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WEIGHTED ESTIMATE FOR A CLASS OF
LITTLEWOOD-PALEY OPERATORS

Qingying Xue, Yong Ding and Koz0 Yabuta

Abstract. In this paper the authors give the weighted weak (1, 1) boundedness
and the weighted L? boundedness for the Littlewood-Paley operators with
complex parameters.

1. INTRODUCTION

It is well-known that the Littlewood-Paley operators, such as the Littlewood-
Paley g-function, g function and the Lusin area integral S, play very important
roles in harmonic analysis and PDE. The classical Littlewood-Paley g3-function
and Lusin area integral S are defined by

1/2
(N@) = (//Rnﬂ (m)wv(ﬂ*f)(y)fjf_df) for A>1

s =( [ v f)(y)ﬁffflf)m,

respectively, where T'(z) = {(y,t) € R : |z — y| < t}, Pi(z) = t "P(x/t)
denotes the Poisson kernel and V = ( 0 o 0

and

ﬂ?@?"' 7%7&)'

The LP boundedness and weak boundedness of g3-function and S have been
studied by some authors. In 1961 and 1970, Stein [St1] and Fefferman [Fe] gave
the following conclusions, respectively:
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Theorem A. ([St])
(a) If X > 2, then g3 is of weak type (1,1);

(b) 1f X > 2, then g is of type (p, p) for 1 < p < oo;
(c) If 1 <X <2, then g3 is of type (p, p) for 2/ < p < oo.

Theorem B. ([Fe])
(a) If 1 <p<2and XA =2/p, then g3 is of weak type (p, p);
(b) If 1 <p<ooand X >max{2/p, 1}, then g3 is of type (p, p).

Remark 1. Itis easy to check that the conclusion (b) of Theorem B is equivalent
to the conclusions (b) and (c) of Theorem A.

In 1987, Chanillo and Wheeden [CW] proved the weighted boundedness of S.

Theorem C. (JCW]) Suppose that w is a nonnegative locally integrable function
on R™, then for any Schwartz function f

(a) f{meR": S(f)(m)>g}w(x)dx < (Cn/B) fRn |f(x)|w*(x)dx forany 3> 0;
(0) Jgn S(F)(@)Pw(z)dr < C(n,p) [gn |f(2)[Pw*(z)dz for 1 <p<2;

(©) Jgo SN (@)Pw(@)de < C(n,p) fpu | f(2)[Pw (2)P 2w (z)~@/2Ddz for 2 <
p < oo.

Remark 2. In [CW], the authors showed that the conclusion (b) in Theorem C
doesn’t hold for p > 2 by an example. Therefore, the conclusion (c) is a replacement
of (b) since w* < w*P/2w=?/2=1 for 2 < p < oo.

On the other hand, in 1999, Sakamoto and Yabuta [SY] defined and studied the
LP boundedness of a class of Littlewood-Paley operators with complex parameter.
Suppose that € L'(S™~1) is homogeneous of degree zero on R* and satisfies

(11) /5 a()do(at) =0,

where S~ denotes the unit sphere of R”(n > 2) equipped with Lebesgue measure
do = do(x'). Let o”(x) = Q(z)|z| " Pxp(x), where p is a complex number,
p = v +ir with v > 0,7 € R and B denotes the unit ball in R™. Then the
parametrized Littlewood-Paley function 1\” and the parametrized area integral 1%
are defined by

1/2
13 () (@) =<ffRi+1 (m)/\n|(apf*f)(y)|2?3ff> for A1
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and

e = ([ NG u)@)ﬁfﬁff)w,

respectively, where I'(z) = {(y,t) € R : |2 — y| < t} and ¢} (z) = 2 eP(2).

In [SY], the LP-boundedness (1 < p < oo) of uy” and uf were given when
) satisfies Lip,(S™~!) condition for 0 < a < 1. In 2002, Ding, Lu and Yabuta
[DLY] obtained the following weighted L? boundedness of 13 and 4.

Theorem D. Let Q € Llog™L(S™ 1) satisfying (1.1). Then for p = v + it
with v > 0 and A > 1, there exists a constant C' > 0 such that for any nonnegative
locally integrable function w(x),

| D aPu@de<Con [ i3 (h@) ul)ds

n

(1.2)
<€) [ If@)Pu @),

where and in what follows, w*(z) denotes the Hardy-Littlewood maximal function
of w(z).

Remark 3. If we take p = 1, then Theorem D is an improvement of the
weighted Z? boundedness of ;.5 obtained by Chang, Wilson and Wolff [CWW] in
1985. In fact, in the result in [CWW], the condition assumed on the kernel function
is ¢ € C§° with [ p(z) = 0.

In comparison with the properties of g3-function and the parametrized Littlewood-
Paley 1.y function, the Lusin area integral S and the parametrized area integral 1.,
respectively, it is natural to ask the following problem: if the conclusions of Theo-
rems A, B and C still hold when we replace the operators g5 and S by the operators
py” and 1, respectively? The aim of this paper is to answer the interesting ques-
tion above. However, we will get more in this paper. In fact, we will give the
weighted weak type (1,1) and L? estimates for the operators 1,. As its corollary,
we will obtain the weighted boundedness of 1.%,. Before stating our results, let us
recall some definitions.

For Q(2/) € LI(S" 1) (1 < g < o0), the integral modulus w, () of continuity
of Q is defined by

@) = s ([ 10 —owpao))

l€l<é

where ¢ is a rotation on S~ and [|£]| = supcgn—1 |€2” — 2/|. A nonnegative
locally integrable function w is said to satisfy the doubling property if there exists
a constant C' > 0 such that w(2Q) < Cw(Q) for any cube @ C R™.
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The main result in this paper is as follows.

