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SOME NEW RESULTS ABOUT A SYMMETRIC
D-SEMICLASSICAL LINEAR FORM OF CLASS ONE

Abdallah Ghressi and Lotfi Khériji

Abstract. We establish some properties concerning the linear form 5[v] which
is symmetric D-semiclassical of class 1. An integral representation is obtained.
A connection with the D-classical Bessel one is discussed.

1. INTRODUCTION AND FIRST RESULTS

Let PP be the vector space of polynomials with coefficients in C and let P’ be its
topological dual. We denote by (u, f) the effect of w € P on f € P. We denote by
(u)p := (u,2™) , n > 0 the moments of w. In particular, a linear form u is called
symmetric if (u, z>"*1) =0, n > 0.

For any linear form wu, any polynomial ¢ , let gu , be the linear form defined by
duality

(1.1) (gu, ) :=(u,gf), f € P.

For f € P and u € P/, the product uf is the polynomial
zf(x) — ¢f(C)

(1.2) (uf)(@) = (u, =——— c )-
The derivative v’ = Du of the linear form « is defined by
(1.3) (', f)=—(u, f') . feP.
We have [5]

(1.4) (fu) = flu+ fu'.
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Similarly, with the definitions

(1.5) (hau, f) := (u, hof) = (u, f(az)) ,u e P',f€P,aeC -0,

(1.6) (pu, f) := (u, 7= f) = (u, f(x+ b)) ,ue P, feP ,beC.

The linear form w is called regular if we can associate with it a polynomial sequence
{P.}n>0, deg P, = n, such that

(1.7) (u, P Pp) = rm0pm , n,m >0; r, 0, n>0.

The polynomial sequence { P, },,>¢ is then said orthogonal with respect to u. Neces-
sarily, { P, }»>0 is an (OPS) whose any polynomial can be supposed monic (MOPS).
Also, the (MOPS){ P, },,>o fulfils the recurrence relation

(1.8) { PO(x):lz

Pryo (1‘

) Pl(fI,'):fIf—/BQ,
(= Bns1) Poy1(%) — Y1 Pu(®) , Y1 #0, n > 0.

From the linear application p — (6.p)(z) = Mj%l , p€eEP,ceC, we define
(x —c)"lu by

(1.9) ((x — c)_lu,p> = (u, 0.p).

Finally, we introduce the operator o : P — P defined by (o f)(x) := f(2?) for
all f € P. Consequently, we define ou by duality

(1.10) (ou, f) ={(u,0f) ,fEP,ueP.
we have the two well known formulas[7]

(1.11) f@)ou= o(f(z?)u),

(1.12) ou' = 2(o(zu))".

Let & monic and ¥ be two polynomials , deg® = ¢, deg¥ = p > 1.
We suppose that the pair (®, ¥) is admissible , i.e. when p = ¢ — 1, writing
U(z) =apz? +...,thenap, #n+1, neN.

Definition 1.1. [5] A linear form w is called D-semiclassical when it is
regular and satisfies the equation

(1.13) (Pu) +Tu=0
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where the pair (®, V) is admissible. The corresponding orthogonal sequence
{P,}n>0 is called D-semiclassical.

Remarks.

1. The D-semiclassical character is kept by shifting(see [6]). In fact, let
{a™™(hgoT—pPp)}n>0 ,a #0,be C; when u satisfies (1.13) , then h,-1 o 7_pu
fulfils the equation

(1.14) <a_t<I>(aw +b)(hg-10 T_bu)>/ + a' "W (ax + b) (hg-1 o T_pu) = 0.

2. The D-semiclassical linear form w is said to be of class s = max(p — 1, —
2) > 0 if and only if

(1.15) 11 {‘\P(c) + @’(c)‘ v ‘<u, 0. + 02) ‘} >0,

cEZy

where Zg is the set of zeros of ®. The corresponding orthogonal sequence { B, },>0
will be known as of class s[4].

