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ITERATIVE ALGORITHMS AND CONVERGENCE THEOREMS
FOR SOLVING F-IGVIP AND F-IGCP

Yen-Cherng Lin

Abstract. In this paper, we study the iterative algorithm and convergence the-
orems for F-implicit generalized variational inequalities problem (£-IGVIP).
By employing our earlier works ([6], Theorem 2.2), we establish several iter-
ative convergence results for F-IGVIP. The algorithm and convergence results
are new for solving the strong solution of F-IGVIP. Furthermore, new algo-
rithms and convergence theorems for F-implicit generalized complementarity
problem (F-1GCP) are also discussed.

1. INTRODUCTION AND PRELIMINARIES

In very recent years, iterative algorithms have been established for solving vari-
ational inequalities. Ding el al. [1, 3] present a predictor-corrector iterative algo-
rithms for solving generalized mixed variational-like problems.

Motivated and inspired by the above works, the purpose of this paper is to
establish the predictor-corrector iterative algorithms and discuss the convergence
theorems for solving the strong solution of F-implicit generalized variational in-
equalities problem (F-IGVIP) which is discussed by Zeng et al. [6].

Let H be a real Hilbert space with norm || - || and inner product (-, -). Let C(H)
be the family of all nonempty compact subsets of H. Let T': H—C(H) be a set-
valued mapping, F': H — R, g : H — H be two single-valued mappings. In very
recent year, Zeng et al. [6] consider the following F-implicit generalized variational
inequalities problem (F-IGVIP) is to find an z € H with an s € T'(z) such that

(1.1) (8,2 —g(2)) = F(g(z)) — F(x)

for all z € H, and we say a solution of (1.1) is a strong solution of F-IGVIP (we
refer to [6]).

There are some special cases of (F-IGVIP):
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(1) If T is a single valued mapping, then the (F-IGVIP) is equivalent to the
(F-1VIP) which is to find an & € H such that

(1.2) (T'(z),z —g(x)) = F(9(z)) — F(x)
for all x € H. This problem was introduced and studied in [2]

(2) If H is a Hilbert space, T is a single valued mapping and g is an identity
mapping, then the (F-1GVIP) is equivalent to find an z € H such that

(1.3) (T(z),x — &) > F(z) - F(x)
for all z € H. This problem is known as a variational inequality introduced
by Stampacchia [4].

(3) If H=R"and F = 0, g is an identity mapping, then the (F-IGVIP) is
equivalent to find z € H and s € T'(z) such that

(1.4) (5,2 —2)>0

for all z € H. This problem was introduced and studied by Fang
and Peterson[2], Yao and Guo[5].

For the detail, we refer to [6]. We first give some definitions which will use in
the sequel.

Definition 1.1. Let T': H — C(H) be a set-valued mapping.

(1) Tis a partially relaxed strongly monotone w.r.t. g if there is a constant o > 0
such that

(u1, g(v2) — g(2)) + (ug, g(2) — g(v2)) < allg(v1) — g(2)|1?, Yor,v2, 2
€ H, u; € T(’UZ‘), 1=1,2.

(2) T is D-continuous on H if {z,} ¢ H and z,, — =z, then T'(x,) — T(z)
under the Hausdorff metric D on C(H). T is D-uniformly continuous on H
if for every € > 0 there is a 6 > 0 such that if x,y € H with ||z — y|| < J,
then D(T'(z), T(y)) < e.

(3) T is D-convergent preserving set-valued mapping if {a,}, {b,} C H and
D(T(ay),T(by)) — 0 as n — oo under the Hausdorff metric D on C(X)
implies the sequence ||a,, — b,|| — 0 as n — oc.

We note that if z = v; and g is an identity mapping, then a partially relaxed
strongly monotone w.r.t. ¢ is a monotone mapping.



Iterative Algorithms and Convergence Theorems for Solving F-IGVIP and F-IGCP 719

We need the following theorem which we can directly derive from Theorem 2.2
and Theorem 2.3[6].