Theorem 1. Suppose that w(z) is a nonnegative locally integrable function to
satisfy the doubling property. Let Q € L2(S"~1) satisfy (1.1) and for some o > 1

(1.3) /01 “’2(§5) (1+ |logd|)7ds < oo.

(i) If vy >n/2 and A > 2, then

/ w(x)de[C(l—HT\)/ﬂ]/ £ (2)[w*(z)da for any B>0;
{zeR™:u? (f)(x)>8} Rn

(i) Ify>n/2, 1 <p<2and A > 2/p, then
| it n@retads < Conlel) [ 1P @),

(i) 1f0 <~y <n/2, 4= <p<2and A > 2/p, then

[ O @rus < c6ulr) [ 1f@Pe @),
R R

Note that the function © in Theorem 1 needs to satisfy the condition (1.3),
although this is a very weak smoothness condition. However, below we will see
that for the case 2 < p < oo, in the results of weighted LP-boundedness for the
operators £, and 44, the function  has not any smoothness on the unit sphere.

Theorem 2. Suppose that 2 < p < oo and w(x) > 0 is a locally integrable
function on R™. If Q € Llog*L(S™ 1) satisfying (1.1), then for v > 0 and A > 1,

i (Dapuaa < ©/y / @) (@) *w(a)~ ¢ Dda,

where C' is a constant independent of f and w.

Remark 4. Obviously, the conclusion (i) of Theorem 1 is the weighted exten-
sion of the conclusion (a) of Theorem A. The conclusions (ii) and (iii) of Theorem
1 extend the conclusion (b) of Theorem B for the case 1 < p < 2, and Theorem
2 is an extension of the conclusion (b) of Theorem B for the case 2 < p < oc.
Moreover, it was shown in [DLX] that the condition (1.3) is weaker than the Lip,,
condition for 0 < a < 1, and it is well known that

Lipa(S" 1) (0<a <1) S LYS" ") (¢>1) G Llog™ L(S™ ).

Hence the conditions in Theorems 1 and 2 are weaker than that in Theorems A and
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B. In particular, if we take p = 1, then Theorem 2 is a substantial improvement of
the conclusion (b) in Theorem B for the case 2 < p < cc.
Note the following fact: for any x € R"

(1.4) e (f)(w) <237 (f) ().

(For example, see the proof of (19) in [St2, p. 89]). Hence the weighted weak (1,1)
and the weighted LP-boundedness of 1., are direct results of Theorems 1 and 2.

Corollary 1. Suppose that wand €2 satisfy the same conditions as in Theorem 1.
(i) If v > n/2, then f{meR": Mg(f)(mbﬂ}w(x)dx < [CA+|7))/8] Jgn | f(@)]
w(z)*dx forany (> 0;
(i) f v > n/2and 1 < p < 2, then [, p&(f)(x)Pw(x)dz < C(v,|7]) fzn
|f (@) [Pw(z)*da;
(iii) 1f0 <y <n/2and nigw <p <2, then [o, pl(f)(z)Pw(x)de < C(v, |7]) fzn
|f (@) [Pw* () da.

Corollary 2. Suppose that w(z) and  satisfy the same conditions as in
Theorem 2, then for v > 0,

| st@rutade < ©/) [ 1P @ o) 0 Vs, 2<p< .

where C' is a constant independent of f and w.

Remark 5. As shown in Remark 4, Corollaries 1 and 2 extend Theorem C, and
the conditions in Corollaries 1 and 2 are weaker than that in Theorem C. Similarly,
if we take p = 1, then Corollary 2 is a substantial improvement of the conclusion
(c) in Theorem C.

We only give the proofs of Theorems 1 and 2 in this paper, taking (1.4) into
account. This paper is arranged as follows. In §2, we first prove the conclusions (ii)
and (iii) of Theorem 1 by applying the conclusions (i) of Theorem 1 and a Banach
space valued version of Stein’s interpolation theorem of analytic families of linear
operators. The proof of the conclusions (i) of Theorem 1 will be put in §3, because
its proof is considerably long. Finally, in §4 we will give the proof of Theorem 2.
In this paper, C(vy, |7|) will express a constant which depends on ~, |7| and n, o, A,
but not on f. Moreover, C(vy, |7|) may be different from line to line.

2. WEIGHTED L? (1 < p < 2) BOUNDEDNESS OF 4,

In this section we will give the proof of the conclusions (ii) and (iii) of Theorem
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1 under the conclusion (i) of Theorem 1 holds. In the proof, we will apply the
following Banach space valued version of the interpolation theorem of analytic
families of linear operators.

Lemma 2.1. Let B be a Banach space and B’ be its dual. Let S = {z €
C;0 <Rez < 1}, (X,u), (Y,v) be measure spaces. To each z € S there is
assigned a linear operator 7', on the space of simple functions in L!(X) into B-
valued measurable functions on Y such that (7", f)g is integrable on Y whenever
f is a simple function in L!(X) and g is a B’-valued simple function in L1, (Y).
Suppose further the mapping

2= [ (@pgav

is analytic in the interior S° of S, continuous on S, and there exists a constant
a < m such that

e—alyl log

[ @ngav

is uniformly bounded above in the strip S. Finally suppose

HﬂnyLqBO(Y) < Mo(y)|| fllzro(x) and HTl-l—inyLqu(Y) < Myl e (x)

for all simple functions f in L!(X), where 1 < Pj, ¢ < oo, Mj;(y), j =0,1, are
independent of f and satisfy

sup e Wog M;(y) < o0
—00<Y< 00

for some b < 7. Then, if 0 <t < 1, there exists a constant AM; such that

HthHLfo(y) < Mt”f”[,m(x)

for all simple functions f provided 1/p; = (1 —t)/po +t/p1 and 1/q = (1 —
t)/ao +t/aq.

