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MULTIPLE POSITIVE SOLUTIONS OF CONJUGATE BOUNDARY
VALUE PROBLEMS ON TIME SCALES

Chuan Jen Chyan and Patricia J. Y. Wong

Abstract. We consider the following differential equation on a time scale T

y∆∆(t) + P (t, y(σ(t))) = 0, t ∈ [a, b]∩ T

subject to conjugate boundary conditions

y(a) = 0, y(σ2(b)) = 0

where a, b ∈ T and a < σ(b). By using different fixed point theorems, criteria
are established for the existence of three positive solutions of the boundary
value problem. Examples are also included to illustrate the results obtained.

1. INTRODUCTION

In this paper we shall consider the conjugate boundary value problem on a time
scale T

(1.1)
y∆∆(t) + P (t, y(σ(t))) = 0, t ∈ [a, b]

y(a) = 0, y(σ2(b)) = 0

where a, b ∈ T with a < σ(b), and P : [a, σ(b)]× R → R is continuous.
To understand the notations used in (1.1), we recall some standard definitions

as follows. The reader may refer to [1.1] for an introduction to the subject.

(a) Let T be a time scale, i.e., T is a closed subset of R. We assume that T has
the topology that it inherits from the standard topology on R. Throughout, for
any a, b (> a), the interval [a, b] is defined as [a, b] = {t ∈ T | a ≤ t ≤ b}.
Analogous notations for open and half-open intervals will also be used in the
paper.
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(b) For t < sup T and s > inf T , the forward jump operator σ and the backward
jump operator ρ are respectively defined by

σ(t) = inf{τ ∈ T | τ > t} ∈ T and ρ(s) = sup{τ ∈ T | τ < s} ∈ T .

(c) Fix t ∈ T . Let y : T → R. We define y∆(t) to be the number (if it exists)
with the property that given ε > 0, there is a neighborhood U of t such that
for all s ∈ U,

|[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]| < ε|σ(t) − s|.

We call y∆(t) the delta derivative of y(t). Define y∆∆(t) to be the delta
derivative of y∆(t), i.e., y∆∆(t) = (y∆(t))∆.

(d) If F∆(t) = f(t), then we define the integral
∫ t

a

f(τ)∆τ = F (t) − F (a).

A solution y of (1.1) will be sought in C[a, σ2(b)], the space of continuous
functions {y : [a, σ2(b)] →}. We say that y is a positive solution if y(t) ≥ 0 for
t ∈ [a, σ2(b)].

Boundary value problems have attracted a lot of attention in the recent literature,
due mainly to the fact that they model many physical phenomena which include gas
diffusion through porous media, nonlinear diffusion generated by nonlinear sources,
thermal self-ignition of a chemically active mixture of gases in a vessel, catalysis
theory, chemically reacting systems, adiabatic tubular reactor processes, as well
as concentration in chemical or biological problems, just to name a few. In all
these physical problems, only positive solutions are meaningful. Many papers have
discussed the existence of single, double and triple positive solutions of boundary
value problems on the real and discrete domains, we refer to [6,8,12,13,15,17-19]
and the monographs [2,3] which give a good documentary of the literature. A recent
trend is to consider boundary value problems on time scales, which include the real
and the discrete as special cases, see [1,4,9-11,14].

In the present work, both fixed point theorems of Leggett and Williams [16] as
well as of Avery [5] are used to derive criteria for the existence of triple positive
solutions of (1.1). In addition, estimates on the norms of these solutions are also
provided. Not only that new results are obtained, we also discuss the relationship
between the results in terms of generality, and illustrate the importance of the results
through some examples. Moreover, it is noted that the boundary value problem (1.1)
considered has a nonlinear term P which is more general than those discussed in
the literature.
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The paper is outlined as follows. In Section 2 we state the necessary definitions
and fixed point theorems. Our main results and discussion are presented in Section
3. Finally, some examples are included in Section 4 to illustrate the importance of
the results obtained.

3. PRELIMINARIES

In this section we shall state some necessary definitions and the relevant fixed
point theorems. Let B be a Banach space with norm ‖ · ‖.

Definition 2.1. Let C (⊂ B) be a nonempty closed convex set. We say that
C is a cone provided the following conditions are satisfied:

(a) If u ∈ C and α ≥ 0, then αu ∈ C;

(b) If u ∈ C and −u ∈ C, then u = 0.

Definition 2.2. Let C (⊂ B) be a cone. A map ψ is a nonnegative continuous
concave functional on C if the following conditions are satisfied:

(a) ψ : C → R
+ ∪ {0} is continuous;

(b) ψ(ty + (1− t)z) ≥ tψ(y) + (1− t)ψ(z) for all y, z ∈ C and 0 ≤ t ≤ 1.

Definition 2.3. Let C (⊂ B) be a cone. A map β is a nonnegative continuous
convex functional on C if the following conditions are satisfied:

(a) β : C → R
+ ∪ {0} is continuous;

(b) β(ty + (1− t)z) ≤ tβ(y) + (1− t)β(z) for all y, z ∈ C and 0 ≤ t ≤ 1.

Let γ, β,Θ be nonnegative continuous convex functionals on C and α, ψ be
nonnegative continuous concave functionals on C. For nonnegative numberswi, 1 ≤
i ≤ 3, we shall introduce the following notations:

C(w1) = {u ∈ C | ‖u‖ < w1},
C(ψ, w1, w2) = {u ∈ C | ψ(u) ≥ w1 and ‖u‖ ≤ w2},
P (γ, w1) = {u ∈ C | γ(u) < w1},
P (γ, α, w1, w2) = {u ∈ C | α(u) ≥ w1 and γ(u) ≤ w2},
Q(γ, β, w1, w2) = {u ∈ C | β(u) ≤ w1 and γ(u) ≤ w2},
P (γ,Θ, α, w1, w2, w3) = {u ∈ C | α(u) ≥ w1, Θ(u) ≤ w2 and γ(u) ≤ w3},
Q(γ, β, ψ,w1, w2, w3) = {u ∈ C | ψ(u) ≥ w1, β(u) ≤ w2 and γ(u) ≤ w3}.
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The following fixed point theorems are needed later. The first is usually called
Leggett-Williams’ fixed point theorem, and the second is known as the five-functional
fixed point theorem.

