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MULTILINEAR COMMUTATORS OF SINGULAR INTEGRAL
OPERATORS WITH NON-SMOOTH KERNELS

Jing-shi Xu

pace-0.68cm Abstract. The boundedness of multilinear commutators of
singular integral operators with non-smooth kernels on spaces of homogeneous
type is obtained.

1. INTRODUCTION

It is well-known that the multilinear commutator of singular integral operator and
BMO functions on Euclidean spaces, which was introduced by Perez and Trujillo-
Gonzalez in [10], is a generalization of commutators. Recently, Duong and Yan in
[5] considered commutators of BMO functions and singular integral operators with
non-smooth kernels on spaces of homogeneous type. In this paper, motivated by
[10] and [5], we consider the boundedness of multilinear commutators of singular
integral operators with non-smooth kernels on spaces of homogeneous type. Some
ideas and methods of this paper directly come from those developed in both [10]
and [5].

Let (X , d, µ) be a space of homogeneous type, equipped with a metric d and a
Borel measure µ. Let T be a bounded operator on Lp(X ) for some p ∈ (1,∞). A
measurable function K(x, y) on X ×X is called to be an associated kernel of T, if

(1.1) T (f)(x) =
∫
X

K(x, y)f(y)dµ(y)
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holds for each continuous function f with compact support, and for almost all x

not in the support of f.
It is well-known (for example, see [6]) that T in (1.1) is bounded on Lp(X ) for

p ∈ (1,∞) if the associated kernel K satisfies the following Hörmander conditions,
that is,

(i) there exist 0 < r ≤ 1 and constants C and C1 ≥ 1 such that

(1.2) |K(x, y)− K(x′, y)| ≤ C
1

µ(B(x, d(x, y)))
d(x, x′)r

d(x, y)r

when d(x, y) > C1d(x, x′), and B(x, rB) denotes the ball centered x with radius
rB.

(ii) there exist constants C and C2 > 1 such that

(1.3)
∫

d(x,y)>C2d(x,x′)
|K(y, x)− K(y, x′)|dµ(y) ≤ C

for all x, x′ ∈ X .
If b ∈ BMO(X ), and T is bounded on Lq(X ) for some q ∈ (1,∞), then the

commutator, [b, T ], of b and T is defined by

(1.4) [b, T ](f) = bTf − T (bf)

for f ∈ Lq(X ).
It is well known that the Hörmander conditions (i) and (ii) above are sufficient

to imply that the commutator [b, T ]f is bounded on Lp(X ) for all p, 1 < p < ∞,
with norm

‖[b, T ]f‖p ≤ C‖b‖∗‖f‖p,

where ‖b‖∗ the BMO semi-norm of b. See [2], [7] for X = R
n Euclidean spaces,

and [1] for spaces of homogeneous type.
Recently, Duong and Yan in [5] proved that the commutator [b, T ] in (1.4) is still

bounded on Lp(X ) for all p ∈ (1,∞), if X has an infinite measure and the above
Hörmander conditions (1.2) and (1.3) are replaced, respectively, by the following
weak conditions (1.5) and (1.6), which firstly appeared in [4], that

(iii) There exists a class of operators At with kernels at(x, y), which satisfy the
condition (2.3) in Section 2, so that the kernel kt(x, y) of the operator T −AtT for
t > 0 satisfies the condition

(1.5) |kt(x, y)| ≤ C1
1

µ(B(x, d(x, y)))
tα/β

d(x, y)α
,

if d(x, y) > C2t
1/β for some α, β > 0; and
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(iv) There exists a class of operators {Bt}t>0 satisfy conditions (2.3) such that
(T −TBt) for each t > 0 has an associated kernel Kt(x, y) and there exist positive
constants C3, C4 such that

(1.6)
∫

d(x,y)>C3t1/β
|Kt(x, y)|dµ(x) ≤ C4 for all y ∈ X .