The proof of Lemma 2.1 is quite similar to the proof of Theorem 4.1 of Chapter
V in the book by Stein and Weiss [SW, p. 205]. We therefore omit the details here.

Let us now return to the proofs of the conclusions (ii) and (iii) of Theorem 1.
First we consider the conclusion (ii). Note that for the case A > 2, the conclusions
(ii) is obviously. In fact, it is a direct corollary by using weighted interpolation
Theorem between Theorem D and the conclusion (i) of Theorem 1. Hence, to prove
the conclusion (ii), it remains to consider the case 2/p < A < 2. We will apply
Lemma 2.1 to finish the proof.
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Forl <p<2and2/p < X\ <2, we take a number a to satisfy 0 < a < A—2/p.
Consider the L2(R'/*; dydt /¢"*+1)-valued linear operator 72, which is defined by

@1) T!(w,y.0=(

z+1+(A—2/p)—aln/2
L yeeoe 1/t_p/ 2 L

t+|x—y| <t [u|"=

It is easy to check that if we take z = 2/p — 1 4 a then
(22) ” 2/p 1+a ( €, -, ')HLQ(dydt/t"‘H) = Mi’p(f)(x)

On the other hand, if z = iv and 1 + v with v € R, respectively, we have

(2.3) T8 f (2,5 ) | L2yt jen 1) = By r_s Jp—a ()2,
and
(2.4) T i f (5 ) | 2gdyae ety = bty s Jp—a(F)()-

Since A\—2/p >a >0, we have 1 + A —2/p —a > 1. By (2.3) and Theorem D
we get

@5) /Rn <”TZ%)f(x, . .)’]Lz(dydt/tn+1)>2w(x)dx < % - |f (z)|Pw* (x)da.

Note that 24+ A —2/p—a > 2. Hence for any 1 < p; < 2, applying the interpolation
theorem for (2.4) between Theorem D and the conclusion (i) of Theorem 1 we have

/R (I @ oty ) w(@)da < Ol r)
[ 5@l @ys,

Now take p; so that 1/p = (2—2/p—a)/2+ (2/p— 1+ a)/p1, ie. p1 = (2/p
—14+a)/(2/p—14a/2). Notethat 0 < 2/p—14+a<land1l <p; <p<2.
By (2.2), (2.5) and (2.6) and using Lemma 2.1 we obtain

(2.6)

p

| (@) wde = [ (183, 110G liaye) wlz)ds
<Clnlrl) [ 1@ (@)do

Thus we finish the proof of the conclusion (ii) of Theorem 1.
Let us now turn to the proof of the conclusion (iii) of Theorem 1. For 0 <

v < n/2, ni’;y < p< 2and X\ > 2/p, take a number a satisfying 0 < a <
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min(A — 2, 2 41— 2). Consider the L*(R’™; £t )-valued linear operator 7?2,
which is defined by

l )n(z+>\_%+1_a)/2t—n(z+%n£+l—%—a)/2
t+ |z =y

Q(u)
—u) du.
/|u|<t ‘u‘”—n(2+3§+1—%_a)/2 fly —u)du

Then we have

TZ f(z,y,t) =(

*,n(z+%l3+1—%—a)/2

(2.7) HTff(w,-,-)HLg(%) :MA—%+1—Q+Rez (f)(=),
(28) T3y )y = 57 (),
*,n(iv+%l3+1—g—a)/2
29 IT21 Mty =55 (D@
and
*,n(iv+%l£+2—g—a)/2
(2-10) HT12+z‘vf(x7 ) ')H[ﬁ(M) = MA_3+2—Q ! (f)(x)
tn+1 D

Let 2o = 22— {2(%2 — 1) —a} =2 —1+a. Notethat 0 < zo < 2 < 1. Take
p1 SO that
1_1—20 20

p 2 p1’
ie. pr=2/p—1+a)/(2/p—1+a/2). Then we see that 1 < p; < p < 2. For
0 < Rez <1, wehave Re {n(z+22+1-2—-a)/2} = n(Rez4+2+1-2—a)/2 > 0.
We see also that \—2+1—a+Rez > 1+Rez > 1. Hence, by (2.7) and Theorem
D, we get

*,n(z+%l3+1—%—a)/2

HHTff(% g ')HL2(%) HLQ(w) = HMA—%—I—I—Q—I—RG}Z (f)(x)Hp(w)
C

<
N 2y _2_
\/n(Rez—i— L t+t1l1-5—a)/

11l 22
2

Naturally, for z = iv we have

/ (1726 ) ) w(a)de

C

(2.11)
< @R @),
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NotethatRe{n(ier%—§+1—a+1)/2} =7y+n—3—% >3 1<p <2and

A— % +2—a>2>2/p;. Hence, by (2.10) and the conclusion (ii) of Theorem 1,
we get

p1

2
/R" <HT1+ivf(x7 ) N’L%%)) ’U)(fL')d(L‘

*,n(iv+%ﬁ+2—%—a)/2

2.12) = [ (£)@))" w(a)de
< Clnln+27)) [ (@) (@)da.

By (2.8), (2.11), (2.12) and Lemma 2.1 we obtain

o1 | (@) wirds = [ (1228, s wla)da

< Clnlel) [ If@)Pu @)da.

Thus, we complete the proof of the conclusion (iii) of Theorem 1.

3. WEIGHTED WEAK (1,1) BOUNDEDNESS OF /1,”

In this section we will prove the conclusion (i) of Theorem 1, that is, we will
give the proof of weighted weak (1,1) boundedness of ;,””. We need the following
lemma, which is an extension of the result obtained by Kurtz and Wheeden in 1979

[KW].

