend and
complement some previous ones given in De Blasi, Myjak [2], Lemaire [10], Furi,
Vignoli [6], Furi, Martelli, Vignoli [7], Reich, Zaslawski [16], Y.-P. Fang, N.-J.
Huang, J.-C. Yao [5], I. A. Rus [19], as well as, from A. Petruşel, I. A. Rus [5]
and Yong-hui Zhou, J. Yu, Shu-wen Xiang [24].

2. WELL-POSEDNESS IN THE GENERALIZED SENSE OF FIXED POINT PROBLEMS

For the beginning let us define the notion of well-posedness in the generalized
sense of a fixed point problem.

Definition 2.1. Let (X, d) be a metric space, Y ∈ P (X) and T : Y →
Pcl(X) be a multivalued operator. Then the fixed point problem is well-posed in
the generalized sense (respectively well-posed [15]) for T with respect to Dd iff

(a1) FT �= ∅ (respectively FT = {x∗});
(b1) If xn ∈ Y , n ∈ N and Dd(xn, T (xn)) → 0 as n → +∞, then there exists a

subsequence (xni) of (xn) such that xni

d→ x∗ ∈ FT as i → +∞ (respectively
xn

d→ x∗ ∈ FT as n → +∞).

Definition 2.2. Let (X, d) be a metric space, Y ∈ P (X) and T : Y →
Pcl(X) be a multivalued operator. Then the fixed point problem is well-posed in
the generalized sense (respectively well-posed [15]) for T with respect to Hd iff
(a2) (SF )T �= ∅ (respectively (SF )T = {x∗});
(b2) If xn ∈ Y , n ∈ N and Hd(xn, T (xn)) → 0, as n → +∞, then there exists

a subsequence (xni) of (xn) such that xni

d→ x∗ ∈ (SF )T as i → +∞
(respectively xn

d→ x∗ ∈ (SF )T as n → +∞).

Remark 2.3. It’s easy to see that if the fixed point problem is well-posed in
the generalized sense for T with respect to Dd and FT = (SF )T , then the fixed
point problem is well-posed in the generalized sense for T with respect to Hd.

Remark 2.4. If (X, d) is a compact metric space, Y ∈ P (X) and T : Y →
Pcl(X), then
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(a) the fixed point is well-posed in the generalized sense for T with respect to
Dd iff

(i) FT �= ∅;
(ii) If xn ∈ Y , n ∈ N such that xn

d→ x∗ and Dd(xn, T (xn)) → 0 as
n → +∞, then x∗ ∈ FT .

(b) the fixed point is well-posed in the generalized sense for T with respect to
Hd iff

(i) (SF )T �= ∅;
(ii) If xn ∈ Y , n ∈ N such that xn

d→ x∗ and Hd(xn, T (xn)) → 0 as
n → +∞, then x∗ ∈ (SF )T .

Clearly, from the well-posedness point of view of a fixed point problem for a
multivalued operator T , it is of major interest to give sufficient conditions for the
continuity of the following functionals: x 
→ Dd(x, T (x)) and x 
→ Hd(x, T (x)),
x ∈ Y . For example, we have the following result.

Lemma 2.5. (E. Llorens Fuster [12]) Let (X, d) be a metric space and T :
X → Pb,cl(X) be a k-Lipschitz multivalued operator. Then the functionals x 
→
Dd(x, T (x)) and x 
→ Hd(x, T (x)), x ∈ X are (k + 1)-Lipschitz.

Remark 2.6. Let (X, d) be a compact metric space, Y ∈ P (X) and T : Y →
Pcl(X).

(a) If cardFT = 1 and the fixed point is well-posed in the generalized sense for
T with respect to Dd, then the fixed point is well-posed for T with respect
to Dd.

(b) If card(SF )T = 1 and the fixed point is well-posed in the generalized sense
for T with respect to Hd, then the fixed point is well-posed for T with respect
to Hd.

For similar definitions see [15, 23, 24]. For the single-valued case, see [2, 10,
7, 11, 16, 5].

Some abstract results are given now.