Note that the classes of operators At and Bt play the role of generalized approx-
imations to the identity. It is known that conditions (1.5) and (1.6) are consequences
of conditions (1.2) and (1.3), respectively; see [4, Proposition 2].

Similar to [10], on a space of homogeneous type, we define the multilinear
commutator [�b, T ]of BMO functions and a singular integral operatorT as in (1.1) by

(1.7) [�b, T ]f(x) =
∫
X

m∏
i=1

(bi(x)− bi(y))K(x, y)f(y)dµ(y),

holds for each continuous function f with compact support, and for almost all x not
in the support of f, where �b = {b1, · · · , bm}, bi’s are BMO functions. The main
purpose of this paper is to prove that multilinear commutators as in (1.7) under the
weak conditions (1.5) and (1.6) are still bounded on Lp(X ) for 1 < p < ∞.

To state our result, we need some definitions and preliminary results which will
be given in Section 2. In Section 3 we will give the main result and its proof. A
key of the method is to use the sharp maximal function M#

A f which was previously
introduced in [8].

Our result can be extended to the case that the underlying space being a subset
of a space of homogeneous type of infinite measure, which can be applied to holo-
morphic functional calculi of Schrödinger operators, and divergence form operators
on irregular domains. Then one can obtain an analogue to Section 4 and Section 5
in [5]. We omit the details.

Finally, in the sequel, we use C to denote a positive constant which is indepen-
dent of the main parameters, but it may vary from line to line.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let X be a topological space equipped with a Borel measure µ and a metric d
which is a measurable function on X×X . We define X to be a space of homogeneous
type if the balls B(x; r) = {y ∈ X : d(y, x) < r} satisfy the doubling property

µ(B(x; 2r)) ≤ Cµ(B(x; r)) < ∞
for some C uniformly for all x ∈ X and r > 0. For more about spaces of homoge-
neous type, one can see [3].
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Note that the doubling property implies the following strong homogeneity prop-
erty,

(2.1) µ(B(x; λr)) ≤ Cλnµ(B(x; r))

for some constant C, n > 0 uniformly for all λ ≥ 1. The parameter n is a measure
of the dimension of the space. There also exist constants C and N, 0 ≤ N ≤ n so
that

(2.2) µ(B(y; r)) ≤ C

(
1 +

d(x, y)
r

)N

µ(B(x; r)),

uniformly for all x, y ∈ X and r > 0. Indeed, the property (2.2) with N = n is a
direct consequence of triangle inequality of the metric d and the strong homogeneity
property. In the case of Euclidean spaces R

n and Lie groups of polynomial growth,
N can be chosen to be 0.

The standard Hardy-Littlewood maximal function Msf, 1 ≤ s < ∞, is defined
by

Msf(x) = sup
x∈B

(
1

µ(B)

∫
B

|f(y)|sdµ(y)
)1/s

,

where the supremum is taken over all balls containing x. If s = 1, Msf will be
denoted simply by Mf. The Fefferman-Stein sharp maximal function of f, f#(x),
is defined by

f#(x) = sup
x∈B

1
µ(B)

∫
B

|f(y) − fB |dµ(y),

where fB = 1
µ(B)

∫
B f(y)dµ(y). We will say f ∈ BMO(X ) if f ∈ L1

loc(X ) and
f#(x) ∈ L∞(X ). If f ∈ BMO(X ), the BMO semi-norm of f is given by

‖f‖∗ = sup
x

f#(x) = sup
x

sup
x∈B

1
µ(B)

∫
B
|f(y)− fB|dµ(y).

A family of operators At, t > 0 is said to be generalized approximations to
the identity, if, for every t > 0, At can be represented by kernels at(x, y) in the
following sense: for every function f ∈ Lp(X ), p ≥ 1,

Atf(x) =
∫
X

at(x, y)f(y)dµ(y),

and the following condition holds:

(2.3) |at(x, y)| ≤ ht(x, y) =
(
µ(B(x; t1/β))

)−1
s(d(x, y)βt−1),
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in which β is a positive constant and s is a positive, bounded, decreasing function
satisfying

(2.4) lim
r→∞ rn+N+εs(rβ) = 0

for some ε > 0, where n and N are the same as in (2.1) and (2.2). Note that (2.2)
and (2.3) imply that

|at(x, y)| ≤ C
(
µ(B(y; t1/β))

)−1
(

1 +
d(x, y)
t1/β

)−(n+ε)

.