Theorem 2.1. [16]. Let C (⊂ B) be a cone, and w4 > 0 be given. Assume
that ψ is a nonnegative continuous concave functional on C such that ψ(u) ≤ ‖u‖
for all u ∈ C(w4), and let S : C(w4) → C(w4) be a continuous and completely
continuous operator. Suppose that there exist numbers w 1, w2, w3 where 0 < w1 <

w2 < w3 ≤ w4 such that

(a) {u ∈ C(ψ, w2, w3) | ψ(u) > w2} 	= ∅, and ψ(Su) > w2 for all u ∈
C(ψ, w2, w3);

(b) ‖Su‖ < w1 for all u ∈ C(w1);

(c) ψ(Su)> w2 for all u ∈ C(ψ, w2, w4) with ‖Su‖ > w3.

Then, S has (at least) three fixed points u1, u2 and u3 in C(w4). Furthermore, we
have

(2.1)
u1 ∈ C(w1), u2 ∈

{
u ∈ C(ψ, w2, w4)

∣∣∣∣∣ ψ(u) > w2

}

and u3 ∈ C(w4)\(C(ψ, w2, w4) ∪ C(w1)).

Theorem 2.2. [5]. Let C (⊂ B) be a cone. Assume that there exist posi-
tive numbers w5,M, nonnegative continuous convex functionals γ, β,Θ on C, and
nonnegative continuous concave functionals α, ψ on C, with

α(u) ≤ β(u) and ‖u‖ ≤Mγ(u)

for all u ∈ P (γ, w5). Let S : P (γ, w5) → P (γ, w5) be a continuous and completely
continuous operator. Suppose that there exist nonnegative numbers w i, 1 ≤ i ≤ 4
with 0 < w2 < w3 such that

(a) {u ∈ P (γ,Θ, α, w3, w4, w5) | α(u) > w3} 	= ∅, and α(Su) > w3 for all
u ∈ P (γ,Θ, α, w3, w4, w5);

(b) {u ∈ Q(γ, β, ψ, w1, w2, w5) | β(u) < w2} 	= ∅, and β(Su) < w2 for all
u ∈ Q(γ, β, ψ,w1, w2, w5);

(c) α(Su) > w3 for all u ∈ P (γ, α, w3, w5) with Θ(Su) > w4;

(d) β(Su) < w2 for all u ∈ Q(γ, β, w2, w5) with ψ(Su) < w1.
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Then, S has (at least) three fixed points u1, u2 and u3 in P (γ, w5). Furthermore,
we have

(2.2) β(u1) < w2, α(u2) > w3, and β(u3) > w2 with α(u3) < w3.

3. MAIN RESULTS

Let the Banach space

(3.1) B =
{
y

∣∣∣∣ y ∈ C[a, σ2(b)]
}

be equipped with norm

(3.2) ‖y‖ = sup
t∈[a,σ2(b)]

|y(t)|.

To apply the fixed point theorems in Section 2, we need to define an operator
S : B → B so that a solution y of the boundary value problem (1.1) is a fixed point
of S, i.e., y = Sy. For this, let G(t, s) be the Green’s function of the boundary
value problem

(3.3)
−y∆∆(t) = 0, t ∈ [a, b]

y(a) = 0, y(σ2(b)) = 0.

If y is a solution of (1.1), then it can be represented as

y(t) =
∫ σ(b)

a
G(t, s)P (s, y(σ(s)))∆s, t ∈ [a, σ2(b)].

Hence, we shall define the operator S : B → B by

(3.4) Sy(t) =
∫ σ(b)

a
G(t, s)P (s, y(σ(s)))∆s, t ∈ [a, σ2(b)].

It is clear that a fixed point of the operator S is a solution of (1.1).
Our first lemma gives the properties of the Green’s function G(t, s) which will

be used later.

Lemma 3.1. We have the following:

(a) 0 ≤ G(t, s) ≤ G(σ(s), s), (t, s) ∈ [a, σ2(b)]× [a, σ(b)];
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(b) for fixed δ such that 0 < δ < 1
2 and [a+δ(σ2(b)−a), σ2(b)−δ(σ2(b)−a)] 	=

∅, we have

G(t, s) ≥ kG(σ(s), s), (t, s) ∈ [a+δ(σ2(b)−a), σ2(b)−δ(σ2(b)−a)]×[a, σ(b)]

where the constant 0 < k < 1 is given by

k = min
{
δ, δ

σ2(b)− a

σ2(b)− σ(a)

}
.

Proof. It is known that [7]

(3.5) G(t, s) =




(t− a)(σ2(b)− σ(s))
σ2(b)− a

, t ≤ s

(σ(s)− a)(σ2(b)− t)
σ2(b)− a

, σ(s) ≤ t.

Hence, (a) is obvious. To prove (b), first we consider the case t ≤ s. Then, from
(3.5) we find for (t, s) ∈ [a+ δ(σ2(b)− a), σ2(b)− δ(σ2(b)− a)] × [a, σ(b)],

(3.6)
G(t, s)

G(σ(s), s)
=

t− a

σ(s)− a
≥ a+ δ(σ2(b)− a) − a

σ2(b)− a
= δ.

Next, when σ(s) ≤ t, it is clear that for (t, s) ∈ [a+δ(σ2(b)−a), σ2(b)−δ(σ2(b)−
a)] × [a, σ(b)],

(3.7)

G(t, s)
G(σ(s), s)

=
σ2(b)− t

σ2(b)− σ(s)
≥ σ2(b)− [σ2(b)− δ(σ2(b)− a)]

σ2(b)− σ(a)

= δ
σ2(b)− a

σ2(b)− σ(a)
.

Combining (3.6) and (3.7) gives (b) immediately.

Lemma 3.2. The operator S defined in (3.4) is continuous and completely
continuous.

Proof. From (3.5), we have G(t, s) ∈ C[a, σ2(b)], t ∈ [a, σ2(b)] and the
map t → G(t, s) is continuous from [a, σ2(b)] to C[a, σ2(b)]. This together with
P : [a, σ(b)]× → R is continuous ensures (as in [1]) that S is continuous and
completely continuous.

For clarity, we shall list the conditions that are needed later. Note that in these
conditions we use the notation yσ = y ◦ σ, and the sets K̃ and K are given by

K̃ =
{
y ∈ B

∣∣∣∣ y(t) ≥ 0 for t ∈ [a, σ2(b)]
}
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and
K =

{
y ∈ K̃

∣∣∣∣ y(t) > 0 for some t ∈ [a, σ2(b)]
}

= K̃\{0}.