Theorem A. Let the mapping F' : H — R be lower semicontinuous and
convex, g : H — H be continuous and T : H — 2 be upper semicontinuous with
nonempty compact convex values. Suppose that

(1) for each x € H, there is an s € T'(x) such that (s,g(z) — z) < F(x) —
F(g(x)),

(2) there is a nonempty compact convex subset C' of H, such that for each
x € H\ C, there is a y € C such that for some s € T'(z), (s,y — g(z)) <

F(g(z)) — F(y).

Then there is a strong solution of F-IGVIP.

2. ITERATIVE ALGORITHM AND CONVERGENCE THEOREMS

In this section, we first consider the auxiliary F-implicit generalized variational
inequalities problems as follows:
For any given z € H, s € T(z), to find a w € H such that

(2.1)  (g(w) = g(),z — g(w)) + p(5,z — g(w)) + pF(x) — pF(g(w)) > 0,

for all x € H, where p > 0 is a constant. We note that if w = Z, then Z is a
strong solution of F-IGVIP. This observation enables us to suggest the following
new predictor-corrector method for solving the strong solution of F-IGVIP.

Algorithm 2.1. For given zy € H, sy € T(zp), compute the approximate
solution z,, of F-IGVIP with s, € T'(x,) by the following iterative schemes.

(9(yn) — 9(zn)sz — g(yn)) + 1(sn, & — g(yn)) + pF(x) — pF(g9(yn))

(2.2)
>0, Vx € H,
(2.3) (9(wn) —g(yn), z—g(wn)) +B{&n, x—g(wy)) +BF (x) — BF (g(wy))
' >0, Vz € H,
(2.4) (9(xng1) = g(wn), 2 — g(Tns1)) + (M0, © — g(Tng1)) + pF(x)

_pF(g(xn+1)) > 07 Vr € H7

(2.5) 50 € T(@n) : 151 — sull < D(T(@ns1), T(n)),
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(2.6) &n € T(yn) : 1€n+1 = &nll < D(T(ynt1), T (yn)),
(2.7) 1 € T(wn) < [Nns1 = nnll < D(T(wni1), T(wn)),
where u, 3, p > 0 are constants, and D is the Hausdorff metric on C'(H).
In order to obtain the convergence theorem, we need the following lemma:

Lemma 2.1. Let z be the strong solution of F-IGVIP, 5 € T'(z) and {x,},
{wy}, {yn} be the sequences of approximate solutions of F-IGVIP generated by
the Algorithm 2.1. Suppose that T is a partially relaxed strongly monotone w.r.t. ¢
with constant « > 0. Then

(2.8) llg(zns1) — 9@ < lg(zn) — g(@)|* = (1 = 2pa)||g(wn41) — g(wn)]?,
(2.9) Ng(wn) — g(@))* < llg(wn-1) — (@) — (1 — 280)|g(wn) — g(yn) %,

(2.10)  [lg(yn) — 9@)1> < 9(yn-1) — 9(@)|I* = (1 = 2ue)|lg(yn) — g(za)|I?,

where 0 < p, B, 11 < 5=

Proof. The conclusion can be derived by using the technique of Lemma 3.1[1].
For the sake of completeness, we give the proof as follows.

For the constants i, 5, p With 0 < p, 8, u < i Let z be the strong solution of
F-IGVIP and 5 € T(z). Then

(2.11) w8,z —g(2)) — pF(9(z)) + pF(z) =20
(2.12) B(5,x — g(z)) — BF(g9(z)) + BF(x) > 0
(2.13) p(s,z —g(2)) — pF(g(2)) + pF(z) = 0
forall z € H.

Taking = g(zp+1) in (2.13) and = = g(z) in (2.4), we have

(2.14) p(5, 9(xnt1) — 9(2)) — pF(9(Z)) + pF(g9(zn+1)) > 0,

(9(wn11) = g(wn), 9(T) — g(Tn11)) + P10y 9(T) — 9(Tnt1))

(2.15)
+pF(9(2)) — pF(g9(xn+41)) = 0.
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Adding (2.14) and (2.15), we have

(9(Tn11) = g(wn), 9(T) — g(Tn11)) + p{1ny 9(T) — g(Tn1))

(2.16)
+p(3, 9(znt1) — 9(2)) > 0.