In [8], the sharp maximal function M#
A f associated with the generalized ap-

proximation to the identity {At}t>0 is defined by

(2.5) M#
A f(x) = sup

x∈B

1
µ(B)

∫
B
|f(y)− AtB f(y)|dµ(y),

where tB = rβ
B, and f ∈ Lp(X ) for some p ≥ 1. This sharp maximal function

M#
A f is a variant of Fefferman-Stein’s sharp maximal function. For the latter, one

can see [12].
In the following, we recall some results, which have been proved in the context

of spaces of homogeneous type in [3], [4] and [8].

Lemma 2.1. (i) For every p ∈ [1,∞], there exists a constant C such that for
every f ∈ Lp(X ),

Atf(x) ≤ CMf(x);

(ii) Assume b ∈ BMO(X ) and M > 1. Then for every ball B(x; r), we have

|bB − bMB| ≤ C‖b‖∗ log M ;

(iii) (John-Nirenberg Lemma) Let 1 ≤ p < ∞ and B ⊂ X , then b ∈ BMO(X )
if and only if

1
µ(B)

∫
B
|b(x)− bB|pdµ(x) ≤ ‖b‖p

∗.

Lemma 2.2. Let λ > 0 and f ∈ Lp(X ) for some 1 < p < ∞. Then for every
0 < η < 1, there exists γ > 0 independent of λ and f such that

µ({x ∈ X : Mf(x) > Dλ, M#
A f(x) ≤ γλ}) ≤ ηµ({x ∈ X : Mf(x) > λ}),
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where D > 1 is a fixed constant which depends only on the space X and the
generalized approximations of the identity {A t}t>0. For the proof of this lemma,
see [8, Proposition 4.1]. As a consequence, we have the following estimate:

(2.6) ‖f‖p ≤ ‖M(f)‖p ≤ C‖M#
A f‖p

for every f ∈ Lp(X ), 1 < p < ∞.

Lemma 2.3. Let {At}t>0 be a generalized approximations of the identity and
let bi ∈ BMO(X ) for i = 1, 2, · · · , m. Then, for every function f ∈ Lp(X ), p >
1, x ∈ X and 1 < r < ∞, we have

(2.7) sup
x∈B

1
µ(B)

∫
B

∣∣∣∣∣AtB

(
m∏

i=1

(bi − biB)f

)
(y)

∣∣∣∣∣dµ(y) ≤ C
m∏

i=1

‖bi‖∗Mqf(x),

where tB = rm
B .

Proof. Let f ∈ Lp(X ), p > 1, and x ∈ X and x ∈ B for some ball B. Then,

1
µ(B)

∫
B

∣∣∣∣∣AtB

(
m∏

i=1

(bi − biB)f

)
(y)

∣∣∣∣∣dµ(y)

≤ 1
µ(B)

∫
B

∫
X

∣∣∣∣∣htB (y, z)
m∏

i=1

(bi(z) − biB)f(z)

∣∣∣∣∣dµ(z)dµ(y)

≤ 1
µ(B)

∫
B

∫
2B

∣∣∣∣∣htB(y, z)
m∏

i=1

(bi(z) − biB)f(z)

∣∣∣∣∣dµ(z)dµ(y)

+
∞∑

k=1

1
µ(B)

∫
B

∫
2k+1B\2kB

∣∣∣∣∣htB(y, z)
m∏

i=1

(bi(z)− biB)f(z)

∣∣∣∣∣dµ(z)dµ(y)

= I + II

To estimate I , by (2.2), we have µ(B) ≤ 2Nµ(B(x, rB)) since x ∈ B. From
this, it follows that for z ∈ 2B, we have

htB(y, z) =
s(d(y, z)βt−1

B )

µ(B(y, t
1/β
B ))

≤ s(0)
µ(B(y, rB))

≤ C

µ(B)
≤ C

µ(2B)
.

