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ITERATIVE ALGORITHMS AND CONVERGENCE THEOREMS
FOR SOLVING F -IGVIP AND F -IGCP

Yen-Cherng Lin

Abstract. In this paper, we study the iterative algorithm and convergence the-
orems for F -implicit generalized variational inequalities problem (F -IGVIP).
By employing our earlier works ([6], Theorem 2.2), we establish several iter-
ative convergence results for F -IGVIP. The algorithm and convergence results
are new for solving the strong solution of F -IGVIP. Furthermore, new algo-
rithms and convergence theorems for F -implicit generalized complementarity
problem (F -IGCP) are also discussed.

1. INTRODUCTION AND PRELIMINARIES

In very recent years, iterative algorithms have been established for solving vari-
ational inequalities. Ding el al. [1, 3] present a predictor-corrector iterative algo-
rithms for solving generalized mixed variational-like problems.

Motivated and inspired by the above works, the purpose of this paper is to
establish the predictor-corrector iterative algorithms and discuss the convergence
theorems for solving the strong solution of F -implicit generalized variational in-
equalities problem (F -IGVIP) which is discussed by Zeng et al. [6].

Let H be a real Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉. Let C(H)
be the family of all nonempty compact subsets of H . Let T : H→C(H) be a set-
valued mapping, F : H → R, g : H → H be two single-valued mappings. In very
recent year, Zeng et al. [6] consider the following F -implicit generalized variational
inequalities problem (F -IGVIP) is to find an x̄ ∈ H with an s̄ ∈ T (x̄) such that

(1.1) 〈s̄, x − g(x̄)〉 ≥ F (g(x̄)) − F (x)

for all x ∈ H , and we say a solution of (1.1) is a strong solution of F -IGVIP (we
refer to [6]).

There are some special cases of (F -IGVIP):
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(1) If T is a single valued mapping, then the (F -IGVIP) is equivalent to the
(F -IVIP) which is to find an x̄ ∈ H such that

(1.2) 〈T (x̄), x− g(x̄)〉 ≥ F (g(x̄)) − F (x)

for all x ∈ H . This problem was introduced and studied in [2]

(2) If H is a Hilbert space, T is a single valued mapping and g is an identity
mapping, then the (F -IGVIP) is equivalent to find an x̄ ∈ H such that

(1.3) 〈T (x̄), x− x̄〉 ≥ F (x̄) − F (x)

for all x ∈ H . This problem is known as a variational inequality introduced
by Stampacchia [4].

(3) If H = R
n and F ≡ 0, g is an identity mapping, then the (F -IGVIP) is

equivalent to find x̄ ∈ H and s̄ ∈ T (x̄) such that

(1.4) 〈s̄, x− x̄〉 ≥ 0

for all x ∈ H . This problem was introduced and studied by Fang
and Peterson[2], Yao and Guo[5].

For the detail, we refer to [6]. We first give some definitions which will use in
the sequel.

Definition 1.1. Let T : H → C(H) be a set-valued mapping.

(1) T is a partially relaxed strongly monotone w.r.t. g if there is a constant α > 0
such that

〈u1, g(v2) − g(z)〉+ 〈u2, g(z)− g(v2)〉 ≤ α‖g(v1)− g(z)‖2, ∀v1, v2, z

∈ H, ui ∈ T (vi), i = 1, 2.

(2) T is D-continuous on H if {xn} ⊂ H and xn → x, then T (xn) → T (x)
under the Hausdorff metric D on C(H). T is D-uniformly continuous on H
if for every ε > 0 there is a δ > 0 such that if x, y ∈ H with ‖x − y‖ < δ,
then D(T (x), T (y)) < ε.

(3) T is D-convergent preserving set-valued mapping if {an}, {bn} ⊂ H and
D(T (an), T (bn)) → 0 as n → ∞ under the Hausdorff metric D on C(X)
implies the sequence ‖an − bn‖ → 0 as n → ∞.

We note that if z = v1 and g is an identity mapping, then a partially relaxed
strongly monotone w.r.t. g is a monotone mapping.
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We need the following theorem which we can directly derive from Theorem 2.2
and Theorem 2.3[6].

Theorem A. Let the mapping F : H → R be lower semicontinuous and
convex, g : H → H be continuous and T : H → 2H be upper semicontinuous with
nonempty compact convex values. Suppose that

(1) for each x ∈ H , there is an s ∈ T (x) such that 〈s, g(x) − x〉 ≤ F (x) −
F (g(x)),

(2) there is a nonempty compact convex subset C of H , such that for each
x ∈ H \ C, there is a y ∈ C such that for some s ∈ T (x), 〈s, y − g(x)〉 <
F (g(x))− F (y).