3. When s = 0, the linear form w is usually called D-classical (Hermite,
Laguerre, Bessel, and Jacobi )[6].

Let us recall some characterizations of D-semiclassical orthogonal sequences which
are needed in the sequel. {P,},>0 is D-semiclassical of class s, if and only if one
of the following statements holds [4]

(1). {P,}n>0 satisfies the following structure relation

(1.16)
D) Py () = 3 (Cuga () = Co)) Pasa () — s Do () Pal), m > 0,
where
(1.17) Cpyi1(x) = =Cp(x) +2(x — Bn)Dp(x) ,n >0,
(1.18) Yn+1Dni1(2) = =®(2) + Y Dp—1(2) + (2 — 8,)? Dn ()
—(x = Bn)Cr(z),n >0,
[0
Dy(z) = —(ubp®)'(2) — (ubp¥)(2).

®, U are the same parameters introduced in (1.13); 3., v, are the coefficients of the
three term recurrence relation (1.8). Notice that D_;(z) := 0, degC,, < s+ 1 and
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deg D, < s, n>0.
(2). Each polynomial F,,1, n > 0 satisfies a second order linear differential
equation

(1.20)  J(z,n)P) (z) + K(z,n)P)i(z) + L(z,n)Ppii(z) =0, n >0,

n

with
J(,m) = () D (1)
I (@(2) + Co(2)) = Dipy (2)0(x) .
) = 3(Cusr(@) = Col@) ) Dl ()
~3(Clir — C) @)Dy (&) = Dy (@)Bn() , >0,
and
(1.22) So(z) 1= Zn:Dk(x) ,n>0.

®, C,, D,, are the same in the previous characterization. Notice that
deg J(.,n) <2s+2,deg K(.,n) <2s+1and deg L(.,n) < 2s.

In [1], the authors give the description of symmetric D-semiclassical linear forms
of class 1. There are three canonical cases for ®

O(z) =z, ®(z) = z(2® — 1), d(z) = 23

The first and the second canonical cases are well known. They are respectively the
generalized Hermite 7 () and The symmetric generalized Gegenbauer G («, 5)[1,3].
So, the aim of this paper is to give some new results concerning the third case. It’s
the linear form B[v], symmetric D-semiclassical of class 1 for v # —n—1, n > 0.
We have[1]

By =0, ey = L1—2y—(—1)”(27L—|—21/—|—1)
(1.23) ’ 16 (n+v)(in+v+1)

(x%’[u])' {2+ 1)2? + 1}Bp =0,

Taking into account the functional equation in (1.23), it is easy to see that the mo-
ments of B[v| are

7”207

(=D)"T(v+1)

(1.24) (B[V])Qn = 22nr(n+1/—|—1) ’

(B[Y])2n+1 =0, n >0,
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where T" is the gamma function. In accordance of (1.17)-(1.19) and (1.22) and after
some calculation we get
1
Cp(z) = (2n+2v — 1)z + 5(—1)”,
(1.25) Dy(z) =2(n+v)x, ; n=0.
En(z) = (n+1)(n+ 2v)z,

Therefore, with (1.20)-(1.21), the second order linear differential equation satisfied
by P41, n>0s

I R Gl 3} Pr(@)
' () (n+ 2w+ 1)a? + W}PRH(@ ~ 0.

Proposition 1.2. Let {P, },>o be the (MOPS) with respect to the linear form
B[v]. Then, every polynomial P, .1, n > 1 have simple zeros.

Proof.  First, the (MOPS){P, },>0 is of class 1. Taking into account the
structure relation (1.16), we can deduce the following: if ¢ is a zero of order n of
Pyy1,n > 1 withn > 2, thenn < 2and cis a zero of order n—1 = 1 of D,,41.[4]
Second,the (MOPS){ P, },>0 is symmetric then P,,(—z) = (—1)"P,(x), n > 0[3]
and according to (1.8) with 3,, = 0, n > 0 we get

n
(1.27)  Pry1(0) =0, Po(0) = (=1)" [[v2r-1#0, n >0, vy =1
k=0
To establish the desired result, it is sufficient to prove that P;, ,(0) # 0,n > 0
since the above, the expression of the polynomial D, in (1.25), and (1.27).
Differentiating (1.16), then taking z = 0 and n — 2n, and after an easy computation
we obtain Py, (0) = g2 Py, (0) # 0, > 0 ]

In [1], an integral representation of the last case is not given. See also [2]. In
the next section, we are going to give an integral representation for 5[v]. Moreover,
the relationship with the D-classical Bessel linear form is obtained.