(C1) Assume that

P (t, yσ) ≥ 0, y ∈ K̃, t ∈ [a, σ(b)] and P (t, yσ) > 0, y ∈ K, t ∈ [a, σ(b)].

(C2) There exist continuous functions f, µ, ν with f : R
+ ∪ {0} → R

+ ∪ {0} and
µ, ν : [a, σ(b)]→ R

+ ∪ {0} such that

µ(t)f(yσ) ≤ P (t, yσ) ≤ ν(t)f(yσ), y ∈ K̃, t ∈ [a, σ(b)].

(C3) There exists a number 0 < c ≤ 1 such that

µ(t) ≥ cν(t), t ∈ [a, σ(b)].

Now, let δ be fixed, where 0 < δ < 1
2 and [a+ δ(σ2(b)−a), σ2(b)− δ(σ2(b)−

a)] 	= ∅. Let [a, σ2(b)] be such that

(3.8)
ξ ≡ min{t ∈ T | t ≥ a+ δ[σ2(b)− a]} and

w ≡ max{t ∈ T | t ≤ σ2(b)− δ[σ2(b)− a]}
exist and satisfy

(3.9) a < a + δ[σ2(b)− a] ≤ ξ < ρ(w) ≤ w ≤ σ2(b)− δ[σ2(b)− a] < σ2(b).

Next, we define a cone in B as

(3.10)
C =

{
y ∈ B

∣∣∣∣ y∆∆(t) ≤ 0 for t ∈ [a, b], y(a) = 0 = y(σ2(b)), and

y(t) ≥ 0 for t ∈ [a, σ2(b)]
}
.

Remark 3.1.
(a) Note that C ⊆ K̃. Moreover, a fixed point of S obtained in C will be a

positive solution of the boundary value problem (1.1).
(b) Let y ∈ C. Then, since y∆∆(t) ≤ 0 for t ∈ [a, b], y∆(t) is nonincreasing

for t ∈ [a, σ(b)], and so y∆(a) ≥ y∆(σ(b)). Noting that y is nonnegative
on [a, σ2(b)] and also y(a) = 0 = y(σ2(b)), it follows that y∆(a) ≥ 0 ≥
y∆(σ(b)), and the maximum of y over the interval [a, σ2(b)] occurs at some
t ∈ (a, σ2(b)). Indeed, if we define
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(3.11)
η1 = sup{t ∈ [a, σ2(b)] | y∆(t) ≥ 0} and

η2 = inf{t ∈ [a, σ2(b)] | y∆(t) < 0},
then


y(t) is nondecreasing for t ∈ [a, η1], and is nonincreasing for t ∈ [η2, σ
2(b)],

η1 ≤ η2,

if η1 	= η2, then σ(η1) = η2,

‖y‖ = max{y(η1), y(η2)}.
Taking into account all these and (3.8), (3.9), we see that

(3.12)
mint∈[ξ,w] y(t) =




y(ξ), ξ < w ≤ η1 ≤ η2

min{y(ξ), y(w)}, ξ ≤ η1 ≤ η2 ≤ w

y(w), η1 ≤ η2 ≤ ξ < w

= min{y(ξ), y(w)}.

Lemma 3.3. Let (C1) hold. Then, the operator S maps C into itself.

Proof. Let y ∈ C. From (3.4), Lemma 3.1(a) and (C1) we have

(3.13) Sy(t) =
∫ σ(b)

a
G(t, s)P (s, y(σ(s)))∆s≥ 0, t ∈ [a, σ2(b)].

Next, it is clear from the property of Green’s function that

(3.14) Sy(a) = 0 = Sy(σ2(b)).

Finally, from (3.4) and (C1) it follows that

(3.15) (Sy)∆∆(t) = −P (t, y(σ(t))) ≤ 0, t ∈ [a, b].

Hence, (3.13)-(3.15) give Sy ∈ C.

Remark 3.2. If (C1) and (C2) hold, then from (3.4) and Lemma 3.1(a) it
follows for y ∈ K̃ and t ∈ [a, σ2(b)] that

(3.16)
∫ σ(b)

a
G(t, s)µ(s)f(y(σ(s)))∆s≤Sy(t)≤

∫ σ(b)

a
G(t, s)ν(s)f(y(σ(s)))∆s.
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Moreover, using (3.13), (3.16) and Lemma 3.1(a), we obtain for t ∈ [a, σ2(b)],

|Sy(t)| = Sy(t) ≤
∫ σ(b)

a
G(t, s)ν(s)f(y(σ(s)))∆s

≤
∫ σ(b)

a
G(σ(s), s)ν(s)f(y(σ(s)))∆s.

Therefore, we have

(3.17) ‖Sy‖ ≤
∫ σ(b)

a
G(σ(s), s)ν(s)f(y(σ(s)))∆s.

For subsequent results, we define the following constants for fixed numbers
τ1, τ2, τ3, τ4 ∈ [a, σ2(b)] where τ3 > τ2 and τ4 > τ1 :

(3.18)

q = sup
t∈[a,σ2(b)]

∫ σ(b)

a
G(t, s)ν(s)∆s,

r = min{
∫ ρ(w)

ξ

(ξ − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

∆s,

∫ ρ(w)

ξ

(σ(s)− a)(σ2(b)−w)µ(s)
σ2(b)− a

∆s},

d1 = min{
∫ ρ(τ3)

τ2

(τ2 − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

∆s,

∫ ρ(τ3)

τ2

(σ(s)− a)(σ2(b)− τ3)µ(s)
σ2(b)− a

∆s},

d2 = max
t∈[τ1,τ4]

∫ ρ(τ4)

τ1

G(t, s)ν(s)∆s,

d3 = max
t∈[τ1,τ4]

[∫ τ1

a

G(t, s)ν(s)∆s+
∫ σ(b)

ρ(τ4)

G(t, s)ν(s)∆s].

Lemma 3.4. Let (C1) and (C2) hold, and assume

(C4) for each t ∈ [a, σ2(b)], the function G(t, s)ν(s) is nonzero for some s ∈
[a, σ(b)).

Suppose that there exists a number d > 0 such that for 0 ≤ x ≤ d,

(3.19) f(x) <
d

q
.
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Then,

(3.20) S(C(d)) ⊆ C(d) ⊂ C(d).

Proof. Let y ∈ C(d). Then, it follows that 0 ≤ y(s) ≤ d for s ∈ [a, σ2(b)].
This implies

(3.21) 0 ≤ y(σ(s)) ≤ d, s ∈ [a, σ(b)].