Then there is a strong solution of F -IGVIP.

2. ITERATIVE ALGORITHM AND CONVERGENCE THEOREMS

In this section, we first consider the auxiliary F -implicit generalized variational
inequalities problems as follows:

For any given x̄ ∈ H , s̄ ∈ T (x̄), to find a w ∈ H such that

(2.1) 〈g(w)− g(x̄), x− g(w)〉+ ρ〈s̄, x− g(w)〉+ ρF (x) − ρF (g(w)) ≥ 0,

for all x ∈ H , where ρ > 0 is a constant. We note that if w = x̄, then x̄ is a
strong solution of F -IGVIP. This observation enables us to suggest the following
new predictor-corrector method for solving the strong solution of F -IGVIP.

Algorithm 2.1. For given x0 ∈ H , s0 ∈ T (x0), compute the approximate
solution xn of F -IGVIP with sn ∈ T (xn) by the following iterative schemes.

(2.2)
〈g(yn) − g(xn), x− g(yn)〉+ µ〈sn, x − g(yn)〉+ µF (x) − µF (g(yn))

≥ 0, ∀x ∈ H,

(2.3)
〈g(wn)−g(yn), x−g(wn)〉+β〈ξn, x−g(wn)〉+βF (x)−βF (g(wn))

≥ 0, ∀x ∈ H,

(2.4)
〈g(xn+1) − g(wn), x− g(xn+1)〉+ ρ〈ηn, x− g(xn+1)〉 + ρF (x)

−ρF (g(xn+1)) ≥ 0, ∀x ∈ H,

(2.5) sn ∈ T (xn) : ‖sn+1 − sn‖ ≤ D(T (xn+1), T (xn)),
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(2.6) ξn ∈ T (yn) : ‖ξn+1 − ξn‖ ≤ D(T (yn+1), T (yn)),

(2.7) ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ D(T (wn+1), T (wn)),

where µ, β, ρ > 0 are constants, and D is the Hausdorff metric on C(H).

In order to obtain the convergence theorem, we need the following lemma:

Lemma 2.1. Let x̄ be the strong solution of F -IGVIP, s̄ ∈ T (x̄) and {xn},
{wn}, {yn} be the sequences of approximate solutions of F -IGVIP generated by
the Algorithm 2.1. Suppose that T is a partially relaxed strongly monotone w.r.t. g

with constant α > 0. Then

(2.8) ‖g(xn+1)− g(x̄)‖2 ≤ ‖g(xn)− g(x̄)‖2 − (1 − 2ρα)‖g(xn+1) − g(wn)‖2,

(2.9) ‖g(wn)− g(x̄)‖2 ≤ ‖g(wn−1) − g(x̄)‖2 − (1 − 2βα)‖g(wn)− g(yn)‖2,

(2.10) ‖g(yn)− g(x̄)‖2 ≤ ‖g(yn−1) − g(x̄)‖2 − (1− 2µα)‖g(yn) − g(xn)‖2,

where 0 < ρ, β, µ < 1
2α .

Proof. The conclusion can be derived by using the technique of Lemma 3.1[1].
For the sake of completeness, we give the proof as follows.

For the constants µ, β, ρ with 0 < ρ, β, µ < 1
2α . Let x̄ be the strong solution of

F -IGVIP and s̄ ∈ T (x̄). Then

(2.11) µ〈s̄, x− g(x̄)〉 − µF (g(x̄)) + µF (x) ≥ 0

(2.12) β〈s̄, x− g(x̄)〉 − βF (g(x̄)) + βF (x) ≥ 0

(2.13) ρ〈s̄, x− g(x̄)〉 − ρF (g(x̄)) + ρF (x) ≥ 0

for all x ∈ H .

Taking x = g(xn+1) in (2.13) and x = g(x̄) in (2.4), we have

(2.14) ρ〈s̄, g(xn+1) − g(x̄)〉 − ρF (g(x̄)) + ρF (g(xn+1)) ≥ 0,

(2.15)
〈g(xn+1) − g(wn), g(x̄) − g(xn+1)〉+ ρ〈ηn, g(x̄) − g(xn+1)〉
+ρF (g(x̄))− ρF (g(xn+1)) ≥ 0.
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Adding (2.14) and (2.15), we have

(2.16)
〈g(xn+1) − g(wn), g(x̄) − g(xn+1)〉+ ρ〈ηn, g(x̄) − g(xn+1)〉

+ρ〈s̄, g(xn+1) − g(x̄)〉 ≥ 0.

