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CONVERGENCE CRITERION AND CONVERGENCE BALL OF THE
KING-WERNER METHOD UNDER THE RADIUS LIPSCHITZ

CONDITION

Xintao Ye, Chong Li and Liying Hou

Abstract. The convergence of the King-Werner method for finding zeros
of nonlinear operators is analyzed. Under the hypothesis that the derivative
of f satisfies the radius Lipschitz condition with L-average, the convergence
criterion and the convergence ball for the King-Werner method are given.
Applying the results to some particular functions L(u), we get the convergence
theorems in [7] and [1] as well as some new results.

1. INTRODUCTION

Let E and F be real or complex Banach spaces and let f be a nonlinear operator
from a nonempty subset U of E to F . Solving the operator equation f(x) =
0 is a basic and important problem in applied and computational mathematics.
The most common methods to solve the equation are the Newton method and its
variations. One of the variations is the well-known King-Werner method, which was
independently proposed and studied by King [3] and Werner [14]. The King-Werner
method with initial points x0 = y0 is defined by

(1.1)

xn+1 = xn − f ′(yn)−1f(xn),

zn+1 = xn+1 − f
′
(yn)−1f(xn+1),

yn+1 = (xn+1 + zn+1)/2.

n = 0, 1, · · · .

The number of the evaluations of the function value in the King-Werner method
is similar to that in the Newton method but its convergence order is raised to 1+

√
2.
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Hence, the King-Werner method is more efficient in practice and more preferred. In
[1], Han and Wang gave the convergence criterion for the method under the weak
condition introduced in [11]. Recently, Wang, Li and Lai established in [7] a unified
convergence theorem for the class of operators whose second derivatives satisfy the
Lipschiz condition. In the spirit of Wang’s idea in [9] and [10], we will introduce,
in the present paper, the notion of the radius Lipschitz condition with L-average and
then study the convergence of the King-Werner method. More precisely, under the
hypothesis that f ′(x0)−1f ′′ satisfies the radius Lipschitz condition with L-average
around the initial point, a convergence criterion is established in Section 3. Another
interesting question for an iteration method is to determine its convergence ball. A
ball B(x∗, r) ⊂ E with center x∗ and radius r is called a convergence ball of an
iteration method if the sequence generated by the method starting from any point
in it converges to x∗. The radii of convergence balls for the Newton method, were
estimated in [4-6, 9, 12], and for Chebyshev-Halley methods in [2, 13]. In Section
4, the radii of convergence balls of the King-Werner method are estimated under the
hypothesis that f ′(x0)−1f ′′ satisfies the radius Lipschitz condition with L-average
around the solution. Finally, applications are provided in final section, where we
extend some known results.

The result on the convergence ball in the present paper is new even in the special
cases when f ′(x0)−1f ′′ satisfies classical Lipschitz condition or when f is analytic.

2. PRELIMINARIES

Let E and F be real or complex Banach spaces. For x0 ∈ E and r > 0, let
B(x0, r) and B(x0, r) denote the open and closed ball with center x0 and radius r,
respectively. Let f : B(x0, r) →F be a nonlinear operator with continuous Fréchet
derivative f ′. We assume that the inverse f ′(x0)−1 of f ′(x0) exists. In order
to study the convergence of the King-Werner method, we introduce the following
notion and some related properties. Throughout the whole paper, let L be a function
on the interval [0, R] with L(0) > 0 such that its derivative L ′ is positive and

nondecreasing. Here, R is some positive number such that
∫ R

0
(R−u)L(u) du ≥ R.

Definition 2.1. f ′(x0)−1f ′′(x) is said to satisfy the radius Lipschitz condition
with L-average on B(x0, r) if

(2.1)
‖f ′(x0)−1(f ′′(x′)−f ′′(x))‖ ≤ L(‖x−x0‖+‖x′−x‖)−L(‖x−x0‖),

∀x ∈ B(x0, r), ∀x′ ∈ B(x, r − ‖x − x0‖).
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Let r > 0 be such that

(2.2)
∫ r

0

L(u) du = 1

and let

(2.3) b =
∫ r

0
uL(u) du.