Noting (3.21), we apply (3.16), (C4), (3.19), (3.18) and obtain for t ∈ [a, σ2(b)],

Sy(t) ≤
∫ σ(b)

a
G(t, s)ν(s)f(y(σ(s)))∆s

<

∫ σ(b)

a

G(t, s)ν(s)
d

q
∆s

≤ q
d

q
= d.

Hence, ‖Sy‖ < d. Coupling with the fact that Sy ∈ C (Lemma 3.3), we get
Sy ∈ C(d). The conclusion (3.20) is now immediate.

The next lemma is similar to Lemma 3.4 and its proof is omitted.

Lemma 3.5. Let (C1) and (C2) hold. Suppose that there exists a number d > 0
such that for 0 ≤ x ≤ d,

f(x) ≤ d

q
.

Then,
S(C(d)) ⊆ C(d).

We are now ready to establish existence criteria for three positive solutions. Our
first result employs Theorem 2.1.

Theorem 3.1. Let (C1)-(C4) hold, and assume

(C5) the functions [σ2(b) − σ(s)]µ(s) and [σ(x) − a]µ(x) are nonzero for some
s, x ∈ [ξ, ρ(w)).

Suppose that there exist numbers w 1, w2, w3 with

0 < w1 < w2 <
w2

kc
≤ w3

such that the following hold:



Conjugate BVP on Time Scales 431

(P) f(x) < w1
q for 0 ≤ x ≤ w1;

(Q) one of the following holds:

(Q1) lim supx→∞
f(x)

x < 1
q ;

(Q2) there exists a number d (≥ w3) such that f(x) ≤ d
q for 0 ≤ x ≤ d;

(R) f(x) > w2
r for w2 ≤ x ≤ w3.

Then, the boundary value problem (1.1) has (at least) three positive solutions
y1, y2, y3 ∈ C such that

(3.22)
‖y1‖ < w1; y2(t) > w2, t ∈ [ξ, w];

‖y3‖ > w1 and min
t∈[ξ,w]

y3(t) = min
{
y3(ξ), y3(w)

}
< w2.

Proof. We shall employ Theorem 2.1. First, we shall prove that condition (Q)
implies the existence of a number w4 where w4 ≥ w3 such that

(3.23) S(C(w4)) ⊆ C(w4).

Suppose that (Q2) holds. Then, by Lemma 3.5 we immediately have (3.23) where
we pick w4 = d. Suppose now that (Q1) is satisfied. Then, there exist N > 0 and
ε < 1

q such that

(3.24)
f(x)
x

< ε, x > N.

Define M0 = max0≤x≤N f(x). In view of (3.24), it is clear that the following holds
for all x ∈ R,

(3.25) f(x) ≤M0 + ε x.

Now, pick the number w4 so that

(3.26) w4 > max
{
w3, M0(

1
q
− ε)−1

}
.

Let y ∈ C(w4). Then, 0 ≤ y(s) ≤ w4 for s ∈ [a, σ2(b)]. This implies

(3.27) 0 ≤ y(σ(s)) ≤ w4, s ∈ [a, σ(b)].

Then, using (3.16), (3.25), (3.27) and (3.26) we find for t ∈ [a, σ2(b)],
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Sy(t) ≤
∫ σ(b)

a

G(t, s)ν(s)f(y(σ(s)))∆s

≤
∫ σ(b)

a
G(t, s)ν(s)[M0 + ε y(σ(s))]∆s

≤
∫ σ(b)

a
G(t, s)ν(s)[M0 + ε w4]∆s

≤ q(M0 + ε w4)

< q[w4(
1
q
− ε) + ε w4] = w4.

This leads to ‖Sy‖ < w4 and so Sy ∈ C(w4) ⊂ C(w4). Thus, (3.23) follows
immediately.

Let ψ : C → R
+ ∪ {0} be defined by

(3.28) ψ(y) = min
t∈[ξ,w]

y(t) = min{y(ξ), y(w)}

where we have also used (3.12) in the second equality. Clearly, ψ is a nonnegative
continuous concave functional on C and ψ(y) ≤ ‖y‖ for all y ∈ C.

We shall verify that condition (a) of Theorem 2.1 is satisfied. First, we note
that

y∗(t) =
w2 +w3

2
∈

{
y ∈ C(ψ, w2, w3)

∣∣∣∣∣ ψ(y) > w2

}
.

Thus, {y ∈ C(ψ, w2, w3) | ψ(y) > w2} 	= ∅. Next, let y ∈ C(ψ, w2, w3). Then,
w2 ≤ ψ(y) ≤ ‖y‖ ≤ w3 provides w2 ≤ y(s) ≤ w3 for s ∈ [ξ, w], which leads to

(3.29) w2 ≤ y(σ(s)) ≤ w3, s ∈ [ξ, ρ(w)].

Noting (3.29), we apply (3.16), (3.29), (C5), (R) and (3.18) to get

ψ(Sy) = min{Sy(ξ), Sy(w)}

≥ min

{∫ σ(b)

a
G(ξ, s)µ(s)f(y(σ(s)))∆s,

∫ σ(b)

a
G(w, s)µ(s)f(y(σ(s)))∆s

}

≥ min

{∫ ρ(w)

ξ

G(ξ, s)µ(s)f(y(σ(s)))∆s,
∫ ρ(w)

ξ

G(w, s)µ(s)f(y(σ(s)))∆s

}
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= min

{∫ ρ(w)

ξ

(ξ − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

f(y(σ(s)))∆s,

∫ ρ(w)

ξ

(σ(s)− a)(σ2(b)− w)µ(s)
σ2(b)− a

f(y(σ(s)))∆s

}

> min

{∫ ρ(w)

ξ

(ξ − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

w2

r
∆s,

∫ ρ(w)

ξ

(σ(s)− a)(σ2(b)−w)µ(s)
σ2(b)− a

w2

r
∆s

}

= r
w2

r
= w2.