Lemma 3.1. Letl <g<ooand p=-~+ir (0,7 €R) with v > 0. Suppose
that €2 is homobeneous of degree zero and satisfies the L ?-Dini condition. Then,
there exists C' > 0 such that for any 2 > 0 and |y| < iR,

¢ N\
U )
R<|z|<2R
WITR 4, (8)

(o \y\ q
< C(1 + |rf) RV ”{HQHLQ ol [P0 51
VR Jyer 0

QUz—y) Q)
[z —ylrmr fafrr

where C' is independent of R and y.

Proof. First we note that if p = v+ i7 and |y| < |z|/2, then

1 1
|z —y[re fz[re

<+ [r)—1

(3.1) -~ W.
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In fact, for |y| < |x|/2 we have

1 T — 3
(3.2) §<1—%g‘my‘g1+%<§.
On the other hand, it is easy to see that
(3.3) 0> log(l —t) > —2(log2)t for 0<t<1/2,
and
(3.4) 0<log(l+t)<t for t>0.

Thus, if |z — y| < |x| then by (3.2) and (3.3) we have

|z |

< 2(log2)m.

2] — ||

|z]
if |z —y| > |z| then by (3.2) and (3.4) we have

log

—y\‘ < ‘bg
||

0 < log [z~ yl < log <1 + M) < Iyl < 2(10g2)u.
|| lz|) |zl ||
Hence
(3.5) ‘log \x‘;‘y\ < 2(log2)% for |y < |z|/2.
Note that
1 1 1 1

o —ylr=r Jz|e| T e — gt o=yl

o =y Ja] 77| J2 |

- — | e = 7 el

lz—y[» [z ||
By (3.2) we have
1 1 |y
=y " e | = T
On the other hand, by (3.5)
T _ i — |piTloglx| _ jiTloglz—yl| — _ it log(|lz—yl/|z|)
2|7 = Jz —y['T| = le e |[=1—e |
< |r10g 2= y" < 2(log2)|r ]
|| ||
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Thus we obtain (3.1). It is easy to see that |y| < |z|/2 under the conditions of
Lemma 3.1. Therefore, by (3.1)

Qz—y) Q) :‘Q@)( 1 1 >+Q(x—y)—Q(x)

o —yln=e x| o —ylr=e x| |z —y|=r

< o1+ @) —Y_ 4 =y — )l

T T
yl 1@ -y) - Q@)
< 0+ i) (1960 ey + =),
It follows that
( / Qz-y) Q) | dw)“Q
Re<lz|<2r |12 —y|"P  |x|"mP

o+ \)[ a— )"
<C(l+1r / PR x)
( R<|z|<2R || (n=7+1)q

— ) — q 1/q
([ mepoaen,))

From [KW] we know that

1/q
0 ‘y‘q —(n— <‘y‘>
R qi—’y—}—d <C|22 n R”/q (n—v)
</<|m|<2R‘ (1‘)‘ ‘x‘(” g z ” HZQ(S 1 i

and

1/q
‘Q((L‘ - y) — Q(x)‘q n/q—(n—a v/’ do
/ ‘ (n—’y)q dx S CR /a—( ) wq(é)F .
R<|z|<2R | lyl/2R

Thus we prove Lemma 3.1.

Now let us return to the proof of the conclusion (i) in Theorem 1. Note that
A >2and p=~+ir withy > n/2. Denote £ = {x € R" : f*(x) > (3}, by [FS],
we have

(36) w(E) = / w)de < S [ 1f@)|w*(2)d.

E ﬁ R™
Let £ = UQ;, be the Whitney decomposition, {Qy} is a sequence of the cube with
interiors are disjoint. For f € L} (R™) and any 3 > 0, denote

loc

hg) — f(z), for ze€ E°
@)= L sy, for e Q.
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By [St2], h(x) < Cﬁ a.e. z € R™. Now set b(z) = f(z) — h(x). Then b(z) =
for z € E°, [, b(z)dz = 0 for each k. Denote

b(z), for ze€Qy
0, for z¢ Q.

We only need to prove (i) holds for h(z) and b(z), respectively. By (3.6) and
Chebychev’s inequality

/ w(z)dx 5/ w(x)dx—i—/ w(z)xrn\ g(z)dx
{@:p? (h) (x)>5} el {@:p? (h)(x)>5}

<5 [ @ @)s
5 [ )@ () p(e)da.

By Theorem D and noting that h(z) < CB8 a.e. z € R", we have

/n M:’p(h)($)2w($)XRn\E($)dw <C - \h(x)\2(wXRn\E)*(x)dx

<8 [ Il ) @)da.

bi(z) =

By [CW, pp.282-283], we have

5 [ @ lexan ) @de <08 [ @@

Thus
c .

(37) wla)de < /R 1 (@)™ () dae

To prove the conclusion (i) of Theorem 1, it remains to show that

/{m:ui’”(h)(mbﬂ}

(3.8) w(z)dr < % |f(x)|w*(z)dz.
Rn

/{m:ui’”(b)(mbﬂ}
Denote by xz;, and a; the center and side length of Q, respectively. Let By be

the ball with center at z;, and radius r; = \/—_ak for each k. Moreover, we denote
E* = U,8By. Since w satisfies the doubling property and (3.6), we have

w(z)dr < w(E¥) + w(T) X (rn\ g+) (2)dx

/{l‘ 1y’ (b)(z)>6}
< Cw(FE / z)dx
+5 Jw(z)

=3 /R [f @)l (@)de + 5 /(E*)c w3 (0) (z)w(w)de.