For a constant β ∈ (0, b], we define the majorizing function as follows.

h(t) = β − t +
∫ t

0
(t − u)L(u) du, ∀t ∈ [0, R].

Then

(2.4) h(0) = β > 0, h(β) > 0, h(r) = β − b ≤ 0, h(R) ≥ β > 0,

(2.5) h′(t) < 0, h′′(t) = L(t) ≥ 0, ∀t ∈ (0, r].

Hence, the following Lemma holds.

Lemma 2.1. If β ≤ b, the function h has two zeros in [0, R], which are denoted
by t∗ and t∗∗, respectively. They satisfy

β < t∗ < r < t∗∗ < R

if β < b, and t∗ = t∗∗ if β = b.
Let {tn}, {sn} and {rn} denote respectively the corresponding sequences gen-

erated by the King-Werner method for the majorizing function h with initial points
t0 = s0 = 0, that is,

(2.6)

tn+1 = tn − h′(sn)−1h(tn),

rn+1 = tn+1 − h′(sn)−1h(tn+1), n = 0, 1, ...

sn+1 = (tn+1 + rn+1)/2.

The basic technique of establishing the convergence of the King-Werner method
is to show the iterative sequences generated by (1.1) for an operator f are majorized
by the corresponding ones for the majorizing function h. Hence we need to establish
the convergence properties of these sequences for h, which are described in the
following lemma.
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Lemma 2.2. Let {tn}, {sn}, {rn} be defined by (2.6) and let t∗ ∈ (0, r]
be the smaller positive zero of h(t) = 0. Then {tn}, {sn}, {rn} converge to t∗

increasingly and monotonically. Moreover, they satisfy the following inequalities:

(2.7) 0 = t0 = s0 ≤ tn ≤ sn ≤ rn ≤ tn+1 ≤ t∗ ≤ r, n = 0, 1, 2, ...

Proof. It suffices to show (2.7). We will prove the conclusion by the mathe-
matical induction. Clearly, (2.7) is true for n = 1. Now assume (2.7) is true for
n = k, that is,

(2.8) 0 = t0 = s0 ≤ tk ≤ sk ≤ rk ≤ tk+1 ≤ t∗ ≤ r.

Then, from (2.4), (2.5) and (2.6), we have

(2.9) rk+1 − tk+1 = −h′(sk)−1h(tk+1) > 0

and

(2.10) rk+1 = tk+1 − h′(sk)−1h(tk+1) ≤ tk+1 − h′(tk+1)−1h(tk+1) ≤ t∗.

Note that sk+1 is the midpoint of tk+1 and rk+1. By (2.8), (2.9) and (2.10), we get

(2.11) sk ≤ tk+1 ≤ sk+1 ≤ rk+1 ≤ t∗.

On the other hand, since h(tk+1) > 0 and h′(t)−1 is monotonically decreasing on
(0, r), it follows from (2.11) that

tk+2 − rk+1 = −h(tk+1)[h′(sk+1)−1 − h′(sk)−1] > 0.

In addition, similar to the proof of (2.10), one has tk+1 ≤ t∗. Therefore, (2.7) holds
for n = k + 1. The proof is completed.

The following lemma whose proof is similar to that of [8, Lemma 2.5] will be
useful in the next section.