Since T is a partially relaxed strongly monotone w.r.t. g with constant « > 0,
we get
(2.17)  (g(@nt1) = 9(wn), 9() = g(znt1)) = —pallg(zni1) — glwn)]*.

Since
19(Z) — g(wa)|I* = 1(9(Z — g(nt1) + (9(Tns1 — g(wn))]|®
= [lg(2) = g(@nr) I + llg(znt1) — g(wn) | + 2(g(z)
—g($n+1)7 g(xn—i—l) - g(wn)>,

we have

I

IN

—pallg(zn+1) — g(wn) (9(Tn11) — g(wn), 9(T) — g(@n41))

lo(@ — gl P
~[lg(z) = g(@ns) > = lg(@ns1) — g(wn)|?].

Thus, [l9(2) — g(zn1)lI” < [l9(2) — g(wn)[|> = (1 = 2pa) g (2n+1) — g(wn)|* and
this prove (2.8). Similarly, we have (2.9) and (2.10). ]

Now, we deduce the convergence theorem for the iterative algorithm we con-
structed by Algorithm 2.1. We denote the strong solution set 2 of the F-IGVIP as
follows:

Q={ze€H:3 anseT(z)with (5,2—g(z))+ F(x)—F(g9(z)) >0Vz € H}.

Theorem 2.1. Let H be a finite-dimensional Hilbert space, g : H — H be
continuous, F' : H — R be lower semi-continuous and convex, g ~! : g(H) —
C(H) be D-uniformly continuous and bounded set-valued mapping where g ~! is
bounded means the image of a bounded set under the mapping ¢ ~' is bounded,
g log: H — C(H) be D-convergent preserving set-valued mapping and 7 :
H — C(H) be D-continuous set-valued mapping such that 7" is partially relaxed
strongly monotone w.r.t. g with constant o > 0 Suppose that the solution set 2 of
the F-IGVIP is nonempty. Then for any given xo € H, so € T(xy), the iterative
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sequences {z,}, {y»} and {wy} defined by Algorithm 2.1 with 0 < p, p, B < &=
converge strongly to an & € Q which is a strong solution of the F-IGVIP.

Proof. For any z € Q with an 5 € T(z) such that (s,z — g(z)) + F(z) —
F(g(z)) > 0Vz € H. From (2.8)-(2.10) in Lemma 2.1 it follows that the sequences

{llg(zn) —g(@)I}, {llg(wn) —g(2) } and {|lg(yn) —g(2)]|} are non-increasing and
hence {g(yn)}, {9(w,)} and {g(z,)} are bounded. Furthermore, we have

>~ (1= 200) g (1) = glwn)|* < llgao) = 9@
n=0
> (1 =28a)|lg(wn) = g(ya)|I* < lg(wo) — g()[I%,
n=0
> (1= 2u0)[lg(yn) — g(an) I < llg(yo) — g(@)]|*.
n=0
From these inequalities, we have ||g(z,11)—g(wy,)|| — 0, ||g(wn)—g(yn)|| — 0
and ||g(yn) — g(zn)|| — 0 @s n — oc. Since g~! is D-uniformly continuous, we
have

D(g~H(g(zn+1)), 9~ (9(wn))) — 0,

D(g7 " (g(wn)), g7 (9(yn))) — 0O
and

D(g™(g(yn)), 9 ' (g(xn))) — 0
as n — oo. Since g~! o g is D-convergent preserving set-valued mapping, we can
deduce that ||z,+1 — wy| — 0, ||wn — ynl] — 0 and |y, — x,|| — 0 8s n — .
Therefore we have

(2.18) |lznt1 — znll < lTnt1 —wall + lwn — ynll + [yn — 20l — 0, as n — oo.

Since {g(yn)}, {g(wn)} and {g(z,)} are bounded, from the boundedness of
g~!, we have the sequences {y,}, {w,} and {x,} are bounded. Hence there is a
subsequence {z,} of {z,} such that x,,, — & and hence y,, — . Since T' is
D-continuous on H, by using the same argument of Theorem 2.1 in [1] that there
is a subsequence {sm } of {s,,} such that sn;, — 5 and § € T'(& ).