/{l‘:u;’”(b)(mbﬂ}
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Hence, to obtain (3.8) it suffices to prove
09 [ sreEe@drsc i) [ i@
By the Minkowski inequality

| @@= [ pewaed
(E*)e

(U8B;)e

¢ n
N /(USB]-)C [//Ri“ <t + |z — y\)

Qy— =z
Z/|y (yi_)bk(z)dz

k —z|<t ‘y - z‘n P

= Joy [//Rnﬂ ()

‘/y z|<t \y — z\n )pb (2)dz _dydt ]1/2w(x)dx.

2 dydt
75n—|—2'y—|—1

]mmmm

tn+2'y+1
Let
An
. [// (=)
1 U8B;) ly—z|<t t-Hx_y‘
) 2 dydt 1/2
I/y z|<t \y—Z\” P bi(2)dz W w(x)dz,
An
2= Lo S s (=)
2 U8 5;) ly—z|>ty€4 By, t+ |z —y|
Q(y ) 2 qydt 1Y?
I/y A<t |y — 2P bi(2)dz 2y w(z)dx
and
5= [ {// e
3 U8 B;) ly—a|>tye(aBy)e \t + [T — Y|
2 1/2
/ ) by (2)dz % w(z)dz.
ly—z|<t ‘y— Z‘” P 29+
Then

(3.10) /“ P ) @)wdz < Ty + Jo + Js.
(USB,)

351
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Below we will give the estimates of .J;, J, and J3, respectively. First let us consider
Jy1. We have

T {//y

‘/y z|<t \y—z\n )p bi(2)dz

= o K//y )

yE(4By,)°
ly—z|<t ‘y - z‘ p

2 dydt
< Ji1 + Ji2.

2 1/2
dydt
RS ] w(z)dzx

1/2
W] w(z)dx

Note that for fixed k, z € (8By)¢ by « € (U8B;)¢. Thus for y € 4B;, and z € Q,
we have

|x — xp| —drp < |z — o] — |y — x| < |z —y| <t
and |z —y| ~ |z — x| ~ | — 2| ~ |z —xK| — 41k, |y —2| < 4drp+ |z — k| < 5r.
since [, [b(z)|dz <2 [, [f(2)|dx, applying the Minkowski inequality again, we

get
Ju S/ / |b(2)|
(U8B;y)© Z QA
22 dydt \'?
(//yy Tz‘\<<ff |y - z|2" 2y gnt2y+1 dzw(z)dz
< / 3 / |b(z)|[ / M
(U8B;)° | Y Qk |ly—z|<5rk |y_ Zl noey
> dt 1/2
(/ m)dy] dzw(x)dx
|x—xpK|—4rk
(3.11)

2 1/2
<o [wai( [ BuoIa)
r Y Qk |ly—2z|<5rE |y - Zl v

w(z)
dxdz
/(USBj)C (|z — | — dry)n/2+y

y—n/2 w(x)
0D / |b(2)|dz/ (lx_xkl_(m)nwdx

Qk (U8B,)e

<C T 7_"/2/ f(z dz/ w(z) da
;( k) o | ( )l (U8 B¢ (|$ _xkl _ 47ak)n/2+'y
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r) 2| f(2 3 711}(30) rdz
sc;/@m 17 )';/ A e

2l <|x—z|<2H1ry, (
[

1
SC%:/lef(Z)I;W
/l |<2i+1 (Qﬁgi))dxdz (since~y>n/2)
<C z)|w* (2)dz
< ;/Q Fw (2)

<c / ) (2)dz

As for Ji2, we have

/ E |:<// ly—z|<t // ly—z|<t )
USB t<\1/ ackH-Q?"k >ly—zp |+2ry
y€E(4By)¢
2 1/2
dydt
/ ) br(2)dz e w(z)dzx
ly—z|<t ‘y - z‘n P

nt+2y+1
< Jiy + Jiy.

If 2z € Qi = € (U8B))", y € (4By)° and |z — y| < t, it is easy to see that
ly — x| > drp, [y — 2| ~ |y — x| and |z —ap] < |z —y| + [y — o] <t |y —xp.
Thus for ¢ < |y — xk| + 27k, we have |z — x| < 2|y — zx| + 21, < 3|y — zi).
Noting that for a > 0,

( ) |y—xg |+27g 1
3.12 / _
ly—2 t”‘“ \y—z\“ (ly — k] + 2r)|®

Cry
=y — zfett

and taking o = n + 2+ in (3.12), we have

we [ Lo ([
(U8B;j)e© t<ly—zp|+2ry

\1/(4%\<)t
yE(4B},)°
1Qy —2)2 dydt \?

|y — z|2n—27 gnt2y+1 dzw(z)dz

(3.13) < /(USB]-)CZk:/Qk [b(2)] [/ R

lz—xp |<3ly—xp |

R A WA R
ly — 2227 | Y dy| dzw(z)dz

y—2|

<c / / b(z ( /
(USBj)CZk: Qk‘ =)l YyE(4By)°

lz—xp |<3ly—xp |
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2y — 2)I? Tk
‘y _ z‘2n—2’y ‘y _ z‘n+2’y+1

<C
/U8B Z:/Q]C </ y€e(4By)¢

\ﬂc—ﬂckl\ﬁg\y—%\
2)[? Tk
\y _ z‘n+1/2 y — xk‘2n+1/2dy dzw(z)dz

2y —2)Pr* \2
<c / \b(z)\(/ K2y = 2)Pri N g
Zk: Qn ye(Bye |y — 2|2

1/4

w(z)r T
— - F __dx
u/(USB- . ‘(L‘ _ (L‘k‘n+1/4
1/4
w(z)r
<C / dz/ _ O g
Z 2 (UsB)e | — x|/

SC/ | f(2)|w*(
Rn

The last inequality is obtained in the same way as in the estimate (3.11).