2. AN INTEGRAL REPRESENTATION FOR B[V]

Let u be a D-semiclassical linear form satisfying (1.13). We are looking for an
integral representation of » and consider

+o00o
(2.1) wh=[ U@, fep.

—00
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where we suppose the function U to be absolutely continuous on R, and is decaying
as fast as its derivative U’. From (1.13) we get

/_+OO (*U) +9U) f(x)dx — @(m)U(m)f(x)]fz =0, feP.

Hence, from the assumptions on U, the following conditions hold

(2.2) ®(@)U(x)f(2)]2 =0, f€P,

+oo
(2.3) / (BU) + WU) f(z)de =0, f € P.

—00

Condition (2.3) implies
(2.4) (PU) + WU = wyg,

where w # 0 arbitrary and ¢ is a locally integrable function with rapid decay
representing the null-form (see[8])

+oo
(2.5) / 2"g(x)dr =0, n>0.

—00

Conversely, if U is a solution of (2.4) verifying the hypothesis above and the con-
dition

+o0
(2.6) / U(z)dx # 0,

then (2.2)-(2.3) are fulfilled and (2.1) defines a linear form « which is a solution
of (1.13).

Now, the linear form w is B[v], v # —n — 1, n > 0 with

1
d(z) =2 , U(z)=-2w+1)z*- 5
Equation (2.4) becomes
1
(2.4) (ng)/ —{2(v+ 1)z + §}U = wg(x).
For instance, let g(z) = —|z|s(2?), = € R [8] where s is the Stieltjes function [8,9]

2.7 s(x) = 1
27) (@) {e_mzsinxi, z > 0.
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A possible solution of (2.4)’ is the even function

0, T =

)

p— +OO
(2.8)  Ulx)= wmb_le—ﬁ/ 2l s(2)dt, e R - {0).
£

First, condition (2.2) is fulfilled, for we have

+o00o 1 1
‘xBU(x)‘S‘wa‘%RV—He—ﬁ/ t—2§Ry—1eﬁe—t2 dt = O(e—%|a[;|2)7 ‘1“ — 400,

||

Further, when x — +oc0

+oo 1 1
V@) < wle?™ [Pt g ofen i),

T

and when z — +0

1
U(z)| < \w\x%—le—ﬁ/ 2Rl g 4 (1),

T

we apply I’Hospital’s rule to the ratio

1 1
T

lim T = lim =0,

r——+0 {I,'_2§RV+1em z—+0 (2%1/ — 1)(1)2 + 5

SO ml_l)rilo U(z) =0="U(0).

Consequently, U € 1.
Condition (2.6) now becomes

(2.9) /+OOU(x)dx:Qw/omf_b_le‘*i%s(g)(/ngb_le_ﬁdx)df:ws,ﬁéo

—00
with
_ T T 2\a—t o
(2.10) S, =2 t extp 5 (t*)e "sintdt,
0 2

t 1
(2.11) @V(t):/ e w2 dg.

0

Let us establish some results about S,
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Lemma 2.1. We have for v > —1
1
(2.12) THen(t) < puin(t) < (1), £ >0,

t27/+5 1 t2y+5 1

213) 2 e < () <4 ¢
(2.13) 142020 + 5)2 el <45 o e

,t>0.

Proof. It is easy to prove (2.12) from (2.11) and monotonicity.
From (2.11), we have upon integration by parts

(2.14) ou(t) = 242065 — 220+ 5) (), vEC, t > 0.
Now, in accordance of (2.12) and (2.14) we obtain the desired result (2.13) ]

Proposition 2.2. We have the following expression for m > 1, v € C

+oo
(2.15) S, = (—1)m22m+! H (v+k) / v —lemt pr_3+m(t2) tsintdt.
k=1 0

Proof. From (2.14), and using the Stieltjes representation (2.5) of the null-form,
we get

+o0
Sy, = —23(1/+1)/ v 1e4f4apy (2) “tsintdt.
Suppose (2.15) for m > 1 fixed. From (2.14) where v — v 4+ m and t — >

Oy pm—s (1) = 264 FTTe” WA+ m+ D¢y sm-1(t),
hence easily (2.15) for m — m + 1 [ ]

Corollary 2.3. We have S_,,_ 1 =0, n > 0.
This result is consistent with the fact that the linear form B[v] is not regular for
these values of v

Proposition 2.4. For v > , We have S, > 0.