Lemma 2.3. Suppose that

‖f ′(x0)−1f ′′(x0)‖ ≤ L(0)

and f ′(x0)−1f ′′(x) satisfies the radius Lipschitz condition with L-average on
B(x0, r). Then, for each x ∈ B(x0, r),

(i) ‖f ′(x0)−1f ′′(x)‖ ≤ h′′(‖x − x0‖),
(ii) f ′(x)−1 exists and

‖f ′(x)−1f ′(x0)‖ ≤ −h′(‖x − x0‖)−1.
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3. CONVERGENCE CRITERION OF THE KING-WERNER METHOD

Theorem 3.1. Suppose that ‖f ′(x0)−1f ′′(x0)‖ ≤ L(0) and f ′(x0)−1f ′′(x)
satisfies the radius Lipschitz condition with L-average on B(x 0, r). Let β =
‖f ′(x0)−1f(x0)‖. Then, if β ≤ b, the King-Werner sequence {xn} generated by
(1.1) converges to the solution of the equation f(x) = 0 in B(x 0, r).

Proof. Let {tn}, {sn} and {rn} be the sequence defined by (2.6). By Lemma
2.2, the sequences {tn}, {sn}, {rn} converge increasingly and monotonically. Thus,
to prove the convergence of the sequence {xn}, it suffices to show the following
inequalities:

‖xn+1 − xn‖ ≤ tn+1 − tn, n = 0, 1, 2....

For this end, we need only to prove the following inequalities:

(3.1) ‖zn − xn‖ ≤ rn − tn, n = 0, 1, ...,

(3.2) ‖xn+1 − zn‖ ≤ tn+1 − rn, n = 0, 1, ....

Obviously, (3.1) holds for n = 0. Consequently,

‖x1 − z0‖ = ‖x1 − x0‖ = β = t1 − t0 = t1 − r0.

Hence (3.2) holds for n = 0. We proceed by the mathematical induction. For this
purpose, assume (3.1) and (3.2) hold for all n ≤ k, that is,

(3.3) ‖zn − xn‖ ≤ rn − tn, n = 0, 1, · · · , k,

(3.4) ‖xn+1 − zn‖ ≤ tn+1 − rn, n = 0, 1, · · · , k.

Then,

(3.5) ‖yn − xn‖ ≤ sn − tn, n = 0, 1, · · · , k,

(3.6) ‖yn − zn‖ ≤ rn − sn, n = 0, 1, · · · , k.

Furthermore, for each n = 0, 1, 2, ..., k,

‖xn+1 − x0‖ ≤ ‖xn+1 − zn‖ + ‖zn − xn‖ + ... + ‖z0 − x0‖
≤ tn+1 − rn + rn − tn + ... + r0 − t0

= tn+1 ≤ t∗.

Hence,

(3.7) ‖zk − x0‖ ≤ ‖zk − xk‖+ ‖xk − x0‖ ≤ rk
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and

(3.8) ‖yk − x0‖ = ‖1
2
(xk + zk) − x0‖ ≤ 1

2
(tk + rk) = sk.

Combining the above two inequalities gives xk+1 ∈ B(x0, t∗) and zk ∈ B(x0, t∗).
Thus, by (1.1) and Lemma 2.3, we obtain

(3.9)

‖zk+1 − xk+1‖ = ‖f ′(yk)−1f(xk+1)‖
≤ ‖f ′(yk)−1f ′(x0)‖ · ‖f ′(x0)−1f(xk+1)‖
≤ −h′(sk)−1‖f ′(x0)−1f(xk+1)‖.

By [11], f(xk+1) can be expressed as

f(xk+1) =
∫ 1

0

∫ 1

0
f ′′(zk + ητ(xk+1 − zk))[τ(xk+1 − zk)] dη dτ(xk+1 − zk)

+
∫ 1

0
f ′′(yk + τ(zk − yk))(zk − yk) dτ(xk+1 − zk)

+
∫ 1

0
{f ′′(yk + τ(yk − xk))− f ′′(yk + τ(xk − yk))}(1− τ) dτ(xk − yk)2.