Now we give the estimate of J2,. Note that Q, C {z : |y — 2| < t} since
y € (4Bg)¢and t > |y — xx| + 27, Inaddition, |z —zx| < |z —y|+ |y — zx| < 2t.
Hence by the cancellation property of b on @, we have

1= f o 2 (Mo | G5 - 055)
bk(z)der)ww(x)d”C
Qy — 2) Qy —ap) |

75n—|—2'y—|—1
— T Ty

“Lionr 32 iy

2 1/2
x(/»yy__é?% W)dy) dzw(z)dz.

ly—z|<t

1/2
dy) dzw(z)dz

Take an ¢ such that 0 < ¢ < min{1/2, (A—2)n/2,v7—n/2,0—1}. Then we have

/ dt / (log )*+#dt
s, AT T [ st 2 n+1t2n(10g )2+
ly—z|<t ly—z|<t
(log £+ )2+2Edt

/t>|y—9[:/1€|—|—2r/1C t2y—n+l (\x - xk\/2)2”(log |J32—r§k| )2+26 '

IN
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Thus
Qly — 2) Qy — zp) |?
s [ S [
(U8B 1 JQx y€(4By)e ly — 2| ly — o
log L)2+2eq¢t
(3149 * </ ( grk) |z—zg| )
>ly—ap[+2rs 277 (Jo — 2] /2)?(log S5 )22

1/2
dy] dzw(z)dz.

To complete the estimate of JZ,, we give an inequality as follows.

Lemma 3.2. Let A > e, n > 2e. Then

0 (10g8)2+25 (logA)2+2e

Proof. Integrating by parts twice, we get

> (logs)*+2e ds (log A)*+2¢ N 2 4 2¢ (log A)112¢
A gn+1 nAﬂ n2 AN

(3.16)

9 [e§) 2¢e
+( + 25)21 + 2¢) / (log s) is.
n A g+l

By the decreasing property of k’% for s > e, we have

> (logs)%* (logA)* [~ 1 (log A)%
/A RS ds < VvE ISR ds < (3'71477 .

Thus, (3.15) follows from (3.16).
Let us now continue to estimate J7,. Let ;- = s. Then

00 (log %)2+25 1 o) (log 5)2+2¢
fly—mk|+2m —er—dt = e f\y—%\_ﬂ e ds.
Tk

Since |y;—m’“|+2 > e by y € (4By)¢, taking A = %JFQ, n =2y —mnand
applying 63.15), we have

(3.17) dt < C

$2y—n+1 - (‘y _ xk‘ + 2rk)2'y_n .

/OO (logi)%ﬂg [1Og(|y::k| +2)]2+25
|

y—T|+2rg
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By (3.14) and (3.17), we get
1
J2, <C / / b(z)
e SO amy (=l 2tog Bz e Jo, ")

X(/ Qy-—2)  Qy-—m) |°
y€(4By)¢

— 2z Jy —aprr
log (26l 4 2))2+2¢

(ly — x| + 2rp)>r—m

1/2
dy) dzw(z)dz.

For y € (4B)¢ and 2z € Q, we have |z — x| < 7 < @. Applying Lemma
3.1 we get

%ch/ i /1M

 (Jo = ax] /2)"(log L5kl )14

i (/ Qy — 2)
1—2 2lrk§|y_$k|<2l+17’k

ly — z|"=*

_ lo 2y +9 2+4-2¢ 1/2
_ Q(_y ik_)p 1 gg 2)7] — dy) dzw(x)dx
ly — x| (2 rk—|—2rk)
(3.18)
1
<o [ | 1)
§: (o — el /2)"(log ") e Ja,
- (l+2)1+6 L. \n/2—(n—
1 oly., \n/2—(n—7)
< (21rk+2rk)7—n/2( +ITD (@)
|2~z
X |2 — ol #rk w2(5)d(5 dzw(z)dz.
2y, le—zp| ¢
2H‘1rk
Note that
T wn(0) . [T wa(0) + | logd))?
ds = s
\;;;ﬂg\ 0 J—‘;;j‘ L 6(1+ |logd)
(3.19) " r"i_ﬁ |
C QZrk w2(0)(1+ |logd|)?
do.
S50 fie 5
2l+1y

By (3.18), (3.19) and the condition (1.3), we get
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hscarmy | e/, 1)

usB))© |z — xk|"(log _Ia:%zkl )ite

[z—zy|

> 1 C [ we(d)(14]logd|)?
XZ I+2 14'5{21—1—”7 z_ack w2(O)( 5‘ D dé}dzw(x)dx

=

Cltir Z/UsB |z — 2| (log i m’“')”‘f/ )
X <1 —|—/0 w2(§5) (1+] 10g5\)”d(5> dzw(x)dx
w(z)
C T z dzdz
<ourm) X [ el f | =

c+irh | 1@ ()

The last inequality is also obtained in a way similar to the estimate (3.11). Thus,
by (3.11), (3.13) and (3.20) we obtain

(3.20)

321) B0l [ I ()

Now let us estimate J,. From y € 4B,z € (U8B;)¢ and z € Qy, we see that
ly — z| < 5rg, |z —y| ~ |z — x| and

ly — x| > |z —xk| — |y — x| > |z — xx| — 47k > |z — 21| /2.
By the Minkowski inequality we have

¢ 2n+2¢e
v [ Ll e ()
2 /(usB]-)cZk: Qk‘ ( )‘[ \y—ac‘\y>\ac‘—za:k\/2 t+ |z —yl

ly—z|<t

\?/—ZL<BS1”1€
y€E4B,
Q®y — 2)]> dydt 1"

|y — z|2n—27 gnt2y+1 dzw(z)dx

(3.22) Qy—2)?
<C/U83 Z/Qk"”‘[/w@k (o—zal /227y 2o

ly==l 2nt2e 1/2
- < u/O t2n+5+1 ‘y — 2‘2’7—71—5 dt) dy:| dzwdzx

<c | owa( [
(UgBj)cZk: Qk ly—2|<5ry
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Ry — 2)Ply — «f°
(|l — @l /2)2n+2ely — z|ne