Let 1/q + 1/q′ = 1. An iterated application of Lemma 2.1 (iii) yields
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I ≤ C
1

µ(B)µ(2B)

∫
B

∫
2B

∣∣∣∣∣
m∏

i=1

(bi(z)− biB)f(z)

∣∣∣∣∣dµ(z)dµ(y)

≤ C
1

µ(2B)

∫
2B

∣∣∣∣∣
m∏

i=1

(bi(z) − biB)f(z)

∣∣∣∣∣dµ(z)

≤ C

[
1

µ(2B)

∫
2B

m∏
i=1

|bi(z) − biB|q′dµ(z)

]1/q′ [
1

µ(2B)

∫
2B

|f(z)|qdµ(z)
]1/q

≤ C

m∏
i=1

‖bi‖∗Mqf(x).

Now we turn to estimate II. For y ∈ B and z ∈ 2k+1B \ 2kB, we have
d(y, z) ≥ 2k−1rB, and from the doubling volume property, it follows that

htB(y, z) =
s(d(y, z)βt−1

B )

µ(B(y, t
1/β
B ))

≤ s(2(k−1)β)
µ(B(y, rB))

≤ C2(k+1)ns(2(k−1)β)
µ(2k+1B)

.

By (2.4) and Lemma 2.1, we obtain

II ≤ C

∞∑
k=1

2kns(2(k−1)β)
1

µ(B)µ(2k+1B)

∫
B

∫
2k+1B∣∣∣∣∣

m∏
i=1

(bi(z) − biB)

∣∣∣∣∣ |f(z)|dµ(z)dµ(y)

≤ C

∞∑
k=1

2kns(2(k−1)β)
1

µ(2k+1B)

∫
2k+1B

∣∣∣∣∣
m∏

i=1

(bi(z)− biB)

∣∣∣∣∣ |f(z)|dµ(z)

≤ C
∞∑

k=1

2kns(2(k−1)β)

×

 1

µ(2k+1B)

∫
2k+1B

∣∣∣∣∣
m∏

i=1

(bi(z) − bi,2k+1B + bi,2k+1 − biB)

∣∣∣∣∣
q′

dµ(z)




1/q′

×
[

1
µ(2k+1B)

∫
2k+1B

|f(z)|qdµ(z)
]1/q

≤ C
m∏

i=1

‖bi‖∗
∞∑

k=1

(k + 1)m2kns(2(k−1)β)Mqf(x)

≤ C

m∏
i=1

‖bi‖∗Mqf(x),



490 Jing-shi Xu

where bi,2k+1B = 1
µ(2k+1B)

∫
2k+1B bi(z)dz, and we used (ii) and (iii) of Lemma 2.1.

This finishes the proof of Lemma 2.3.

Remark . Lemma 2.3 is a generalization of Lemma 2.3 in [5], which is just
the case m = 1.

3. MAIN RESULT AND ITS PROOF

Assume that X is a space of homogeneous type of infinite measure, equipped
with a metric d and a Borel measure µ. In this section, we assume the following:

(a) T is a bounded linear operator on L2(X );
(b) There exists a generalized approximations of the identity {Bt}t>0 such that

(T − TBt) for t > 0 has an associated kernel Kt(x, y) and there exist positive
constants C1, C2 such that∫

d(x,y)>C1t1/β

|Kt(x, y)|dµ(x) ≤ C2 for all y ∈ X ;

(c) There exists a generalized approximations of the identity {At}t>0 such that
the kernel kt(x, y) of the operator (T − AtT ) for t > 0 satisfies

(3.1) |kt(x, y)| ≤ C4
1

µ(B(x; d(x, y))
tα/βd(x, y)α,

if d(x, y) ≥ C3t
1/β for some C3, C4, α > 0.