Since T is a partially relaxed strongly monotone w.r.t. g with constant α > 0,
we get

(2.17) 〈g(xn+1) − g(wn), g(x̄) − g(xn+1)〉 ≥ −ρα‖g(xn+1) − g(wn)‖2.

Since

‖g(x̄)− g(wn)‖2 = ‖(g(x̄− g(xn+1) + (g(xn+1 − g(wn))‖2

= ‖g(x̄)− g(xn+1)‖2 + ‖g(xn+1) − g(wn)‖2 + 2〈g(x̄)

−g(xn+1), g(xn+1) − g(wn)〉,

we have

−ρα‖g(xn+1) − g(wn)‖2 ≤ 〈g(xn+1)− g(wn), g(x̄)− g(xn+1)〉

=
1
2
[‖g(x̄) − g(wn)‖2

−‖g(x̄) − g(xn+1)‖2 − ‖g(xn+1) − g(wn)‖2].

Thus, ‖g(x̄)− g(xn+1)‖2 ≤ ‖g(x̄)− g(wn)‖2− (1−2ρα)‖g(xn+1)− g(wn)‖2 and
this prove (2.8). Similarly, we have (2.9) and (2.10).

Now, we deduce the convergence theorem for the iterative algorithm we con-
structed by Algorithm 2.1. We denote the strong solution set Ω of the F -IGVIP as
follows:

Ω = {x̄ ∈ H : ∃ an s̄ ∈ T (x̄) with 〈s̄, x−g(x̄)〉+F (x)−F (g(x̄)) ≥ 0 ∀x ∈ H}.

Theorem 2.1. Let H be a finite-dimensional Hilbert space, g : H → H be
continuous, F : H → R be lower semi-continuous and convex, g −1 : g(H) →
C(H) be D-uniformly continuous and bounded set-valued mapping where g −1 is
bounded means the image of a bounded set under the mapping g −1 is bounded,
g−1 ◦ g : H → C(H) be D-convergent preserving set-valued mapping and T :
H → C(H) be D-continuous set-valued mapping such that T is partially relaxed
strongly monotone w.r.t. g with constant α > 0 Suppose that the solution set Ω of
the F -IGVIP is nonempty. Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative
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sequences {xn}, {yn} and {wn} defined by Algorithm 2.1 with 0 < ρ, µ, β < 1
2α

converge strongly to an x̂ ∈ Ω which is a strong solution of the F -IGVIP.

Proof. For any x̄ ∈ Ω with an s̄ ∈ T (x̄) such that 〈s̄, x − g(x̄)〉 + F (x) −
F (g(x̄)) ≥ 0 ∀x ∈ H . From (2.8)-(2.10) in Lemma 2.1 it follows that the sequences
{‖g(xn)−g(x̄)‖}, {‖g(wn)−g(x̄)‖} and {‖g(yn)−g(x̄)‖} are non-increasing and
hence {g(yn)}, {g(wn)} and {g(xn)} are bounded. Furthermore, we have

∞∑

n=0

(1− 2ρα)‖g(xn+1) − g(wn)‖2 ≤ ‖g(x0) − g(x̄)‖2,

∞∑

n=0

(1− 2βα)‖g(wn) − g(yn)‖2 ≤ ‖g(w0)− g(x̄)‖2,

∞∑

n=0

(1 − 2µα)‖g(yn) − g(xn)‖2 ≤ ‖g(y0) − g(x̄)‖2.

From these inequalities, we have ‖g(xn+1)−g(wn)‖ → 0, ‖g(wn)−g(yn)‖ → 0
and ‖g(yn) − g(xn)‖ → 0 as n → ∞. Since g−1 is D-uniformly continuous, we
have

D(g−1(g(xn+1)), g−1(g(wn))) → 0,

D(g−1(g(wn)), g−1(g(yn))) → 0
and

D(g−1(g(yn)), g−1(g(xn))) → 0

as n → ∞. Since g−1 ◦ g is D-convergent preserving set-valued mapping, we can
deduce that ‖xn+1 − wn‖ → 0, ‖wn − yn‖ → 0 and ‖yn − xn‖ → 0 as n → ∞.
Therefore we have

(2.18) ‖xn+1 −xn‖ ≤ ‖xn+1 −wn‖+‖wn −yn‖+‖yn −xn‖ → 0, as n → ∞.