Therefore, we have shown that ψ(Sy) > w2 for all y ∈ C(ψ, w2, w3).
Next, condition (b) of Theorem 2.1 is fulfilled since by Lemma 3.4 and condition

(P), we have S(C(w1)) ⊆ C(w1).
Finally, we shall show that condition (c) of Theorem 2.1 holds. Let y ∈

C(ψ, w2, w4) with ‖Sy‖ > w3. Using (3.16), Lemma 3.1(b), (C3) and (3.17),
we get

ψ(Sy) = min{Sy(ξ), Sy(w)}

≥ min{
∫ σ(b)

a
G(ξ, s)µ(s)f(y(σ(s)))∆s,

∫ σ(b)

a
G(w, s)µ(s)f(y(σ(s)))∆s}

≥ min{
∫ σ(b)

a
kG(σ(s), s)cν(s)f(y(σ(s)))∆s,

∫ σ(b)

a
kG(σ(s), s)cν(s)f(y(σ(s)))∆s}

= kc

∫ σ(b)

a
G(σ(s), s)ν(s)f(y(σ(s)))∆s

≥ kc‖Sy‖kcw3 ≥ kc
w2

kc
= w2.

Hence, we have proved that ψ(Sy) > w2 for all y ∈ C(ψ, w2, w4) with ‖Sy‖ > w3.
It now follows from Theorem 2.1 that the boundary value problem (1.1) has (at

least) three positive solutions y1, y2, y3 ∈ C(w4) satisfying (2.1). It is easy to see
that here (2.1) reduces to (3.22).
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We shall now employ Theorem 2.2 to give other existence criteria. In applying
Theorem 2.2 it is possible to choose the functionals and constants in many different
ways. We shall present two results to show the arguments involved. In particular
the first result is a generalization of Theorem 3.1.

Theorem 3.2. Let (C1)-(C3) hold. Assume there exist τ1, τ2, τ3, τ4 ∈ [a, σ2(b)]
with

(3.30)
a ≤ τ1 ≤ ξ ≤ τ2 < ρ(τ3) ≤ ρ(w) ≤ τ4 ≤ σ2(b),

τ3 ≤ τ4, τ1 < ρ(τ4) ≤ σ(b)

such that

(C6) the functions [σ2(b) − σ(s)]µ(s) and [σ(x) − a]µ(x) are nonzero for some
s, x ∈ [τ2, ρ(τ3));

(C7) for each t ∈ [τ1, τ4], the function G(t, s)ν(s) is nonzero for some s ∈
[τ1, ρ(τ4)).

Suppose that there exist numbers wi, 2 ≤ i ≤ 5 with

0 < w2 < w3 <
w3

kc
≤ w4 ≤ w5 and w2 >

d3

q
w5

such that the following hold:

(P) f(x) < 1
d2

(w2 − w5d3
q ) for 0 ≤ x ≤ w2;

(Q) f(x) ≤ w5
q for 0 ≤ x ≤ w5;

(R) f(x) > w3
d1

for w3 ≤ x ≤ w4.

Then, the boundary value problem (1.1) has (at least) three positive solutions
y1, y2, y3 ∈ C(w5) such that

(3.31)

max
t∈[τ1,τ4]

y1(t) < w2; y2(t) > w3, t ∈ [τ2, τ3];

max
t∈[τ1,τ4]

y3(t) > w2 and min
t∈[τ2,τ3]

y3(t) = min{y3(τ2), y3(τ3)} < w3.

Proof. In the context of Theorem 2.2, we define the following functionals on
C :

(3.32)

γ(y) = ‖y‖,
ψ(y) = min

t∈[ξ,w]
y(t) = min{y(ξ), y(w)},

β(y) = Θ(y) = max
t∈[τ1,τ4]

y(t),

α(y) = min
t∈[τ2,τ3]

y(t) = min{y(τ2), y(τ3)}
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where we have used the idea of (3.12) in the definitions of ψ and α.
First, we shall show that the operator S maps P (γ, w5) into P (γ, w5). Let

x ∈ P (γ, w5) = C(w5). Then, we have 0 ≤ x ≤ w5. Together with (Q) and Lemma
3.5, we get S(C(w5)) ⊆ C(w5), or equivalently S : P (γ, w5) → P (γ, w5).

Next, we shall prove that condition (a) of Theorem 2.2 is fulfilled. It is noted
that

y∗(t) =
w3 + w4

2
∈

{
y ∈ P (γ,Θ, α, w3, w4, w5)

∣∣∣∣∣ α(y) > w3

}

and hence {y ∈ P (γ,Θ, α, w3, w4, w5) | α(y) > w3} 	= ∅.Now, let y ∈ P (γ,Θ, α,m
w3, w4, w5). Then, by definition we have α(y) ≥ w3 and Θ(y) ≤ w4 which imply
w3 ≤ y(s) ≤ w4 for s ∈ [τ2, τ3]. Thus, we have

(3.33) w3 ≤ y(σ(s)) ≤ w4, s ∈ [τ2, ρ(τ3)].

Noting (3.33), we apply (3.16), (C6), (R) and (3.18) to obtain

α(Sy) = min{Sy(τ2), Sy(τ3)}

≥ min

{∫ σ(b)

a
G(τ2, s)µ(s)f(y(σ(s)))∆s,

∫ σ(b)

a
G(τ3, s)µ(s)f(y(σ(s)))∆s

}

≥ min

{∫ ρ(τ3)

τ2

G(τ2, s)µ(s)f(y(σ(s)))∆s,
∫ ρ(τ3)

τ2

G(τ3, s)µ(s)f(y(σ(s)))∆s

}

= min

{∫ ρ(τ3)

τ2

(τ2 − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

f(y(σ(s)))∆s, ]

∫ ρ(τ3)

τ2

(σ(s)− a)(σ2(b)− τ3)µ(s)
σ2(b)− a

f(y(σ(s)))∆s

}

> min

{∫ ρ(τ3)

τ2

(τ2 − a)(σ2(b)− σ(s))µ(s)
σ2(b)− a

w3

d1
∆s,

∫ ρ(τ3)
τ2

(σ(s)−a)(σ2(b)−τ3)µ(s)
σ2(b)−a

w3
d1

∆s
}

= d1
w3

d1
= w3.

Hence, α(Sy) > w3 for all y ∈ P (γ,Θ, α, w3, w4, w5).
We shall now verify that condition (b) of Theorem 2.2 is satisfied. Let w1 be

such that 0 < w1 < w2. We note that

y∗(t) =
w1 +w2

2
∈

{
y ∈ Q(γ, β, ψ,w1, w2, w5)

∣∣∣∣∣ β(y) < w2

}
.
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Hence, {y ∈ Q(γ, β, ψ,w1, w2, w5) | β(y) < w2} 	= ∅.Next, let y ∈ Q(γ, β, ψ, w1, w2, w5).
Then, we have β(y) ≤ w2 and γ(y) ≤ w5 which provide

(3.34)
0 ≤ y(s) ≤ w2, s ∈ [τ1, τ4] or 0 ≤ y(σ(s)) ≤ w2, s ∈ [τ1, ρ(τ4)];

0 ≤ y(s) ≤ w5, s ∈ [a, σ2(b)] or 0 ≤ y(σ(s)) ≤ w5, s ∈ [a, σ(b)].