<c INEIY
(USBj)CZk: Qk ly—2|<5ry

2y — 2)I?
(lz — @l /2)* ey — z["—*

SR INCIVAN ==k

/ SCLCO YR
(U8B, | — xp |t/

<0 [ 1@ )z

The last inequality is obtained in the same way as in the estimate (3.11).
Finally, we give the estimate of .J;. Denote

An
J31 —/ [// c(4By)° <¥>
- y
U8B;) t<|y— ack\fg(s)rk t+ |z —yl

ly—z|>

‘/y 2<t \y — z\n )p L (2)b(2)dz

1/2
dy) dzw(z)dzx

1/2
dy) dzw(z)dx

2 dydt

1/2

and

An
- Y
(USB;) a8 <t \ T+ |z — y|

ly—z|>t /
2) 2 qyatr 1V?
‘/y o<t \y - 2\” e CACU L ey (z)dz,

where 3(e) = 8¢(t29)/2, Then J3 < Js1 + J3p. By y € (4B,)¢ and z € Qy, we
see that |y — z| ~ |y —xx| and |y — x| < |y — 2| + |z — xx| <t +rp. For a >0,
by (3.12) we get

(3.23) dt <

/Iy—l‘kl-f—ﬂ(s)rk 1 Cry,
| S

y—2|

Since
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J31 S/ / [(// ye(aBy)© +// ye(aBy)©
USB;) o ly—a|>t ly—z|>t

t<|y—z [+B(e)ry t<|ly—z [+B(e)ry
ly—z|<t ly—z|<t
=z |<2|ly—zk| =z |>2|ly—zk|
P didy 17 (2)d
ZWw\r)axr
t+ ‘(I,'—y‘ ‘271 27 tn+2’y+1

< Jy +J3,
by (3.23) we get

Jh < / / b(z [ /
o (USBj)CZk: Qk‘ (=)l YE(4By)¢

le—zp [<2]y—xp |

/|y—mk|+ﬂ(5)7’k Qy —2)?  dtdy
|

1/2
‘y — z‘2n—2'y tn+2'7+1:| dz ’U)((I,‘)dm

y—2|

<C / b(z (/

lz—zp <2y —xp |

2y — 2)? Tk
‘y _ z‘2n—2’y ‘y _ xk‘n—l—Z’y—i—l

1/2
dy) dzw(z)dz.
Using the same method of estimating .J7, in (3.13), we may get
(3.24) Jh<c / ()] (2)d.
Rn

Now we consider J2,. Take 0 < ¢ < min{1/2,v — n/2,0 — 1}. Then, since
ly — 2| = o —xpf — |y — 2 = |2 — x| /2 and |y — 2| ~ [y — zx], by (3.23) we

have
Qy—2)I?
T3 S/ > / b(2) [/ oy )
7 Jwssy)e 4 le( | ve@Be |y — z|2n=2y

le—zp | >2|y—zp |

|y |+6(e)Tk ¢ In+2e ” 12
><</|| (m) m)dy] dzw(z)dx

y—=z

0 <L, SLO

lz—zp | >2|y—zp|

ly—arl+B8(e)rk 42n+2e-n-2v-1
7@)
=

Qly — 2)? 1/2
x%dy] dzw(x)dx
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< 0/ |< Q(y—2)|? 1
a (U8B; )f . gi&gf;: ‘|y—z|2"—27 |z — x| 2n+2e

|y —xk|2’y n—2e+1 dy> dzw(x
= C/ / |</ 4B)C

(USB )(‘ . Zi‘(>2‘ky) "

1/2
|Q(y_z)|2 Tk
|y — 2| 2e L [y — g |2nt2e dy dzw(z)dx

00y - 2)Pr N
<c / b(2) ( / Ry =2)ry —
zk: Qk,| 2 (aBgye |y —z[nm2ett

;
—= w(x)dxdz
/(USBj)C |z — xp | e (=)
< C'/ |f(2)|w* (z)dz.

Finally let us consider Jso. By y € (4Bk)¢ and t > |y — x| + 5(g)rk, we have
Qr C {z: |y — z| < t}. On the other hand, it is easy to see that

tHr—y| > tHe—zk|—|y—2k| > ly—zkHB(e)riHr—zK|—|y—2k| > [v—2KHB() 7

Thus, by the cancellation property of b on @ and the Minkowski inequality, we

have
t >\TL
J32 S/ / <// (4B,)¢ <7>
(U8B;)° ly— az/;j-&-ﬁ(]z)rkq t+ |z —yl

ly—z|<t<|y—=z|

Qy—2)  Qy-—=x) |* didy \'"?
= " ly—mpr| mmeT) v
[ S Ll [ e
(s 5 S ey s
An [10g(t+|90 yl )]2—1—25

t+|z—y| An—2n
(t + |2 — y|)?" [log( =ty 222 (£ + o — )

dtdy
nt2y+1

-2  Qy-o)
y— 2 Ty oulr

1/2
X ) dzw(z)dzx
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5 / b(2)]
8B 7 Jan |z — zk| + B(e)r)n [log( L=l yj1e

t/\n[log(w)]ﬂk
X c Tk
( / /y-ﬁ,ffﬁl’é;rk« (t 4 |z — y|)An=2n

ly—z|<t<|y—z|

<C

—z)  Qy—a) [
\y - 2\” P |y — apnr

dtdy
75n—|—2'y—|—1

1/2
) dzw(z)dx

[b(2)]
<C
B /(U8B]-)c Zk: /Qk (|l — x| + /B(E)rk)n[log(|m_$kL‘:ﬂ(5)rk)]l+6

(] e [R5 BRI
yE(4By)© ly — z|n=r ‘y — xg|rP ly—zk|+6(e) Tk

ly—z|Zly—z [+8(e)Ty

A [10g( t+|9f»‘ yl )]2-1—25

1/2
(t+ [z — y\)A” 2ntn+27+1dtdil/> dzw(x)dz.