Hence

(3.10)

‖f ′(x0)−1f(xk+1)‖

≤
∫ 1

0

∫ 1

0
‖f ′(x0)−1f ′′(zk + ητ(xk+1 − zk))‖τ‖xk+1

− zk‖ dη dτ‖xk+1 − zk‖

+
∫ 1

0
‖f ′(x0)−1f ′′(yk + τ(zk − yk))‖‖zk − yk‖ dτ‖xk+1 − zk‖

+
∫ 1

0
‖f ′(x0)−1(f ′′(yk+τ(yk−xk))

−f ′′(yk+τ(xk−yk)))‖(1−τ) dτ‖xk−yk‖2.

This together with Lemma 2.3 yields

(3.11)

‖f ′(x0)−1f(xk+1)‖

≤
∫ 1

0

∫ 1

0
h′′(‖zk−x0 + ητ(xk+1−zk)‖)τ‖xk+1−zk‖ dη dτ‖xk+1−zk‖
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+
∫ 1

0
h′′(‖yk − x0 + τ(zk − yk)‖)‖zk − yk‖ dτ‖xk+1 − zk‖

+
∫ 1

0
{h′′(‖yk − x0 + τ(xk − yk)‖+ 2τ‖yk − xk‖)

− h′′(‖yk − x0 + τ(xk − yk)‖)}(1− τ) dτ‖xk − yk‖2.

By (3.3)-(3.8), we obtain, for any 0 ≤ τ ≤ 1 and 0 ≤ η ≤ 1,

‖zk − x0 + ητ(xk+1 − zk)‖ ≤ rk + ητ(tk+1 − rk),

‖yk − x0 + τ(zk − yk)‖ ≤ sk + τ(rk − sk),

‖(yk − x0) + τ(xk − yk)‖+ 2τ‖yk − xk‖ ≤ sk + τ(rk − sk)

and
‖(yk − x0) + τ(xk − yk)‖ ≤ sk + τ(tk − sk).

Consequently, by (3.6) and (3.11),

(3.12)

‖f ′(x0)−1f(xk+1)‖

≤
∫ 1

0

∫ 1

0
h′′(rk + ητ(tk+1 − rk))[τ(tk+1 − rk)] dη dτ(tk+1 − rk)

+
∫ 1

0
h′′(sk + τ(rk − sk))(rk − sk) dτ(tk+1 − rk)

+
∫ 1

0
{h′′(sk+τ(rk−sk))−h′′(sk+τ(tk−sk))(1−τ)}dτ(sk−tk)2

= h(tk+1).

Combining this with (3.9) gives

(3.13) ‖zk+1 − xk+1‖ ≤ −h′(sk)−1h(tk+1) = rk+1 − tk+1,

i.,e., (3.1) holds for n = k + 1. Moreover, by (3.3), (3.4) and (3.13), one has, for
any 0 ≤ τ ≤ 1,

‖xk+1 − xk‖ ≤ tk+1 − tk and ‖zk+1 − zk‖ ≤ rk+1 − rk.

This implies
‖yk+1 − yk‖ ≤ sk+1 − sk.

Hence by (3.8)

(3.14) ‖yk − x0 + τ(yk+1 − yk)‖ ≤ sk + τ(sk+1 − sk).
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It follows from Lemma 2.3 that

‖f ′(x0)−1(f ′(yk+1) − f ′(yk))‖

≤
∫ 1

0
‖f ′(x0)−1(f ′′(yk + τ(yk+1 − yk))‖dτ‖yk+1 − yk‖

≤
∫ 1

0

h′′(sk + τ(sk+1 − sk))dτ(sk+1 − sk)

= h′(sk+1) − h′(sk).

By (3.14), ‖yk+1 − x0‖ ≤ t∗ ≤ r. Thus, by Lemma 2.3 and (3.12), we have

‖f ′(yk+1)−1f(xk+1)‖
≤ ‖f ′(yk+1)−1f ′(x0)‖ · ‖f ′(x0)−1f(xk+1)‖ ≤ −h′(sk+1)−1h(tk+1).