Noting (3.16), (3.34), (C7), (P), (Q) and (3.18), we find

β(Sy) = max
t∈[τ1,τ4]

Sy(t)

≤ max
t∈[τ1,τ4]

∫ σ(b)

a
G(t, s)ν(s)f(y(σ(s)))∆s

= max
t∈[τ1,τ4]

[∫ τ1

a

G(t, s)ν(s)f(y(σ(s)))∆s+
∫ σ(b)

ρ(τ4)

G(t, s)ν(s)f(y(σ(s)))∆s

+
∫ ρ(τ4)

τ1

G(t, s)ν(s)f(y(σ(s)))∆s

]

< max
t∈[τ1,τ4]

[∫ τ1

a
G(t, s)ν(s)f(y(σ(s)))∆s+

∫ σ(b)

ρ(τ4)
G(t, s)ν(s)∆s

]
w5

q

+ max
t∈[τ1,τ4]

[∫ ρ(τ4)

τ1

G(t, s)ν(s)∆s

]
1
d2

(
w2 − w5d3

q

)

= d3
w5

q
+ d2

1
d2

(
w2 − w5d3

q

)
= w2.

Therefore, β(Sy) < w2 for all y ∈ Q(γ, β, ψ,w1, w2, w5).
Next, we shall show that condition (c) of Theorem 2.2 is met. Using Lemma

3.1(a), we observe that for y ∈ C,

(3.35)

Θ(Sy) = max
t∈[τ1,τ4]

Sy(t)

≤ max
t∈[τ1,τ4]

∫ σ(b)

a
G(t, s)ν(s)f(y(σ(s)))∆s

≤ ∫ σ(b)
a G(σ(s), s)ν(s)f(y(σ(s)))∆s.

Moreover, (C3) and Lemma 3.1(b) yield for y ∈ C,

(3.36)

α(Sy) = min
t∈[τ2,τ3]

Sy(t)

≥ min
t∈[τ2,τ3]

∫ σ(b)

a
G(t, s)µ(s)f(y(σ(s)))∆s

≥
∫ σ(b)

a
kG(σ(s), s)cν(s)f(y(σ(s)))∆s.
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A combination of (3.35) and (3.36) gives

(3.37) α(Sy) ≥ kc Θ(Sy), y ∈ C.

Let y ∈ P (γ, α, w3, w5) with Θ(Sy) > w4. Then, it follows from (3.37) that

α(Sy) ≥ kc Θ(Sy) > kcw4 ≥ kc
w3

kc
= w3.

Thus, α(Sy) > w3 for all y ∈ P (γ, α, w3, w5) with Θ(Sy) > w4.

Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. Let
y ∈ Q(γ, β, w2, w5) with ψ(Sy) < w1. Then, we have β(y) ≤ w2 and γ(y) ≤ w5

which give (3.34). Using (3.16), (3.34), (C7), (P), (Q) and (3.18), we get as in an
earlier part β(Sy) < w2 for all y ∈ Q(γ, β, w2, w5) with ψ(Sy) < w1.

It now follows from Theorem 2.2 that the boundary value problem (1.1) has (at
least) three positive solutions y1, y2, y3 ∈ P (γ, w5) = C(w5) satisfying (2.2). It is
clear that (2.2) reduces to (3.31) immediately.

Consider the special case when

τ1 = a, τ2 = ξ, τ3 = w and τ4 = σ2(b).

Then, it is clear that

(3.38) d1 = r, d2 = q, d3 = 0.

In this case Theorem 3.2 yields the following corollary.

Corollary 3.1. Let (C1) − (C3) hold, and assume

(C6)′ the functions [σ2(b) − σ(s)]µ(s) and [σ(x) − a]µ(x) are nonzero for some
s, x ∈ [ξ, ρ(w));

(C7)′ for each t ∈ [a, σ2(b)], the function G(t, s)ν(s) is nonzero for some s ∈
[a, σ(b)).

Suppose that there exist numbers w i, 2 ≤ i ≤ 5 with

0 < w2 < w3 <
w3

kc
≤ w4 ≤ w5

such that the following hold:

(P) f(x) < w2
q for 0 ≤ x ≤ w2;

(Q) f(x) ≤ w5
q for 0 ≤ x ≤ w5;
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(R) f(x) > w3
r for w3 ≤ x ≤ w4.

Then, the boundary value problem (1.1) has (at least) three positive solutions
y1, y2, y3 ∈ C(w5) such that

‖y1‖ < w2; y2(t) > w3, t ∈ [ξ, w];

‖y3‖ > w2 and min
t∈[ξ,w]

y3(t) = min{y3(ξ), y3(w)} < w3.

Remark 3.2. Corollary 3.1 is actually Theorem 3.1. Hence, Theorem 3.2 is
more general than Theorem 3.1.

Another application of Theorem 2.2 yields the next result.

Theorem 3.3. Let (C1)-(C3) hold. Assume there exist numbers τ1, τ2, τ3, τ4 ∈
[a, σ2(b)] with

(3.39) ξ ≤ τ1 ≤ τ2 < ρ(τ3) ≤ τ4 ≤ w and τ1 < ρ(τ4) ≤ σ(b)

such that (C6) and (C7) hold. Suppose that there exist numbers w i, 1 ≤ i ≤ 5
with

0 < w1 ≤ w2 · kc < w2 < w3 <
w3

kc
≤ w4 ≤ w5 and w2 >

d3

q
w5

such that the following hold:

(P) f(x) < 1
d2

(
w2 − w5d3

q

)
for w1 ≤ x ≤ w2;

(Q) f(x) ≤ w5
q for 0 ≤ x ≤ w5;

(R) f(x) > w3
d1

for w3 ≤ x ≤ w4.

Then, the boundary value problem (1.1) has (at least) three positive solutions
y1, y2, y3 ∈ C(w5) such that

(3.40)

max
t∈[τ1,τ4]

y1(t) < w2; y2(t) > w3, t ∈ [τ2, τ3];

max
t∈[τ1,τ4]

y3(t) > w2 and min
t∈[τ2,τ3]

y3(t) = min{y3(τ2), y3(τ3)} < w3.