Lemma 2.7. Let X be a nonempty set and d, d ′ two metrics on X . Suppose
that d, d′ are metric equivalent. Let T : X → Pcl(X) be a multivalued operator.
Then

(i) The fixed point problem in the generalized sense for T is well-posed with
respect to Dd if and only if it is well-posed in the generalized sense for T
with respect to Dd′ .
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(ii) The fixed point problem in the generalized sense for T is well-posed with
respect to Hd if and only if it is well-posed in the generalized sense for T
with respect to Hd′ .

Proof.

(i) Let c1, c2 > 0 such that d ≤ c1d
′ and d′ ≤ c2d. Then Dd ≤ c1Dd′ and

Dd′ ≤ c2Dd. Let xn ∈ X , n ∈ N be such that Dd′(xn, T (xn)) → 0, as
n → +∞. Then:

Dd(xn, T (xn)) ≤ c1Dd′(xn, T (xn)) → 0, as n → +∞.

Since the fixed point problem is well-posed in the generalized sense for T with
respect to Dd, there exists a subsequence (xni) of (xn) such that xni

d→ x∗ ∈
FT as i → +∞. As a consequence, we have d′(xni , x

∗) ≤ c2d(xni , x
∗) → 0

as i → +∞. In a similar way, interchanging the roles of d and d′, we get the
conclusion.

(ii) The second conclusion can be established in a similar way, by taking into
account that if d ≤ c1d

′ and d′ ≤ c2d, then δd ≤ c1δd′ and δd′ ≤ c2δd.

In a similar way, we have:

Lemma 2.8. Let X be a nonempty set and d, d ′ two metrics on X . Suppose
that d, d′ are topologically equivalent (in the sense that they generate the same
topology on X) and there exists c > 0 such that d ≤ cd ′. Let T : X → Pcl(X) be
a multivalued operator. Then

(i) if the fixed point problem in the generalized sense for T is well-posed with
respect to Dd then it is well-posed in large meaning for T with respect to
Dd′;

(ii) if the fixed point problem for T is well-posed in the generalized sense for T

with respect to Hd, then it is well-posed in the generalized sense for T with
respect to Hd′ .

3. CONDITIONS FOR WELL-POSEDNESS

In this section, we give several conditions under which the fixed point problem
for a multivalued operator is well-posed in the generalized sense.

Our first result, in the setting of a compact metric space, is a very general one.

Theorem 3.1. Let (X, d) be a compact metric space. If T : X → P (X) is a
closed multivalued operator such that F T �= ∅, then the fixed point problem is well-
posed in the generalized sense for T with respect to D. Moreover, if, additionally, T
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is lower semicontinuous and (SF )T �= ∅, then the fixed point problem is well-posed
in the generalized sense for T with respect to H d.

Proof. Let xn ∈ X , n ∈ N be such that Dd(xn, T (xn)) → 0 as n → +∞. Let
(xni)i∈N be a convergent subsequence of (xn)n∈N. Suppose xni

d→ x̃ as i → +∞.
Then there exists yni ∈ T (xni), i ∈ N, such that yni

d→ x̃ as i → +∞. Since T is
closed, we obtain that x̃ ∈ FT .

For the second conclusion, let xn ∈ X , n ∈ N be such that Hd(xn, T (xn)) → 0
as n → +∞. Let (xni)i∈N be a convergent subsequence of (xn)n∈N. Sup-
pose xni

d→ x̃ as i → +∞. Since T is continuous, we immediately get that
Hd(x̃, T (x̃)) = 0 and hence x̃ ∈ (SF )T .

Theorem 3.2. If (X, d) is a compact metric space, then for any multivalued
contractive operator T : X → Pcl(X), the fixed point problem is well-posed in the
generalized sense with respect to Dd. Moreover, if additionally (SF )T �= ∅, then
the fixed point problem is well-posed in the generalized sense with respect to H d

too.

Proof. By a theorem of Smithson [22], we have that FT �= ∅. Since T is
contractive, it is upper semicontinuous and hence closed. The conclusion follows
by Theorem 3.1.