Therefore,

‖xk+2 − zk+1‖
= ‖(f ′(yk)−1 − f ′(yk+1)−1)f(xk+1)‖
= ‖f ′(yk)−1(f ′(yk+1) − f ′(yk))f ′(yk+1)−1f(xk+1)‖
≤ ‖f ′(yk)−1f ′(x0)‖ · ‖f ′(x0)−1(f ′(yk+1) − f ′(yk))‖ · ‖f ′(yk+1)−1f(xk+1)‖
≤ (−h′(sk))−1(h′(sk+1) − h′(sk))(−h′(sk+1)−1h(tk+1)

= tk+2 − rk+1,

i.e., (3.2) holds for n = k + 1. This completes the proof of (3.1) and (3.2). The
proof is completed.

4. CONVERGENCE BALL OF THE KING-WERNER METHOD

Recall that L(u) is a positive nondecreasing continuous function with L(0) > 0
on the interval [0, R] for some sufficiently large number R > 0 and that r satisfies
that

(4.1)
∫ r

0

L(u)du = 1.

By Lemma 2.3, we have

Lemma 4.1. Suppose that

‖f ′(x∗)−1f ′′(x∗)‖ ≤ L(0)
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and f ′(x∗)−1f ′′(x) satisfies the radius Lipschitz condition with L-average on
B(x∗, r). Then, for each x ∈ B(x∗, r),

(i) ‖f ′(x∗)−1f ′′(x)‖ ≤ L(‖x− x∗‖),
(ii) f ′(x)−1 exists and

‖f ′(x)−1f ′(x∗)‖ ≤ 1

1 −
∫ ‖x−x∗‖

0
L(u)du

.

Let

(4.2) p(t) =

∫ 1

0
[uL(tu) + 2(1− u)L(t(2u + 1))]tdu

1−
∫ t

0
L(u)du

.

Note that p(t) increases monotonically from 0 to +∞ when t increases monotoni-
cally from 0 to r. Hence the following lemma holds.

Lemma 4.2. There exists a unique point r0 ∈ (0, r) such that p(r0) = 1 and
p increases monotonically on (0, r 0).

The main result of this section is stated as follows.

Theorem 4.1. Let x∗ be a solution of f . Suppose that

‖f ′(x∗)−1f ′′(x∗)‖ ≤ L(0)

and that f ′(x∗)−1f ′′(x) satisfies the radius Lipschitz condition with L-average on
B(x∗, r). Then, for any x0 ∈ B(x∗, r0), the King-Werner sequence {xn} generated
by (1.1) converges to x∗.

Proof. n+1 Let x0 ∈ B(x∗, r0) and let q = p(‖x0 − x∗‖) < 1. It is sufficient
to show that, for each n = 0, 1, 2, ...,

(4.3) ‖xn+1 − x∗‖ ≤ q‖xn − x∗‖, ‖zn − x∗‖ ≤ ‖xn − x∗‖.
We will prove (4.3) by the mathematical induction. For this purpose, we need the
following expression of xn+1 − x∗.

(4.4)

xn+1 − x∗ = f ′(
xn + zn

2
)
−1

∫ 1

0

∫ 1

0
f ′′(x∗ + τ(xn − x∗)

+η(
xn + zn

2
− x∗ − τ(xn − x∗)))

· (xn + zn

2
− x∗ − τ(xn − x∗))dτdη(xn − x∗).
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In fact,

xn+1 − x∗ = xn − f ′(
xn + zn

2
)
−1

f(xn) − x∗ + f ′(
xn + zn

2
)
−1

f(x∗)

= (xn − x∗) − f ′(
xn + zn

2
)
−1

[f(xn) − f(x∗)]

= (xn − x∗) − f ′(
xn + zn

2
)
−1

∫ 1

0

f ′(x∗ + τ(xn − x∗))dτ(xn − x∗)

= [I − f ′(
xn + zn

2
)
−1

∫ 1

0

f ′(x∗ + τ(xn − x∗))dτ ](xn − x∗)

= f ′(
xn + zn

2
)
−1

[f ′(
xn + zn

2
)−

∫ 1

0
f ′(x∗ + τ(xn − x∗))dτ ](xn − x∗)

= f ′(
xn + zn

2
)
−1

∫ 1

0

∫ 1

0
f ′′(x∗ + τ(xn − x∗)

+η(
xn + zn

2
− x∗ − τ(xn − x∗)))

· (xn + zn

2
− x∗ − τ(xn − x∗))dτdη(xn − x∗).