By (2.2), the contlnuny of g and the lower semi- continuity of F', we have

(8,2 —g(2))+ F(x) — F(g(2)) > 0 Vz € H.

Hence z € Q) is a strong solution of the F-IGVIP.
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By (2.18), we have x, — & as n — oo and this also implies that v, — &
and w, — & as n — oo. Since T is D-continuous on H, by (2.5), we have
|sn+1 — snll < D(T(2n41), T(x,)) — 0 @s n — oo. It follows that s,, — § as
n — oo. This complete the proof. ]

The following result, we combine the results of Theorem A and Theorem 2.1
to develop the both existence result and efficient iterative convergence theorem in
order to approach to the strong solution of F-IGVIP.

Theorem 2.2. Let H be a finite-dimensional Hilbert space, g : H — H be
continuous, F' : H — R be lower semi-continuous and convex, g ! : g(H) —
C(H) be D-uniformly continuous and bounded set-valued mapping, g ~og: H —
C(H) be D-convergent preserving set-valued mapping and 7' : H — C(H) be
upper semi-continuous and D-continuous set-valued mapping with convex values
such that 7" is partially relaxed strongly monotone w.r.t. g with constant o > 0.
Suppose that

(1) for each x € H, there is an s € T'(x) such that (s,g(z) — z) < F(x) —
Fg(x)),

(2) there is a nonempty compact convex subset C' of H, such that for each
x € H\ C, there is a y € C such that for some s € T'(z), (s,y — g(z)) <

F(g(z)) — F(y).

Then for any given z¢ € H, so € T'(zo), the iterative sequences {x,}, {y,} and
{w,} defined by Algorithm 2.1 with 0 < p, pu, B < i converge strongly to a
strong solution & of the F-IGVIP.

Proof. The existence result for solving F-IGVIP follows from Theorem A.
Hence the solution set of the F-IGVIP is nonempty. Applying Theorem 2.1, we
know that for any given xyp € H, so € T(xo), the iterative sequences {z,}, {yn}
and {w,} defined by Algorithm 2.1 with 0 < p, p, 5 < i converge strongly to a
strong solution Z of the F-IGVIP. [ |

We note that if ¢ is injection in Theorem 2.1, then the D-convergent preservation
of g=! o g is fulfilled. Hence we have the following results.

Theorem 2.3. Let H be a finite-dimensional Hilbert space, g : H — H be
continuous injection and g ~! : g(H) — H is D-uniformly continuous, F : H — R
be lower semi-continuous and convex and 7' : H — C(H) be D-continuous set-
valued mapping such that T is partially relaxed strongly monotone w.r.t. ¢ with
constant > 0. Suppose that the solution set €2 of the F-IGVIP is nonempty. Then
for any given zg € H, sp € T(xp), the iterative sequences {z,}, {y,} and {w,}
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defined by Algorithm 2.1 with 0 < p, u, 8 < i converge strongly to an & € Q
which is a strong solution of the F-IGVIP.

Proof. For any z € Q with 5 € T(Z) such that (5,2 — ¢g(Z)) + F(x) —
F(g(z)) > 0Vz € H. From (2.8)-(2.10) in Lemma 2.1 it follows that the sequences

{llg(zn) —g(@)I}, {llg(wn) —g(2)} and {|lg(yn) —g(2)]|} are non-increasing and
hence {g(yn)}, {9(w,)} and {g(z,)} are bounded. Furthermore, we have

o
> (1= 2pa)|lg(zns1) — g(wn)|* < [lg(xo) — g()],
n=0
o
> (1 =280)lg(wn) — glyn)|I* < llg(wo) — g(@)|%,
n=0
o
> (1= 2p0)llg(yn) — g(@n)lI* < llg(vo) — 9(z)|*-
n=0
From these inequalities, we have ||g(zy+1)—g(wy)|| — 0, ||g(wn)—g(yn)|| — 0
and |lg(yn) — g(xy)|| — 0 as n — oo. Since g is injection, we can deduce that
|Znt1 — wp| — 0, ||wy, — yn| — 0 and ||y, — x,|| — 0 as n — oo. Therefore we
have (2.18). From the same technique of Theorem 2.1, we have