Theorem 3.3. Let (X, d) be a metric space and T : X → P (X) be a compact
contractive multivalued operator.
Then

(i) the fixed point problem for T is well-posed in the generalized sense for T

with respect to Dd;
(ii) if, additionally, (SF )T �= ∅, then the fixed point problem for T is well-posed

in the generalized sense for T with respect to H d.

Proof.
(i) Obviously FT �= ∅. Let (xn)n∈N be such that Dd(xn, T (xn)) → 0 as n →

+∞. Then there exists yn ∈ T (xn), n ∈ N such that d(xn, yn) → 0 as
n → +∞. From the compactness hypothesis on T there exists a subsequence
(yni)i∈N of (yn)n∈N such that yni → y∗ as i → +∞. Hence xni → y∗ as
i → +∞. Since T is closed, we obtain that y∗ ∈ FT .

(ii) Let (xn)n∈N be such that Hd(xn, T (xn)) → 0 as n → +∞. Then there exists
yn ∈ T (xn), n ∈ N such that d(xn, yn) → 0 as n → +∞. As before, there
exists a subsequence (yni)i∈N of (yn)n∈N such that yni → y∗ as i → +∞.
Hence xni → y∗ as i → +∞. In conclusion Hd(y∗, T (y∗)) = 0 and thus
T (y∗) = {y∗}.
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Let X be a Fréchet space, i. e. a locally convex space which is metrizable
and complete. A mapping α : Pb(X) → R+ is called an abstract measure of
non-compactness on X if the following conditions hold

(1) (Regularity) α(A) = 0 implies A is compact;
(2) (Convex hull property) α(convA) = α(A), for each A ∈ Pb(X);
(3) (Non-singularity) α(A ∪ B) = max{α(A), α(B)}, for each A, B ∈ Pb(X);
(4) (Cantor type property) If (An)n∈N is a decreasing sequence of closed subset

of X with lim
n→+∞ α(An) = 0, then

+∞⋂
n=1

An is nonempty and compact.

As consequence, we also have that α(A) ≤ α(B) provided A ⊂ B.
Kuratowski (αK ) and Hausdorff (αH ) measures of non-compactness are exam-

ples of abstract measures of non-compactness. For other details and related results
see Appell [1] and the references therein.

In this setting, a multivalued operator T : X → P (X) is said to be densifying
with respect to α if α(T (A)) < α(A), for each A ∈ Pb(X)∩ I(T ) with α(A) > 0.
It is known that compact multivalued operators are densifying with respect to any
measure of non-compactness.

We will present now a fixed point result for a densifying multivalued operator.
For the single-valued case see Furi and Vignoli [6].

Theorem 3.4. Let (X, d) be a complete metric space and let T : X → Pb,cl(X)
be densifying with respect to αK or αH such that the functional x 
→ D d(x, T (x)) is
continuous. Then any bounded sequence (xn)n∈N ∈ X such that Dd(xn, T (xn)) →
0 as n → +∞, has a convergent subsequence and all the limit points of (x n)n∈N

are fixed points of T .

Proof. Let (xn)n∈N ∈ X be a bounded sequence such that Dd(xn, T (xn)) → 0,
as n → +∞. Denote M := {xn : n ∈ {1, 2, · · ·}}. Then T (M) =

⋃
n∈N∗

T (xn).

Since Dd(xn, T (xn)) → 0 as n → +∞, given any ε > 0 the ε-neighborhood
V (T (M); ε) of T (M) contains all except a finite number of elements of M . Then
for each ε > 0 we have that

α(M) ≤ α(V (T (M); ε)) ≤ α(T (M)) + 2ε.

Hence α(T (M)) ≥ α(M). This implies that α(M) = 0 and thus M is compact.
Using the continuity of the functional x 
→ Dd(x, T (x)), we obtain that all the limit
points of (xn)n∈N are fixed points of T .

As consequence, we can get a well-posedness result.
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Theorem 3.5. Let (X, d) be a bounded and complete metric space and let
T : X → Pb,cl(X) be densifying with respect to αK or αH , such that the functional
x 
→ Dd(x, T (x)) is continuous. Suppose that inf

x∈X
D(x, T (x)) = 0. Then the fixed

point problem is well-posed in the generalized sense for T with respect to D d.