It is proved in [4] that if T is an operator satisfying (a) and (b) above, then T
is of weak type (1,1) and of strong type (p, p) for 1 < p ≤ 2. In addition, if (c) is
also satisfied, the operator T is bounded on Lp(X ) for all 1 < p < ∞.

Our main result is the following.

Theorem 3.1. Let 1 < p < ∞, and bi ∈ BMO(X ), i = 1, · · · , m. Then there
exists a positive constant C such that

‖[�b, T ]f‖p ≤ C

m∏
i=1

‖bi‖∗‖f‖p

for any function f ∈ Lp(X ).

The idea of the proof comes from [10] and [5]. We need some basic pointwise
estimates of sharp functions for the multilinear commutators of singular integral.

For convenience, we use the following notation. Given any positive integer
m, for any i ∈ {1, · · · , m}, we denote by Cm

i the family of all finite subsets
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σ = {σ(1), . . . , σ(i)} of i different elements of {1, 2, . . . , m}. For any σ ∈ Cm
i ,

we associate the complementary sequence σ′ given by σ′ = {1, 2, . . . , m}\σ. For
any σ ∈ Cm

i , we define

[�bσ, T ]f(x) =
∫
X

(bσ(1)(x)− bσ(1)(y)) . . . (bσ(i)(x)− bσ(i)(y))K(x, y)f(y)dµ(y)

for each continuous function f with compact support, and for almost all x not in
the support of f. In the case that σ = {1, 2, . . . , m}, we denote [�bσ, T ] simply by
[�b, T ].

To prove Theorem 3.1, we only need to prove the following lemma. In fact,
when m = 1, Theorem 3.1 was proved in [5, Theorem 3.1]. For m > 1, using
(2.6), we can deduce Theorem 3.1 from the following Lemma 3.1 by induction on
m. We omit the details.

Lemma 3.1. Let [�b, T ] be as in (1.7), and q, s > 1. Then there exists a constant
C > 0, depending only on q, s, T, and X , such that

(3.2) ([�b, T ]f)#A(x)≤C


 m∏

j=1

‖bj‖∗Msqf(x)+
m∑

i=1

∑
σ∈Cm

i

∏
j∈σ

‖bj‖∗Mq([�bσ′, T ]f)(x)




for any function f ∈ L∞
c (X ) and for every x ∈ X .

Proof. For m = 1, Lemma 3.1 was proved in [5]. So we only need to
prove the lemma for m > 1. To this end we make use of induction on m. For any
�λ = (λ1, · · · , λm) ∈ R

m, we have

[�b, T ]f(x) =
∫
X

(b1(x) − b1(y)) · · ·(bm(x)− bm(y))K(x, y)f(y)dµ(y)

=
∫
X

m∏
i=1

((bi(x)− λi) − (bi(y)− λi))K(x, y)f(y)dµ(y)

=
m∑

i=0

∑
σ∈Cm

i

(−1)m−i(b(x)− �λ)σ

∫
X

(b(y)− �λ)σ′K(x, y)f(y)dµ(y)

=
m∏

i=1

(bi(x) − λi)Tf(x) + (−1)mT

(
m∏

i=1

(bi − λi)f

)
(x)

+
m−1∑
i=1

∑
σ∈Cm

i

(−1)m−i(b(x)− �λ)σ

∫
X

(b(y)− �λ)σ′K(x, y)f(y)dµ(y).