Notice that the function g(s) = 1222 s decreasing when s > e(2+2)/¢ and

SE

t+|x —y > ly — zg|+8(e)re+|x — y S ly — mlﬁﬁ(@m > Ble) > @R/
Tk Tk k

and hence

(|?l_‘13k HB(e) Tk )]2+25

log(* 2 tlamyl  ymand 0 Do
('f-f-lﬂf»‘—yl)5 —9 Tk g Tk N (Iy—ﬂ»‘kl-lﬂ(f) )
Tk Tk
That is,
1 t+|m yl\12+-2¢ log( [¥=2r|HB(E)Tk \1242¢
29 L R e )

A R T EY G

Since t + |z — y| > 2t, we have
get

t+|m IS 57 Together with this and (3.26), we
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dt

/Im—yl [log (t+|$ yl )]2+2e
|

y—al 4By (EF |z — y[)An=2ngnd2yHl=dn

/|a;—y| [1Og(t+|90 Z/|)]2+25
<
" Jiy-alisem. (e —yl)e

1
(t + ‘(L‘ _ y‘)kn—2n—6tn+2'y+1—>\n

dt
(3.27)

< - : dt

/00 [log(leabBE)re 1242 o
y—zel i ([Y—zk|+B(e)ry)" 21l

[log(m)]%% 1

(ly—wrl+BE)rn)  (y—zal +8(e)ra)> =

[log(w)]me

(ly — x| + Be)re) ™

By (3.27), we have

[b(=)]
(U8By)e Zk: ‘/Qk (| — wk] + B(e)ri)" [log( Lty 1+

X(/ Qy—2)  Qy—a) [
y€(4By)¢

_ n—p _ n—p
ly—a|>ly—zp |+B(e)r, [y — 2] |y — il

J3p < C

[log (_l?/—l‘k [+8(e)Tk )} 2+2¢

Tk

(ly = @kl + Ble)rs)>—n

1/2
dy) dzw(z)dz

|b(2)]
C
: /(U837<) Z/Qk Tw z | J)rﬁ( )Q() [log(—”” mk'w:ﬂ(s)r_k)]lﬁ
x y—=z Y — Tk
yE(4By)¢

[y =2 " Jy— il
ly—zk|+B(e)ry \12+2€
[log (=722 )]

(ly — @] + Ble)r)* "
Applying the same method of estimating JZ,, we may get

T < CIrD [ 1@ )iz
Rn

From this and (3.24), (3.25), we see that
(3.28) Js < C(L+]7]) Jgn | (2)|w"(2)dz.

1/2
dy) dzw(z)dz.
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Thus, from (3.10), (3.21), (3.22) and (3.28) we get (3.9)
L. i@ < e i) [ e
Thus, we obtain the conclusion (i) of Theorem 1 for v > n/2 and A > 2.

4. WEIGHTED LP (2 < p < o0) BOUNDEDNESS OF 1"

In this section we will prove Theorem 2. The basic idea of proving Theorem 2
is taken from [CW] and [TW]. When p = 2, Theorem 2 is just Theorem D, so we
only need to give the proof of Theorem 2 for 2 < p < co. By duality, we have

@y [ @ s =sw| [ O]

where h(z) > 0 and HhHL(p/Q)/(w) < 1. Since

/R 1P (f) (@) ?h(z)w () de

@ =L []. (my ) et s P ey
/ / o+ \21<n / h(x)w(x)<m>mdx)dydt.

By = {(y,t): tin/R h(z)w(z) (Wt_x‘)m\dx N zk}.

By [CW], for (y,t) € Epand |y — z| < t

b o b)) (m)mdw A oo hl@)u(a) (ﬁ)kdx

< Cw (2) M, ()(2),

Set

where
1
Ml =18 (T M%)

and B;(z) denotes the ball in R™ with center at z and radius ¢. It is easy to check
that C2% < w*(z) M, (h)(2) for (y,t) € Ej, and |y — z| < t. So, it also holds that
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of * f(y) = @ * (FX w1, (n)>c2¢3) () TOr (y,t) € E. Thus, we have

// o+ FH( feo W)l (ﬁ)kdx) dyds

2 dydt
<C) 2t /Ek |07 % (FXfur () >C2t}) (1) -
k

2 dydt
3) <2 [ el Ux om0
k T

> dt
<C) 2t /Rn (/0 |07 % (X fur b (m)>241) (9) 27>dy
k
:CZQHI/R 10 (f X g Mo (ny>c20)) () dy,
k‘ n

where p” denotes the parametrized Littlewood-Paley g-function (i.e. Marcinkiewicz
integral), which is defined by

W (f) () = ( [ It < ) @)/

t

By the L?-boundedness of ;. (see Theorem 1 in [DLY, p.15])

[ (O @Pha)u()ds
SCEID I T ——I

k

(4.4)

On the other hand, by [CW, p.293] there exists a constant C, independent of ~ and
£, such that

D okt /Rn |f(y)X{w*(y)Mw(h)>c2k}(y)|2dy
2

<C | If@Pw PR y)w P (y)dy.
Rn

Hence Theorem 2 follows from (4.1), (4.4) and (4.5).

(4.5)
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