Proof. From the above result we obtain that FT �= ∅. Let (xn)n∈N ∈ X be a
sequence such that Dd(xn, T (xn)) → 0 as n → +∞. As in the proof of Theorem
3.4, we get that (xn)n∈N has a subsequence which converges to a fixed point of T .
The proof is now complete.

Taking into account that any compact multivalued operator is densifying with
respect to αK we get the following theorem.

Theorem 3.6. Let (X, d) be a bounded and complete metric space and let
T : X → P (X) be a compact multivalued operator such that the functional
x 
→ Dd(x, T (x)) is continuous. Suppose that inf

x∈X
D(x, T (x)) = 0. Then the fixed

point problem is well-posed in the generalized sense for T with respect to D d.

A Krasnoselskii type result can be also established.

Theorem 3.7. Let (X, d) be a complete metric space and let T1, T2 : X →
P (X) be two multivalued operators such that T 1 is compact and T2 is densifying
with respect to αK or αH . Denote by T := T1 + T2 and suppose that T : X →
Pb,cl(X) and that the functional x 
→ D d(x, T (x)) is continuous. Then any bounded
sequence (xn)n∈N ∈ X , such that Dd(xn, T (xn)) → 0 as n → +∞, has a
convergent subsequence and all the limit points of (x n)n∈N are fixed points of T .

Proof. From Theorem 3.4 it is sufficient to prove that T is densifying. Let
A ∈ Pb(X) such that α(A) > 0. Then we have

α(T (A)) ≤ α(T1(A))+α(T2(A)) = α(T2(A)) < α(A).

Of course, a well-posedness result for a Krasnoselskii type multivalued operator
can be deduced as before (see Theorem 3.5).

Let us consider now some metrical-type conditions for well-posedness. For some
similar results see [15].

Theorem 3.8. Let (X, d) be a complete metric space, Y ∈ Pcl(X) and T :
Y → Pcl(X) be a Ćirić-type multivalued operator, i. e. there exists q ∈ (0, 1) such
that for each x, y ∈ Y

H(T (x), T (y))≤ q · max{d(x, y), D(x, T (x)),D(y, T (y)),

1
2
(D(x, T (y)) + D(y, T (x)))}.
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If (SF )T �= ∅, then the fixed point problem is well-posed for T with respect to D d

and with respect to Hd too.

Proof. Since (SF )T �= ∅ and T is a Ćirić-type multivalued operator, we prove
first that FT = (SF )T = {x∗}. For, let x∗ ∈ (SF )T . Clearly (SF )T ⊂ FT . Thus,
it is enough to prove that FT = {x∗}. For, let x ∈ FT with x∗ �= x. Then

d(x∗, x) = D(T (x∗), x) ≤ H(T (x∗), T (x))

≤ q ·max{d(x∗, x), D(x∗, T (x∗)), D(x, T (x)),

1
2
(D(x∗, T (x)) + D(x, T (x∗)))}

≤ q ·max{d(x∗, x), 1
2(d(x∗, x) + d(x, x∗))}

= q · d(x∗, x).

This contradiction proves that FT = {x∗} and hence FT = (SF )T = {x∗}.
For our purpose let xn ∈ Y , n ∈ N be such that D(xn, T (xn)) → 0 as

n → +∞. Then

d(xn, x∗) ≤ D(xn, T (xn)) + H(T (xn), T (x∗)) ≤ D(xn, T (xn))

+q · max{d(xn, x∗), D(xn, T (xn)), D(x∗, T (x∗)),
1
2
(D(xn, T (x∗)) + D(x∗, T (xn)))}

= D(xn, T (xn)) + q · max{d(xn, x∗), D(xn, T (xn)),

1
2
(d(xn, x∗) + D(x∗, T (xn)))}

= D(xn, T (xn)) + q · max{d(xn, x∗), D(xn, T (xn)),

d(xn, x∗) +
1
2
D(xn, T (xn))}

= D(xn, T (xn)) + q · max{D(xn, T (xn)), d(xn, x
∗)

+
1
2
D(xn, T (xn))}.