(8,2 —g(2)) + F(x) — F(g(2)) = 0 Vo € H.
Hence z € Q is a strong solution of the F-IGVIP. This complete the proof. |

Theorem 2.4. Let H be a finite-dimensional Hilbert space, g : H — H be
continuous injection and g ~! : g(H) — H is D-uniformly continuous, F' : H — R
be lower semi-continuous and convex, 7' : H — C(H ) be upper semi-continuous
and D-continuous set-valued mapping with convex values such that 7" is partially
relaxed strongly monotone w.r.t. g with constant o > 0. Suppose that

(1) for each x € H, there is an s € T'(x) such that (s, g(z) — z) < F(x) —
F(g(x)),

(2) there is a nonempty compact convex subset C' of H, such that for each
x € H\ C, there is a y € C such that for some s € T'(z), (s,y — g(z)) <

F(g(z)) — F(y).

Then for any given z¢ € H, so € T'(zo), the iterative sequences {x,}, {y,} and
{w,} defined by Algorithm 2.1 with 0 < p, p, 8 < 5 converge strongly to a
strong solution & of the F-IGVIP.

Proof. The existence result for solving F-IGVIP follows from Theorem A.
Hence the solution set of the F-IGVIP is nonempty. Applying Theorem 2.3, we
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know that for any given xyp € H, so € T(xo), the iterative sequences {z,}, {yn}
and {w, } defined by Algorithm 2.1 with 0 < p, p, 5 < i converge strongly to a
strong solution Z of the F-IGVIP. [ |

3. ALGORITHM AND CONVERGENT THEOREM FOR F-IMPLICIT GENERALIZED
COMPLEMENTARITY PROBLEM

In this section, we consider the F-implicit generalized complementarity problem
(F-IGCP):Find z € H with an 5 € T'(z) such that

(3.1) (5,9(2)) + F(g9(z)) = 0 and (5,y) + F(y) >0, Vy € H.

From Theorem 3.1[6], we know that a strong solution of (F-IGVIP) is also a
solution of (F-IGCP) if the function F' : H — R is positive homogeneous and
convex. Furthermore, a solution of (F-IGCP) is a strong solution of (F-IGVIP).

We first consider the auxiliary F-implicit generalized complementarity problems
as follows:
For any given z € H, s € T(z), to find a w € H such that

(3.1) 5 (9(w) — g(2), 7 — g(w) + p(s, 2) + pF(x) > 0,
and
(3.2) %<g(w) — 9(@),z — g(w)) — p(5, g(w)) — pF(g(w)) = 0,

for all z € H, where p > 0 is a constant.

We note that if w = z, then z is a solution of F-IGCP. This observation enables
us to suggest the following new predictor-corrector method for solving the solution
of F-IGCP.

We consider the algorithm for F-implicit generalized complementarity problem
as follows. From this algorithm, we can direct to approximate a solution of F-IGCP.

Algorithm 3.1. For given zy € H, sy € T(xp), compute the approximate
solution z,, of F-IGCP with s,, € T'(x,) by the following iterative schemes.

 (0(0) — 9(20). 2~ 9(u)) — s 9(0n)) — nF(gun)) = 0. Vi € H,
5 (6n) — 9(20),2 — 9(9)) + s, ) + 1 (2) > 0, Vo € H,

£ (9() — 9(un), 7 — gwn)) — B{En, o)) — BF(g(wn)) = 0, o € H,
1

5{9(wn) = g(yn), & = g(wn)) + B(&n, 2) + BF () 2 0, Vo € H,
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- (9(nea) ~(00). 2~ g (0i2)) {1 9 (i2)) — P (9(ns)) =0, e H,
5 (9(ne1) = 9(wa), &~ glnsn) + plin, ) + pF(w) > 0, Var € H,

sn € T(@n) : [[sn41 = snll < D(T(@n41), T(2n)),
&n € T(yn) + 1Ent1 = &nll < D(T(yn+1), T(yn)),
M € T(wn) : {1 = 1nl| < D(T(wni1), T(wn)),

where u, 3, p > 0 are constants and D is the Hausdorff metric on C(H).

