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A GENERALIZATION OF BESSEL’S INTEGRAL
FOR THE BESSEL COEFFICIENTS

Per W. Karlsson

Abstract. We derive an integral over the m-dimensional unit hypercube that
generalizes Bessel’s integral for Jn(x). The integrand is G(xψ(t)) exp(−2π i
n · t), where G is analytic, and ψ(t) = e2πit1 +. . .+ e2πitm+ e−2πi(t1+...+tm),
while n is a set of non-negative integers. In particular, we consider the case
when G is a hypergeometric function pFq.

1. INTRODUCTION

The series definition of the Bessel function

(1) Jν(z) =

(
1
2z

)ν

Γ(ν + 1) 0F1

[
ν + 1

∣∣∣∣ − 1
4z

2

]
, −ν /∈ N,

and Bessel’s integral representation

(2) 2πJn(z) =
∫ 2π

0

exp(i(z sinϕ− nϕ))dϕ, n ∈ Z,

are well known and may be found in many textbooks; see, for instance, Ch. 7 in [1]
or Ch. 6 in [2].

We are interested in establishing a multidimensional generalization of (2). How-
ever, it is more convenient to work within the framework of hypergeometric func-
tions. Accordingly, we set z = x exp(−1

2πi) and ϕ = 1
2π + 2πt to obtain the

equivalent representation

(3)
(

1
2x

)n

n! 0F1

[
n + 1

∣∣∣∣ 1
4x

2

]
=

∫ 1

0
exp(x cos(2πt) − 2πint) dt, n ∈ N0.

In the sequel we shall establish a generalization of (3) in terms of an integral over
the m-dimensional unit hypercube.
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2. THE GENERALIZED INTEGRAL

Let boldface letters denote m-dimensional vectors with the customary dot prod-
uct. The analogue of the factor exp (−2πint) may reasonably be expected to be
exp (−2πin · t) , where n1, . . . , nm ∈ N0. It is less evident what should take the
place of exp(x cos(2πt)). Some preliminary considerations indicated that we should
consider G(xψ(t)), where

(4) ψ(t) = exp(2πit1) + . . .+ exp(2πitm) + exp(−2πi (t1 + . . .+ tm)),

while G is an analytic function. Introduce its Maclaurin expansion

(5) G(ξ) =
∞∑

k=0

g(k)
k!

ξk, |ξ| < R,

where for brevity g(k) is written instead of the derivative G(k)(0). The integral to
be investigated thus reads,

(6) I =
∫ 1

0

. . .

∫ 1

0

G(xψ(t)) exp(−2πin · t) dt1 · · ·dtm.

This may, on account of (5), be written

(7) I =
∞∑

k=0

g(k)xkL(k),

where

(8) L(k) =
∫ 1

0
. . .

∫ 1

0

[ψ(t)]k

k!
exp (−2πin · t) dt1 · · ·dtm.

Next, by the multinomial theorem,

[ψ(t)]k

k!
exp (−2πin · t)

=
∑
Jk

exp [2πi (µ1t1+. . .+µmtm−µ0 (t1+. . .+tm)−(n1t1+. . .+ nmtm))]
µ0! µ1 · · ·µm!

=
∑
Jk

exp [2πi (µ1 − µ0 − n1) t1] · · ·exp [2πi (µm − µ0 − nm) tm]
µ0! µ1! · · ·µm!

,

where the index set Jk is given by the inequalities

(9) µ0 ≥ 0, µ1 ≥ 0, . . . , µm ≥ 0, µ0 + µ1 + . . .+ µm = k.



A Generalization of Bessel’s Integral 291

Hence,

L(k) =
∑
Jk

1
µ0! µ1! · · ·µm!

∫ 1

0
exp [2πi (µ1 − µ0 − n1) t1] dt1 ×

· · · ×
∫ 1

0
exp [2πi (µm − µ0 − nm) tm] dtm

=
∑
Jk

1
µ0! µ1! · · ·µm!

δ(µ1, µ0 + n1) · · ·δ(µm, µ0 + nm)

=
∞∑

k=0

1
µ0! (µ0 + n1)! · · · (µ0 + nm)!

,

where δ(κ, λ) is Kronecker’s delta. The condition k = µ0 + µ1 + . . .+µm implies
that the last sum is empty unless we have

(10) k = (m+ 1)µ0 + n1 + . . .+ nm

for some integer µ0. Introducing for brevity

(11) N = n1 + . . .+ nm

we may now state the result,

(12) L(k) =




1
µ! (µ+ n1)! · · ·(µ+ nm)!

, k = (m+ 1)µ+N, µ ∈ N,

0, otherwise.

Inserting this into (7) we obtain

I =
∞∑

k=0

g(k)xkL(k) =
∞∑

µ=0

g((m+ 1)µ+N )x(m+1)µ+N

µ! (µ+ n1)! · · · (µ+ nm)!

=
xN

n1! · · ·nm!

∞∑
µ=0

g((m+ 1)µ+N )
(
xm+1

)µ

µ! (n1 + 1)µ · · · (nm + 1)µ

.

Thus, the final result is,

(13)

∫ 1

0
. . .

∫ 1

0
G(xψ(t)) exp(−2πin · t) dt1 · · ·dtm

=
xN

n1! · · ·nm!