Since {g(yn)}, {g(wn)} and {g(xn)} are bounded, from the boundedness of
g−1, we have the sequences {yn}, {wn} and {xn} are bounded. Hence there is a
subsequence {xni} of {xn} such that xni → x̂ and hence yni → x̂. Since T is
D-continuous on H , by using the same argument of Theorem 2.1 in [1] that there
is a subsequence {snij

} of {sni} such that snij
→ ŝ and ŝ ∈ T (x̂).

By (2.2), the continuity of g and the lower semi-continuity of F , we have

〈ŝ, x− g(x̂)〉+ F (x) − F (g(x̂)) ≥ 0 ∀x ∈ H.

Hence x̂ ∈ Ω is a strong solution of the F -IGVIP.
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By (2.18), we have xn → x̂ as n → ∞ and this also implies that yn → x̂

and wn → x̂ as n → ∞. Since T is D-continuous on H , by (2.5), we have
‖sn+1 − sn‖ ≤ D(T (xn+1), T (xn)) → 0 as n → ∞. It follows that sn → ŝ as
n → ∞. This complete the proof.

The following result, we combine the results of Theorem A and Theorem 2.1
to develop the both existence result and efficient iterative convergence theorem in
order to approach to the strong solution of F -IGVIP.

Theorem 2.2. Let H be a finite-dimensional Hilbert space, g : H → H be
continuous, F : H → R be lower semi-continuous and convex, g −1 : g(H) →
C(H) be D-uniformly continuous and bounded set-valued mapping, g −1 ◦g : H →
C(H) be D-convergent preserving set-valued mapping and T : H → C(H) be
upper semi-continuous and D-continuous set-valued mapping with convex values
such that T is partially relaxed strongly monotone w.r.t. g with constant α > 0.
Suppose that

(1) for each x ∈ H , there is an s ∈ T (x) such that 〈s, g(x) − x〉 ≤ F (x) −
F (g(x)),

(2) there is a nonempty compact convex subset C of H , such that for each
x ∈ H \ C, there is a y ∈ C such that for some s ∈ T (x), 〈s, y − g(x)〉 <

F (g(x))− F (y).

Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn} and
{wn} defined by Algorithm 2.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
strong solution x̂ of the F -IGVIP.

Proof. The existence result for solving F -IGVIP follows from Theorem A.
Hence the solution set of the F -IGVIP is nonempty. Applying Theorem 2.1, we
know that for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn}
and {wn} defined by Algorithm 2.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
strong solution x̂ of the F -IGVIP.

We note that if g is injection in Theorem 2.1, then the D-convergent preservation
of g−1 ◦ g is fulfilled. Hence we have the following results.

Theorem 2.3. Let H be a finite-dimensional Hilbert space, g : H → H be
continuous injection and g−1 : g(H) → H is D-uniformly continuous, F : H → R

be lower semi-continuous and convex and T : H → C(H) be D-continuous set-
valued mapping such that T is partially relaxed strongly monotone w.r.t. g with
constant α > 0. Suppose that the solution set Ω of the F -IGVIP is nonempty. Then
for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn} and {wn}
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defined by Algorithm 2.1 with 0 < ρ, µ, β < 1
2α converge strongly to an x̂ ∈ Ω

which is a strong solution of the F -IGVIP.

Proof. For any x̄ ∈ Ω with s̄ ∈ T (x̄) such that 〈s̄, x − g(x̄)〉 + F (x) −
F (g(x̄)) ≥ 0 ∀x ∈ H . From (2.8)-(2.10) in Lemma 2.1 it follows that the sequences
{‖g(xn)−g(x̄)‖}, {‖g(wn)−g(x̄)‖} and {‖g(yn)−g(x̄)‖} are non-increasing and
hence {g(yn)}, {g(wn)} and {g(xn)} are bounded. Furthermore, we have

∞∑

n=0

(1− 2ρα)‖g(xn+1) − g(wn)‖2 ≤ ‖g(x0) − g(x̄)‖2,

∞∑

n=0

(1− 2βα)‖g(wn) − g(yn)‖2 ≤ ‖g(w0)− g(x̄)‖2,

∞∑

n=0

(1 − 2µα)‖g(yn) − g(xn)‖2 ≤ ‖g(y0) − g(x̄)‖2.