Proof. In the context of Theorem 2.2, we define the following functionals on
C :
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(3.41)

γ(y) = ‖y‖,
ψ(y) = min

t∈[τ1,τ4]
y(t) = min{y(τ1), y(τ4)},

β(y) = max
t∈[τ1,τ4]

y(t),

α(y) = min
t∈[τ2,τ3]

y(t) = min{y(τ2), y(τ3)},

Θ(y) = max
t∈[τ2,τ3]

y(t).

First, using (Q) it can be shown (as in the proof of Theorem 3.2) that S :
P (γ, w5) → P (γ, w5).

Next, using (R), (C6) and a similar argument as in the proof of Theorem 3.2,
we can verify that condition (a) of Theorem 2.2 is fulfilled.

Now, we shall check that condition (b) of Theorem 2.2 is satisfied. It is clear
that

y∗(t) =
w1 + w2

2
∈

{
y ∈ Q(γ, β, ψ,w1, w2, w5)

∣∣∣∣∣ β(y) < w2

}
	= ∅.

For y ∈ Q(γ, β, ψ,w1, w2, w5), we have ψ(y) ≥ w1, β(y) ≤ w2 and γ(y) ≤ w5

which imply

(3.42)
w1 ≤ y(s) ≤ w2, s ∈ [τ1, τ4] or w1 ≤ y(σ(s)) ≤ w2, s ∈ [τ1, ρ(τ4)];

0 ≤ y(s) ≤ w5,s ∈ [a, σ2(b)] or 0 ≤ y(σ(s)) ≤ w5, s ∈ [a, σ(b)].

Using (3.16), (3.42), (C7), (P), (Q) and (3.18), we find, as in the proof of Theorem
3.2, that β(Sy) < w2 for all y ∈ Q(γ, β, ψ,w1, w2, w5).

Next, we shall show that condition (c) of Theorem 2.2 is met. We observe that,
by (3.16) and Lemma 3.1(a), for y ∈ C,

(3.43)
Θ(Sy) ≤ max

t∈[τ2,τ3]

∫ σ(b)

a

G(t, s)ν(s)f(y(σ(s)))∆s

≤
∫ σ(b)

a
G(σ(s), s)ν(s)f(y(σ(s)))∆s.

Moreover, using (3.16), (C3) and Lemma 3.1(c), we obtain (3.36) for y ∈ C. A
combination of (3.36) and (3.43) yields (3.37). Following similar argument as in
the proof of Theorem 3.2, we get α(Sy) > w3 for all y ∈ P (γ, α, w3, w5) with
Θ(Sy) > w4.
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Finally, we shall prove that condition (d) of Theorem 2.2 is fulfilled. By (3.16)
and Lemma 3.1(a), we see that for y ∈ C,

(3.44) β(Sy) = max
t∈[τ1,τ4]

Sy(t) ≤
∫ σ(b)

a

G(σ(s), s)ν(s)f(y(σ(s)))∆s.

On the other hand, it follows from (3.16), (C3) and Lemma 3.1(b) that for y ∈ C,

(3.45)
ψ(Sy) ≥ min

t∈[τ1,τ4]

∫ σ(b)

a
G(t, s)µ(s)f(y(σ(s)))∆s

≥
∫ σ(b)

a

kG(σ(s), s)cν(s)f(y(σ(s)))∆s.

A combination of (3.44) and (3.45) gives

(3.46) ψ(Sy) ≥ kc β(Sy), y ∈ C.

Let y ∈ Q(γ, β, w2, w5) with ψ(Sy) < w1. Then, (3.46) leads to

β(Sy) ≤ 1
kc

ψ(Sy) <
1
kc

w1 ≤ 1
kc

w2 · kc = w2.

Thus, β(Sy) < w2 for all y ∈ Q(γ, β, w2, w5) with ψ(Sy) < w1.
It now follows from Theorem 2.2 that the boundary value problem (1.1) has

(at least) three positive solutions y1, y2, y3 ∈ P (γ, w5) = C(w5) satisfying (2.2).
Furthermore, (2.2) reduces to (3.40) immediately.

4. EXAMPLES

In this section we shall present some examples to illustrate the usefulness of the
results obtained. Throughout, we consider the time scale

T = {2k | k ∈ Z} ∪ {0}.

Example 4.1. Consider the boundary value problem (1.1) with a = 2, b =
29 = 512 and the nonlinear term

(4.1) P (t, x) = f(x) =




w1

2q
, 0 ≤ x ≤ w1

l(x), w1 ≤ x ≤ w2

1
2

(
d

q
+
w2

r

)
, x ≥ w2
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where l(x) satisfies

(4.2) l′′(x) = 0, l(w1) =
w1

2q
, l(w2) =

1
2

(
d

q
+
w2

r

)

and wi’s, d, q and r are as in the context of Theorem 3.1.
Let δ = 1

16 . Then, it is easy to see that ξ = 256, w = 1024 and k = 1
16 . Taking

the functions µ = ν ≡ 1 (this implies c = 1), by direct computation we get

(4.3) q =
1046528

3
= 348842.67 and r =

16646144
341

= 48815.67.

We assume the wi’s and d are numbers satisfying the relation

(4.4) 0 < w1 < w2 <
w2

kc
= 16w2 ≤ w3 ≤ d.

We shall check the conditions of Theorem 3.1. First, it is clear that (C1)–(C5)
are fulfilled. Next, condition (P) is obviously satisfied. In view of (4.3) and (4.4),
we have

(4.5)
w2

r
<
d

q
(or equivalently d >

q

r
w2 = 7.15w2).

Hence, we find for 0 ≤ x ≤ d,

f(x) ≤ max{l(w1), l(w2)} = l(w2) =
1
2

(
d

q
+
w2

r

)
<

1
2

(
d

q
+
d

q

)
=
d

q
.

Thus, condition (Q2) is met. Finally, (R) is satisfied since for w2 ≤ x ≤ w3, we
have, noting (4.5),

f(x) =
1
2

(
d

q
+
w2

r

)
>

1
2

(w2

r
+
w2

r

)
=
w2

r
.