Proof. First, we need the following lemma [8]. ]

Lemma 2.5. Consider the following integral

+o00o
(2.16) S = / F(t) sintdt
0
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where we suppose F'(t) > 0, continuous, increasing in 0 < ¢ < ¢ and decreasing
to zero for ¢t > t. Then,

(2.17) 0<t<m, / (F(t) — F(t+m))sintdt > 0= S > 0.
0

Now, denoting F(t) = F,(t) = f,(t)e=t with f,(¢) = t—4”—1eﬁapy_%(t2).
We have from (2.13)

(2.13) 20 pe—20 g )
. _ ()L —— >0, v> =
1+4(v+ 1)t — 1+ (v+1)tt 2
Then,
2t3 2t3 1
2.18 N e t<E{)<—— et t>0, 0> -
@218) T rnae SPOsTTo a2 vz

Consequently, F,(t) > 0 for t > 0, F,,(0) = 0 and th+m F,(t) = 0 which implies
that F,, has a maximum for ¢ = ¢ defined by £, (¢) = f,(t).

Hence,
=3

i} 27
219) fy t) — — i
( ( 14 (4v+ )T +7
since 9 v+l 1

14
L) = 5-{==—=+ 5 L.t >0.

From the first inequality of (2.13)” and by virtue of (2.19) necessarily ¢ < 3.
Therefore the implication (2.17) is true if the following is verified

i t 3 ™ t3
(2.20) / sint— DTty o / sint————————e""dt.
o T D o T T

3

The function ¢ — ﬁ is decreasing for t > ¢, = (m)i and from v > % we

have easily t; < . We have successively

/7r sint (7 +1)° e Tt <e " i e+l
0 1+ w4+ 1)(r+1t)* - I+(wv+1)mt 2

On the other hand

™ 3 m 3 4
t 1 1)t

/sint—4e_tdt:/ sint 1 +(v+l) 1

t 1+4(v+ 1)t ¢ I+ v+ D)t 14+4(w+ 1)t

1

e ldt
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|
AN

7T3 T
—4/ sinte'dt
1 + (I/ + 1)7T %

3

la—m 5
seTm———(1+e2).
oy T

Y

Thus, (2.20) is fulfilled if
73 (1+e ™) t
2.21 - < [ smp— b
A wroy sy S —/0 e
3

(1+e2).

3

e tdt
la—m 7T
_e .
5 + v+ 1)mt

But, 1 +e™ < (1 + e2), therefore the inequality (2.21) is satisfied and the
proposition is proved ]

Finally, for f e P,v > 2

tooq \x\ 2v+1 11 9
(2.22) ( =S, / /| exp <@—@>s(t Ydtf (z)dz
Let now B(a), o # —5, n > 0 be the Bessel D-classical linear form. We
have[4]
/
(2.23) <x25’(a)> — 9az +1)B(a) = 0.

In the following proposition we are going to establish the connection between BJv]
and B(«).

Proposition 2.6. We have
+1

(2.24) 0B =hB(*==), v#-n—1, n>0.

Proof. From (1.23) we have

(2.25) (ﬁgm)' - {Q(V 12?4 %}B[u] = 0.

Applying the operator o to the both sides of (2.25) and in accordance of (1.11)-(1.12)
we get

(2.25) (20801 - {(1/+1)x—|—4}08[ V] =

Moreover, the linear form B[v] is symmetric and regular then o 5[v] is regular[3,7].
So, on the one hand, taking into account (2.25)’ the linear form o B[v] is D-classical.
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On the other hand, from (2.23) with o = “£t, B(”—#) satisfies the functional
equation

(2.23) <x26(VT+1)>I—2<V;1x+1>6(1’;1) — 0.

Formula (1.14) with the choice a = 8,b = 0 yields to

v+1.\’ 1 v+1
(2.23)" <x2h§l’>’( 5 )) — <(1/+ D+ Z)hél’a’( 5 ) =o0.
Consequently, we obtain (2.24) [ |
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