From these inequalities, we have ‖g(xn+1)−g(wn)‖ → 0, ‖g(wn)−g(yn)‖ → 0
and ‖g(yn) − g(xn)‖ → 0 as n → ∞. Since g is injection, we can deduce that
‖xn+1 − wn‖ → 0, ‖wn − yn‖ → 0 and ‖yn − xn‖ → 0 as n → ∞. Therefore we
have (2.18). From the same technique of Theorem 2.1, we have

〈ŝ, x− g(x̂)〉+ F (x) − F (g(x̂)) ≥ 0 ∀x ∈ H.

Hence x̂ ∈ Ω is a strong solution of the F -IGVIP. This complete the proof.

Theorem 2.4. Let H be a finite-dimensional Hilbert space, g : H → H be
continuous injection and g−1 : g(H) → H is D-uniformly continuous, F : H → R

be lower semi-continuous and convex, T : H → C(H) be upper semi-continuous
and D-continuous set-valued mapping with convex values such that T is partially
relaxed strongly monotone w.r.t. g with constant α > 0. Suppose that

(1) for each x ∈ H , there is an s ∈ T (x) such that 〈s, g(x) − x〉 ≤ F (x) −
F (g(x)),

(2) there is a nonempty compact convex subset C of H , such that for each
x ∈ H \ C, there is a y ∈ C such that for some s ∈ T (x), 〈s, y − g(x)〉 <
F (g(x))− F (y).

Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn} and
{wn} defined by Algorithm 2.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
strong solution x̂ of the F -IGVIP.

Proof. The existence result for solving F -IGVIP follows from Theorem A.
Hence the solution set of the F -IGVIP is nonempty. Applying Theorem 2.3, we
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know that for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn}
and {wn} defined by Algorithm 2.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
strong solution x̂ of the F -IGVIP.

3. ALGORITHM AND CONVERGENT THEOREM FOR F -IMPLICIT GENERALIZED

COMPLEMENTARITY PROBLEM

In this section, we consider the F -implicit generalized complementarity problem
(F -IGCP):Find x̄ ∈ H with an s̄ ∈ T (x̄) such that

(3.1) 〈s̄, g(x̄)〉 + F (g(x̄)) = 0 and 〈s̄, y〉+ F (y) ≥ 0, ∀y ∈ H.

From Theorem 3.1[6], we know that a strong solution of (F -IGVIP) is also a
solution of (F -IGCP) if the function F : H → R is positive homogeneous and
convex. Furthermore, a solution of (F -IGCP) is a strong solution of (F -IGVIP).

We first consider the auxiliary F -implicit generalized complementarity problems
as follows:

For any given x̄ ∈ H , s̄ ∈ T (x̄), to find a w ∈ H such that

(3.1)
1
2
〈g(w)− g(x̄), x− g(w)〉+ ρ〈s̄, x〉+ ρF (x) ≥ 0,

and

(3.2)
1
2
〈g(w)− g(x̄), x− g(w)〉 − ρ〈s̄, g(w)〉 − ρF (g(w)) = 0,

for all x ∈ H , where ρ > 0 is a constant.
We note that if w = x̄, then x̄ is a solution of F -IGCP. This observation enables

us to suggest the following new predictor-corrector method for solving the solution
of F -IGCP.

We consider the algorithm for F -implicit generalized complementarity problem
as follows. From this algorithm, we can direct to approximate a solution of F -IGCP.

Algorithm 3.1. For given x0 ∈ H , s0 ∈ T (x0), compute the approximate
solution xn of F -IGCP with sn ∈ T (xn) by the following iterative schemes.

1
2
〈g(yn) − g(xn), x− g(yn)〉 − µ〈sn, g(yn)〉 − µF (g(yn)) = 0, ∀x ∈ H,

1
2
〈g(yn) − g(xn), x− g(yn)〉+ µ〈sn, x〉+ µF (x) ≥ 0, ∀x ∈ H,

1
2
〈g(wn) − g(yn), x− g(wn)〉 − β〈ξn, g(wn)〉 − βF (g(wn)) = 0, ∀x ∈ H,

1
2
〈g(wn) − g(yn), x− g(wn)〉+ β〈ξn, x〉+ βF (x) ≥ 0, ∀x ∈ H,
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1
2
〈g(xn+1)−g(wn), x−g(xn+1)〉−ρ〈ηn, g(xn+1)〉−ρF (g(xn+1))=0, ∀x∈H,

1
2
〈g(xn+1) − g(wn), x− g(xn+1)〉+ ρ〈ηn, x〉+ ρF (x) ≥ 0, ∀x ∈ H,

sn ∈ T (xn) : ‖sn+1 − sn‖ ≤ D(T (xn+1), T (xn)),

ξn ∈ T (yn) : ‖ξn+1 − ξn‖ ≤ D(T (yn+1), T (yn)),

ηn ∈ T (wn) : ‖ηn+1 − ηn‖ ≤ D(T (wn+1), T (wn)),

where µ, β, ρ > 0 are constants and D is the Hausdorff metric on C(H).