It follows from Theorem 3.1 [6] and Theorem 2.1, we have the convergent result
for F-1GCP as follows.

Theorem 3.1. Let H be a finite-dimensional Hilbert space, g : H — H
be continuous, F' : H — R be lower semi-continuous, positive homogeneous and
convex, g~! : g(H) — C(H) be D-uniformly continuous and bounded set-valued
mapping, g tog : H — C(H) be D-convergent preserving set-valued mapping and
T : H — C(H) be D-continuous set-valued mapping such that 7" is partially re-
laxed strongly monotone w.r.t. g with constant o > 0. Suppose that the solution set
of the F-IGCP is nonempty. Then for any given xy € H, so € T(x¢), the iterative
sequences {z,}, {y»} and {w,} defined by Algorithm 3.1 with 0 < p, p, B < 5
converge strongly to an & which is a solution of the F-IGCP.

Combine Theorem 3.3[6] and Theorem 2.2, we have the following convergent
theorem for F-implicit generalized complementarity problem.

Theorem 3.2. Let H be a finite-dimensional Hilbert space, g : H — H
be continuous, F' : H — R be lower semi-continuous, positive homogeneous and
convex, g~! : g(H) — C(H) be D-uniformly continuous and bounded set-valued
mapping, g~ tog : H — C(H) be D-convergent preserving set-valued mapping and
T : H— C(H) be upper semi-continuous and D-continuous set-valued mapping
with convex values such that 7" is partially relaxed strongly monotone w.r.t. g with
constant o > 0. Suppose that

(1) for each =z € H, there is an s € T'(x) such that (s, g(z)) + F(g(x)) = 0,
(s,z) + F(x) > 0; and

(2) there is a nonempty compact convex subset C' of H, such that for each x €
H\C, thereisay € C such that for some s € T'(z), (s, g(x))+F(g(x)) =0
and (s, ) + F(y) < 0.



Iterative Algorithms and Convergence Theorems for Solving F-IGVIP and F-IGCP 127

Then for any given z¢ € H, so € T'(zo), the iterative sequences {x,}, {y,} and
{w,} defined by Algorithm 3.1 with 0 < p, pu, 5 < i converge strongly to a
solution  of the F-IGCP.

Furthermore, if g is injection in Theorem 3.1 and Theorem 3.2, then the D-
convergent preservation of g~ o g is fulfilled. Hence we have the following results.

Theorem 3.3. Let H be a finite-dimensional Hilbert space, ¢ : H — H
be continuous injection and ¢! : g(H) — H is D-uniformly continuous, F :
H — R be lower semi-continuous, positive homogeneous and convex and T :
H — C(H) be D-continuous set-valued mapping such that 7" is partially relaxed
strongly monotone w.r.t. ¢ with constant oo > 0. Suppose that the solution set of
the F-IGCP is nonempty. Then for any given z¢ € H, sy € T(x¢), the iterative
sequences {z,}, {y»} and {w,} defined by Algorithm 3.1 with 0 < p, p, 3 < 3=
converge strongly to an & which is a solution of the F-IGCP.

Theorem 3.4. Let H be a finite-dimensional Hilbert space, g : H — H be
continuous injection and g = : g(H) — H is D-uniformly continuous, F : H — R
be lower semi-continuous, positive homogeneous and convex, T': H — C(H) be
upper semi-continuous and D-continuous set-valued mapping with convex values
such that 7" is partially relaxed strongly monotone w.r.t. g with constant o > 0.
Suppose that

(1) for each = € H, there is an s € T'(z) such that (s, g(x)) + F(g(z)) = 0,
(s,z) + F(x) > 0; and

(2) there is a nonempty compact convex subset C' of H, such that for each x €
H\C, there isa y € C such that for some s € T'(x), (s, g(z))+F(g(x)) =0
and (s,y) + F(y) <O0.

Then for any given z¢ € H, so € T'(zo), the iterative sequences {z,}, {y,} and
{w,} defined by Algorithm 3.1 with 0 < p, pu, B < i converge strongly to a
solution  of the F-1IGCP.
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