By expanding (b(y)−�λ)σ′ = [(b(y)− b(x)) + (b(x)− �λ]σ′ , we obtain
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[�b, T ]f(x) =
∫
X

(b1(x)− b1(y)) · · ·(bm(x) − bm(y))K(x, y)f(y)dµ(y)

=
∫
X

m∏
i=1

((bi(x) − λi) − (bi(y) − λi))K(x, y)f(y)dµ(y)

=
m∑

i=0

∑
σ∈Cm

i

(−1)m−i(b(x)− �λ)σ

∫
X

(b(y)− �λ)σ′K(x, y)f(y)dµ(y)

=
m∏

i=1

(bi(x)− λi)Tf(x) + (−1)mT

(
m∏

i=1

(bi − λi)f

)
(x)

+
m−1∑
i=1

∑
σ∈Cm

i

Cm,i(b(x)− �λ)σ[�bσ′ , T ]f(x),

where Cm,i are constants depending only on m and i.
For fixed x ∈ X , B denotes a ball containing x center at x0 with radius rB,

and 2B denotes the ball concentric with B and radius two times the radius of B.

Split f = f1 + f2, where f1 = fχ2B. Then we can write that

[�b, T ]f(y) =
m∏

i=1

(bi(y)− λi)Tf(y) + (−1)mT

(
m∏

i=1

(bi − λi)f1

)
(y)

+(−1)mT

(
m∏

i=1

(bi − λi)f2

)
(y)

+
m−1∑
i=1

∑
σ∈Cm

i

Cm,i(b(y)− �λ)σ[�bσ′ , T ]f(y).

From this, it follows that

AtB([�b, T ]f)(y) = AtB

(
m∏

i=1

(bi − λi)Tf

)
(y) + (−1)mAtB

(T (
∏m

i=1(bi − λi)f1)) (y)

+(−1)mAtB

(
T

(
m∏

i=1

(bi − λi)f2

))
(y)

+
m−1∑
i=1

∑
σ∈Cm

i

Cm,iAtB((b − �λ)σ[�bσ′ , T ]f)(y)

Let y ∈ B. Now we estimate |[�b, T ]f(y)− AtB ([�b, T ]f)(y)| by

|[�b, T ]f(y)− AtB([�b, T ]f)(y)|

≤
∣∣∣∣∣

m∏
i=1

(bi(y) − λi)Tf(y)

∣∣∣∣∣+
∣∣∣∣∣T
(

m∏
i=1

(bi − λi)f1

)
(y)

∣∣∣∣∣
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+

∣∣∣∣∣AtB

(
m∏

i=1

(bi − λi)Tf

)
(y)

∣∣∣∣∣+
∣∣∣∣∣AtB

(
T

(
m∏

i=1

(bi − λi)f1

))
(y)

∣∣∣∣∣
+

∣∣∣∣∣T
(

m∏
i=1

(bi − λi)f2

)
(y) − AtB

(
T

(
m∏

i=1

(bi − λi)f2

))
(y)

∣∣∣∣∣
+C

m−1∑
i=1

∑
σ∈Cm

i

|(b(y)− �λ)σ[�bσ′ , T ]f(y)|

+C

m−1∑
i=1

∑
σ∈Cm

i

|AtB((b − �λ)σ[�bσ′ , T ]f)(y)|

= F1(y) + F2(y) + F3(y) + F4(y) + F5(y) + F6(y) + F7(y).

Therefore,

(3.3)

1
µ(B)

∫
B

|[�b, T ]f(y)− AtB([�b, T ]f)(y)|dµ(y)

≤
7∑

j=1

1
µ(B)

∫
B

Fj(y)dµ(y) =
7∑

j=1

Ij(x).

Let q′ be the dual exponent of q such that 1/q + 1/q ′ = 1. We first estimate I1.
The Hölder inequality and Lemma 2.1 tell us that

I1(x) =
1

µ(B)

∫
B

m∏
i=1

|bi(y)− λi||T (f)(y)| dµ(y)

≤
[

1
µ(B)

∫
B

m∏
i=1

|bi(y) − λi|q′dµ(y)

]1/q′ [
1

µ(B)

∫
B

|T (f)(y)|q dµ(y)
]1/q

≤ C

m∏
i=1

‖bi‖∗Mq(Tf)(x),

where λi = (bi)2B, i = 1, · · · , m. For the term I2, Since T is bounded on Lp(X )
for 1 < p < ∞, by the Hölder inequality and Lemma 2.1 again, we have