∞∑
µ=0

g((m+ 1)µ+N )
(
xm+1

)µ

µ! (n1 + 1)µ · · · (nm + 1)µ

,

for |x| sufficiently small.
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3. THE HYPERGEOMETRIC CASE

Assume now that G is a hypergeometric function,

(14) G(ξ) = pFq

[
a1, . . . , ap

c1, . . . , cq

∣∣∣∣ ξ
]

;

we then have

(15) g(k) =
(a1)k · · · (ap)k

(c1)k · · · (cq)k
.

Furthermore, by the multiplication formula for the Pochhammer symbol we obtain

(α)N+(m+1)µ = (α)N (α +N )(m+1)µ

= (α)N (m+1)(m+1)µ

(
α+N
m+1

)
µ

(
α+N+1
m+1

)
µ

· · ·
(
α+N+m
m+1

)
µ

,

and, by insertion, we arrive at the desired integral formula:

(16)

∫ 1

0
. . .

∫ 1

0
pFq

[
a1, . . . , ap

c1, . . . , cq

∣∣∣∣xψ(t)
]

exp (−2πin · t) dt1 · · ·dtm

=
(a1)N · · · (ap)N xN

(c1)N · · · (cq)N n1! · · ·nm!

×(m+1)pF(m+1)q+m ×
[ PN
PD

∣∣∣∣[x (m+ 1)p−q]m+1
]
,

where the parameter sets are given as follows

(17) PN = {∆(m+ 1, a1 +N ), . . . ,∆(m+ 1, ap +N )} ,
PD = {∆(m+ 1, c1 +N ), . . . ,∆(m+ 1, cq +N ), n1 + 1, . . . , nm + 1}

with, as usual,

(18) ∆(ν, α) =
{
α

ν
,
α+ 1
ν

, . . . ,
α+ ν − 1

ν

}
.

As to the hypergeometric functions in (16) we must, in general, require p ≤ q + 1.
Moreover, in the case p = q+1 they are hypergeometric series for |x| (m+ 1) < 1;
otherwise, analytic continuations have to be considered.
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4. PARTICULAR CASES

We note some results obtained by further specialization.

4.1. Assume that one of the numerator parameters a1, . . . , ap equals a negative
integer −M . If M < N, the right-hand memeber of (16) vanishes. If N ≤ M ≤
N +m, the hypergeometric function on the right-hand side of (16) reduces to unity
and we are left with the prefactor.

4.2. For m = 1, we obtain ψ(t) = 2 cos(2πt), and the formula (16) yields,

(19)

∫ 1

0
pFq

[
a1, . . . , ap

c1, . . . , cq

∣∣∣∣ 2x cos(2πt)
]

exp (−2πint) dt

=
(a1)n · · · (ap)n xn

(c1)n · · · (cq)n n!
×

× 2pF2q+1

[
1
2

(a1+n) , 1
2

(a1+n+1) , . . . , 1
2

(ap+n) , 1
2

(ap+n+1)

1
2 (c1+n) , 1

2 (c1+n+1) , . . . , 1
2 (cq+n) , 1

2 (cq+n+1) , n+1

∣∣∣∣∣4p−qx2

]
.

We may, furthermore, take p = 0 = q, and replace x with 1
2x. This leads to (3).

4.3. Let m = 2, p = 1, q = 0, a1 = 1
2 , n = (n, 2n) . Moreover, let x → 1

3 ;
then on the right-hand side of (16) a 3F2[1] appears to which Watson’s theorem
applies. After a few steps involving elementary properties of the Pochhammer
symbol, and the duplication formula for the Gamma function, we arrive at the
formula

(20)

∫ 1

0

∫ 1

0

exp(−2πin (t1 + 2t2))√
1 − 1

3 [exp(2πi t1) + exp(2πit2) + exp(−2πi (t1 + t2))]
dt1 dt2

=
π

(
1
6

)
n

(
5
6

)
n

4n
[
Γ(1

2n + 7
12) Γ(1

2n+ 11
12 )

]2 =
1
4π

Γ

[
1
2n+ 1

12 ,
1
2n+ 5

12

1
2n+ 7

12 ,
1
2n+ 11

12

]
.

4.4. The case m = 3, p = 1, q = 0, a1 = 1, n = (n, n, 2n) , and x → 1
4 ,

is reminiscent of the preceding one. A parameter cancellation takes place, and we
obtain a 3F2[1] to which we can, again, apply Watson’s theorem. The formula
obtained reads,

(21)

∫ 1

0

∫ 1

0

∫ 1

0

exp(−2πin (t1+t2+2t3)) dt1 dt2 dt3

1− 1
4 [exp(2πit1)+exp(2πit2)+exp(2πit3)+exp(−2πi (t1+t2+t3))]

=
π

(
1
4

)
n

(
3
4

)
n

4n
[
Γ( 1

2
n+ 5

8
) Γ( 1

2
n+ 7

8
)
]2 =

1

2
√

2π
Γ

[
1
2
n+ 1

8
, 1

2
n+ 3

8

1
2 n+ 5

8 , 1
2n+ 7

8

]
.
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5. FURTHER GENERALIZATION

One might consider a functionG of several variables (see, e.g., [3]) in such a way
that the integrand would involve (for example) G(x1ψ(t), . . . , xrψ(t)). Although
the corresponding investigation would proceed along similar lines, and the function
L would again be useful, the resulting expressions would be rather bulky; we shall,
therefore, leave this approach aside.
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