It follows from Theorem 3.1 [6] and Theorem 2.1, we have the convergent result
for F -IGCP as follows.

Theorem 3.1. Let H be a finite-dimensional Hilbert space, g : H → H
be continuous, F : H → R be lower semi-continuous, positive homogeneous and
convex, g−1 : g(H) → C(H) be D-uniformly continuous and bounded set-valued
mapping, g−1◦g : H → C(H) be D-convergent preserving set-valued mapping and
T : H → C(H) be D-continuous set-valued mapping such that T is partially re-
laxed strongly monotone w.r.t. g with constant α > 0. Suppose that the solution set
of the F -IGCP is nonempty. Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative
sequences {xn}, {yn} and {wn} defined by Algorithm 3.1 with 0 < ρ, µ, β < 1

2α
converge strongly to an x̂ which is a solution of the F -IGCP.

Combine Theorem 3.3[6] and Theorem 2.2, we have the following convergent
theorem for F -implicit generalized complementarity problem.

Theorem 3.2. Let H be a finite-dimensional Hilbert space, g : H → H

be continuous, F : H → R be lower semi-continuous, positive homogeneous and
convex, g−1 : g(H) → C(H) be D-uniformly continuous and bounded set-valued
mapping, g−1◦g : H → C(H) be D-convergent preserving set-valued mapping and
T : H → C(H) be upper semi-continuous and D-continuous set-valued mapping
with convex values such that T is partially relaxed strongly monotone w.r.t. g with
constant α > 0. Suppose that

(1) for each x ∈ H , there is an s ∈ T (x) such that 〈s, g(x)〉 + F (g(x)) = 0,
〈s, x〉+ F (x) ≥ 0; and

(2) there is a nonempty compact convex subset C of H , such that for each x ∈
H \C, there is a y ∈ C such that for some s ∈ T (x), 〈s, g(x)〉+F (g(x)) = 0
and 〈s, y〉+ F (y) < 0.
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Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn} and
{wn} defined by Algorithm 3.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
solution x̂ of the F -IGCP.

Furthermore, if g is injection in Theorem 3.1 and Theorem 3.2, then the D-
convergent preservation of g−1 ◦g is fulfilled. Hence we have the following results.

Theorem 3.3. Let H be a finite-dimensional Hilbert space, g : H → H
be continuous injection and g−1 : g(H) → H is D-uniformly continuous, F :
H → R be lower semi-continuous, positive homogeneous and convex and T :
H → C(H) be D-continuous set-valued mapping such that T is partially relaxed
strongly monotone w.r.t. g with constant α > 0. Suppose that the solution set of
the F -IGCP is nonempty. Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative
sequences {xn}, {yn} and {wn} defined by Algorithm 3.1 with 0 < ρ, µ, β < 1

2α
converge strongly to an x̂ which is a solution of the F -IGCP.

Theorem 3.4. Let H be a finite-dimensional Hilbert space, g : H → H be
continuous injection and g−1 : g(H) → H is D-uniformly continuous, F : H → R

be lower semi-continuous, positive homogeneous and convex, T : H → C(H) be
upper semi-continuous and D-continuous set-valued mapping with convex values
such that T is partially relaxed strongly monotone w.r.t. g with constant α > 0.
Suppose that

(1) for each x ∈ H , there is an s ∈ T (x) such that 〈s, g(x)〉+ F (g(x)) = 0,
〈s, x〉+ F (x) ≥ 0; and

(2) there is a nonempty compact convex subset C of H , such that for each x ∈
H \C, there is a y ∈ C such that for some s ∈ T (x), 〈s, g(x)〉+F (g(x)) = 0
and 〈s, y〉+ F (y) < 0.

Then for any given x0 ∈ H , s0 ∈ T (x0), the iterative sequences {xn}, {yn} and
{wn} defined by Algorithm 3.1 with 0 < ρ, µ, β < 1

2α converge strongly to a
solution x̂ of the F -IGCP.
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