I2(x) ≤
[

1
µ(B)

∫
B

∣∣∣∣∣T
(

m∏
i=1

(bi(y) − λi)f1

)
(y)

∣∣∣∣∣
s

dµ(y)

]1/s

≤ C

[
1

µ(B)

∫
2B

∣∣∣∣∣
m∏

i=1

(bi(y)− λi)f(y)

∣∣∣∣∣
s

dµ(y)

]1/s

≤ C

[
1

µ(B)

∫
B

m∏
i=1

|bi(y)− λi|sq′dµ(y)

]1/sq′ [
1

µ(B)

∫
2B

|f(y)|sq dµ(y)
]1/sq

≤ C

m∏
i=1

‖bi‖∗Msq(f)(x).
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Similarly, by Lemma 2.1, Lemma 2.3 and the Lp(X ) boundedness of T , we obtain

I3(x) + I4(x) ≤ C
m∏

i=1

‖bi‖∗ [Mq(Tf)(x) + Msq(f)(x)] .

Now we turn to estimate the term I5(x). By the assumption (c), we have

I5(x) ≤ 1
µ(B)

∫
B

∫
X\2B

∣∣∣∣∣ktB(y, z)
m∏

i=1

(bi(z)− λi)f(z)

∣∣∣∣∣dµ(z)dµ(y)

≤ C

∞∑
k=1

∫
2krB≤d(x0,z)<2k+1rB

1
µ(B(x0, d(x0, z)))

rα
B

d(x0, z)α∣∣∣∣∣
m∏

i=1

(bi(z)− λi)f(z)

∣∣∣∣∣dµ(z)

≤ C

∞∑
k=1

2−kα 1
µ(B(x0, 2krB))

∫
d(x0,z)<2k+1rB

∣∣∣∣∣
m∏

i=1

(bi(z) − λi)f(z)

∣∣∣∣∣dµ(z)

≤ C

∞∑
k=1

2−kα 1
µ(B(x0, 2krB))

×
∫

d(x0,z)<2k+1rB

∣∣∣∣∣
m∏

i=1

(bi(z)− bi,2k+1B + bi,2k+1B − bi,B)f(z)

∣∣∣∣∣dµ(z)

≤ C

∞∑
k=1

2−kα 1
µ(B(x0, 2krB))∫

d(x0,z)<2k+1rB

m∑
i=1

∑
σ∈Cm

i

|(bi(z)− bi,2k+1B)σ(bi,2k+1B − bi,B)σ′f(z)|dµ(z)

≤ C

m∑
i=1

∑
σ∈Cm

i

∞∑
k=1

2−kα 1
µ(B(x0, 2krB))

|(bj,2k+1B − bj,B)σ′ |

×
∫

d(x0,z)<2k+1rB

|(bj(z) − bj,2k+1B)σf(z)|dµ(z)

≤ C

m∑
i=1

∑
σ∈Cm

i

∞∑
k=1

2−kα(k + 1)m−i
∏
j∈σ′

‖bj‖∗

× 1
µ(B(x0, 2krB))

∫
d(x0,z)<2k+1rB

|(bj(z)− bj,2k+1B)σf(z)|dµ(z)

≤ C

m∑
i=1

∑
σ∈Cm

i

∞∑
k=1

2−kα(k + 1)m−i
m∏

j=1

‖bj‖∗Mqf(x)

≤ C

m∏
j=1

‖bj‖∗Mqf(x),
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where bi,2k+1B = 1
µ(2k+1B)

∫
2k+1B bi(z)dz. Finally, by an argument similar to above,

we can obtain

I6(x) + I7(x) ≤ C

m−1∑
i=1

∑
σ∈Cm

i

∏
j∈σ

‖bj‖∗Mq([�bσ′ , T ]f(x).

Combining the estimates for I1(x) to I7(x) with (3.3) and then taking supremum
over all balls containing x in (3.3) gives us (3.2), which completes the proof of
Lemma 3.1.
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