Hence
d(xn, x∗) ≤ max{ q + 2

2(1− q)
, 1 + q} ·D(xn, T (xn)).

Then we immediately get d(xn, x∗) ≤ q+2
2(1−q) · D(xn, T (xn)) → 0 as n → +∞.

It is an open question if the above result or part of it holds without the as-
sumption (SF )T �= ∅. Also, it is of interest to establish a result concerning the
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well-posedness in the generalized sense of the fixed point problem for Ćirić-type
multivalued operators.

A consequence of the above theorem is the following well-posedness result for
Ćirić-type multivalued operators in Banach spaces.

Corollary 3.9. Let E be a Banach space and C a weakly compact convex
subset of it. Let T : C → Pb,cl(X) be a Ćirić-type multivalued operator such that
the following assumptions hold:

(i) the functional x 
→ H(x, T (x)) is lower semicontinuous on C;
(ii) inf

x∈C
H(x, T (x)) = 0.

Then the fixed point problem is well-posed for T with respect to D and H .

Proof. From [12] Proposition 3, since T is a Ćirić-type multivalued operator,
we have that T is strongly r-almost convex. From Theorem 2 in [12] we obtain
that (SF )T �= ∅. The conclusion follows now Therem 3.8.

Another example comes via Kannan nonexpansive multivalued operators. Re-
call that, if (X, d) is a metric space, then T : X → Pcl(X) is called a Kannan
nonexpansive multivalued operator if for each x, y ∈ X we have

Hd(T (x), T (y))≤ 1
2
· [Dd(x, T (x)) + Dd(y, T (y))].

It is obvious that a Kannan nonexpansive multivalued operator is not necessary
closed. Nevertheless we have:

Theorem 3.10. Let (X, d) be a complete metric space. If T : X → Pcp(X) is
a Kannan nonexpansive multivalued operator such that inf

x∈X
Dd(x, T (x)) = 0, then

the fixed point problem is well-posed in the generalized sense for T with respect to
Dd.

Proof. From Theorem 1 in Shiau, Tan, Wong [21] we have that FT �= ∅. Let
xn ∈ X , n ∈ N be a sequence such that Dd(xn, T (xn)) → 0 as n → +∞. Since T

is a Kannan nonexpansive multivalued operator, the sequence (T (xn))n∈N is Cauchy
in (Pcp(X), Hd). Hence there exists U∗ ∈ Pcp(X) such that Hd(T (xn), U∗) → 0 as
n → +∞. Since T (xn), U∗ ∈ Pcp(X) there exist yn ∈ T (xn) and un ∈ U∗, n ∈ N

such that d(xn, yn) = Dd(xn, T (xn)) and d(yn, un) = Dd(yn, U∗). Moreover,
since U is compact, there exists a subsequence uni of un that converges to some
u∗ ∈ U∗ as i → +∞. From d(yn, un) ≤ Hd(T (xn), U∗) → 0 as n → +∞, we get
that yni → u∗ as i → +∞. Since

Dd(u∗, T (u∗)) = lim
n→+∞ Dd(yni , T (u∗)) ≤ lim inf

i→+∞
Dd(T (xni), T (u∗))
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≤ lim inf
i→+∞

(
1
2
Dd(xni , T (xni))) +

1
2
Dd(u∗, T (u∗)) =

1
2
Dd(u∗, T (u∗)),

we get that u∗ ∈ FT . Since d(xn, yn) = Dd(xn, T (xn)) → 0 as n → +∞ and
yni → u∗ as i → +∞ we immediately obtain that xni → u∗ as i → +∞.

Remark 3.11. From the above proof, it follows that T (xn)
Hd→ T (u∗) as

n → +∞.
Indeed, Hd(T (xni), T (u∗)) ≤ 1

2Dd(xni , T (xni)) → 0 as i → +∞. Thus
T (xni)

Hd→ T (u∗) as n → +∞ and hence U ∗ = T (u∗).
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