By Theorem 3.1, we conclude that the boundary value problem (1.1) with a =
2, b = 512 and (4.1)–(4.4) has (at least) three positive solutions y1, y2, y3 ∈ C
such that

(4.6)
‖y1‖ < w1; y2(t) > w2, t ∈ [256, 1024];

‖y3‖ > w1 and min
t∈[256,1024]

y3(t) = min{y3(256), y3(1024)}< w2.

To illustrate further, let us fix

(4.7) w1 = 1, w2 = 2 and w3 = d = 32.
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Clearly, (4.4) is fulfilled. We find that the boundary value problem (1.1) with
a = 2, b = 512, (4.7), (4.1)–(4.3) indeed has three positive solutions y1, y2, y3 ∈ C
that satisfy (4.6). In fact,

(4.8)

‖y1‖ = y1(1024) = 0.5 < w1 = 1; y2(t) > w2 = 2, t ∈ [256, 1024];

‖y3‖ = y3(512) = 1.1158 > w1 = 1

and mint∈[256,1024]y
3(t) = y3(256) = 0.5868 < w2 = 2.

The solutions are tabulated as follows:

t 4 8 16 32 64 128 256 512 1024

y1(t) 0.0020 0.0058 0.0136 0.0289 0.0588 0.1156 0.2175 0.3743 0.5000

y2(t) 0.0872 0.2616 0.6102 1.3074 2.6908 5.3218 10.0401 17.3026 23.1308

y3(t) 0.0049 0.0146 0.0339 0.0725 0.1489 0.2988 0.5868 1.1158 1.0005

Example 4.2. Consider the boundary value problem (1.1) with a = 2, b =
29 = 512 and the nonlinear term

(4.9) P (t, x) = f(x) =




1
2d2

(
w2 − w5d3

q

)
, 0 ≤ x ≤ w2

l(x), w2 ≤ x ≤ w3

1
2

(
w3

r
+
w3

d1

)
, x ≥ w3

where l(x) satisfies

(4.10) l′′(x) = 0, l(w2) =
1

2d2

(
w2 − w2d3

q

)
, l(w3) =

1
2

(
w3

r
+
w3

d1

)

and wi’s, di’s, q and r are as in the context of Theorem 3.2.
Fix δ = 1

17 . Then, it follows that ξ = 128, w = 1024 and k = 1
17 . Taking the

functions µ = ν ≡ 1 (this implies c = 1), and τ1 = 64, τ2 = 256, τ3 = 1024 and
τ4 = 2048, by direct computation we have

(4.11)
q = 348842.67, r = 38341.44, d1 = 48815.67,

d2 = 78196.36, d3 = 2525.09.
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We assume the wi’s are numbers satisfying the relation

(4.12) 0 < w2 < w3 <
w3

kc
= 17w3 ≤ w4 ≤ w5 <

q

d3
w2 = 138.15w2.

We shall check the conditions of Theorem 3.2. Clearly, (C1)–(C3), (C6) and
(C7) are fulfilled. Next, condition (P) is obviously satisfied. From (4.11) and (4.12),
we note that

(4.13) r < d1 < d2 and
w3

r
<
w5

q
(equivalent to w5 >

q

r
w3 = 9.1w3).

Thus, we find for 0 ≤ x ≤ w5,

f(x)≤max{l(w2), l(w3)}= l(w3)=
1
2

(
w3

r
+
w3

d1

)
<

1
2

(w3

r
+
w3

r

)
=
w3

r
<
w5

q
.

Hence, condition (Q) is met. Finally, (R) is satisfied since for w3 ≤ x ≤ w4 we
have, in view of (4.13),

f(x) =
1
2

(
w3

r
+
w3

d1

)
>

1
2

(
w3

d1
+
w3

d1

)
=
w3

d1
.

It follows from Theorem 3.2 that the boundary value problem (1.1) with a =
2, b = 512 and (4.9)-(4.12) has (at least) three positive solutions y1, y2, y3 ∈ C(w5)
such that

(4.14)

max
t∈[64,2048]

y1(t)<w2; y2(t) > w3, t∈ [256, 1024];

max
t∈[64,2048]

y3(t)>w2 and min
t∈[256,1024]

y3(t)=min{y3(256),y3(1024)}<w3.

As an example, fix

(4.15) w2 = 1, w3 = 2, w5 = 128 and any w4 such that 17w3 ≤ w4 ≤ w5

so that (4.12) holds. We find that the boundary value problem (1.1) with a = 2, b =
512, (4.9)-(4.11), (4.15) in fact has three positive solutions y1, y2, y3 ∈ C(128)
satisfying (4.14). Indeed,

(4.16)

max
t∈[64,2048]

y1(t) = y1(1024) = 0.1639 < w2 = 1;

y2(t) > w3 = 2, t ∈ [256, 1024];

max
t∈[64,2048]

y3(t) = y3(1024) = 1.0755 > w2 = 1 and

min
t∈[256,1024]

y3(t) = y3(256) = 0.2978 < w3 = 2.

The solutions are tabulated as follows:
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t 4 8 16 32 64 128 256 512 1024

y1(t) 0.0006 0.0019 0.0045 0.0095 0.0193 0.0379 0.0713 0.1227 0.1639

y2(t) 0.0603 0.1810 0.4224 0.9050 1.87013.7172 7.0298 12.1291 16.2242

y3(t) 0.0024 0.0073 0.0169 0.0362 0.0746 0.1503 0.2978 0.5776 1.0755

Remark 4.1. In Example 4.2, noting (4.13) we find for w3 ≤ x ≤ w4,

f(x) =
1
2

(
w3

r
+
w3

d1

)
<

1
2

(w3

r
+
w3

r

)
=
w3

r
.

Thus, condition (R) of Corollary 3.1 is not satisfied. Recalling that Corollary 3.1
is actually Theorem 3.1, Example 4.2 illustrates the case when Theorem 3.2 is
applicable but not Theorem 3.1. Hence, this example shows that Theorem 3.2 is
indeed more general than Theorem 3.1.
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189-249, Birkhäuser Boston, Boston, 2003.

5. R. I. Avery, A generalization of the Leggett-Williams fixed point theorem, MSR
Hot-Line, 2 (1998), 9-14.

6. R. I. Avery and A. C. Peterson, Multiple positive solutions of a discrete second order
conjugate problem, PanAmer. Math. J., 8 (1998), 1-12.

7. M. Bohner and A. C. Peterson, Dynamic Equations on Time Scales. An Introduction
with Applications, Birkh äuser Boston, Boston, 2001.
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