Therefore, (4.4) holds. Similarly, we also have

(4.5)

zn+1 − x∗ = f ′(
xn + zn

2
)
−1

∫ 1

0

∫ 1

0

f ′′(x∗ + τ(xn+1 − x∗)

+η(
xn + zn

2
− x∗ − τ(xn+1 − x∗)))

· (xn + zn

2
− x∗ − τ(xn+1 − x∗))dτdη(xn+1 − x∗).

By (4.4),

x1 − x∗ = f ′(x0)
−1

∫ 1

0

∫ 1

0

f ′′(x∗ + τ(x0 − x∗)

+η(x0 − x∗ − τ(x0 − x∗)))(1− τ)dτdη(x0 − x∗)2.

Write tn = ‖xn − x∗‖. Then, it follows from Lemma 4.1 that

‖x1−x∗‖ ≤ 1

1 −
∫ t0

0
L(u)du

∫ 1

0

∫ 1

0

L(τt0 +η(1+τ)t0)(1+τ)t0dτdη‖x0−x∗‖.
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For each t ∈ (0, r0), simple calculation yields

(4.6)

∫ 1

0

∫ 1

0
L(τt + η(1 + τ)t)(1 + τ)dτdη

=
∫ 1

0
{uL(tu) + 2(1− u)L[t(2u + 1)]}du.

Consequently,
‖x1 − x∗‖ ≤ q‖x0 − x∗‖ < ‖x0 − x∗‖.

By (1.1), ‖z0 − x∗‖ = ‖x0 − x∗‖. Hence, (4.3) holds for n = 0. Now assume that
(4.3) holds for some n. Then, by (4.5), (4.6) and Lemma 4.1,

‖zn+1 − x∗‖ = ‖f ′(
xn + zn

2
)
−1

∫ 1

0

∫ 1

0
f ′′(x∗ + τ(xn+1 − x∗)

+η(
xn + zn

2
− x∗ − τ(xn+1 − x∗)))

·(xn + zn

2
− x∗ − τ(xn+1 − x∗))dτdη(xn+1 − x∗)‖

≤ 1

1 −
∫ tn

0
L(u)du

∫ 1

0

∫ 1

0
L(τtn+1 + η(tn + τtn+1))

(tn + τtn+1)dτdη‖xn+1 − x∗‖
≤ p(tn)‖xn+1 − x∗‖
≤ q‖xn+1 − x∗‖.

On the other hand, by (4.4), (4.6) and Lemma 4.1,

‖xn+2 − x∗‖
= ‖f ′(

xn+1 + zn+1

2
)
−1

∫ 1

0

∫ 1

0
f ′′(x∗

+τ(xn+1 − x∗) + η(
xn+1 + zn+1

2
− x∗ − τ(xn+1 − x∗)))

· (xn+1 + zn+1

2
− x∗ − τ(xn+1 − x∗))dτdη(xn+1 − x∗)‖

≤ 1

1−
∫ tn

0
L(u)du

∫ 1

0

∫ 1

0
L(τtn+1+η(1 + τ)tn+1)(1 + τ)tn+1dτdη‖xn+1−x∗‖

= p(tn)‖xn+1 − x∗‖
≤ q‖xn+1 − x∗‖.



250 Xintao Ye, Chong Li and Liying Hou

This shows that (4.3) holds for n + 1 and hence (4.3) holds for each n.

5. COROLLARIES OF CONVERGENCE THEOREMS

In this section we will apply our main theorems to some special functions L
and then some results in [7] and [1] are recaptured.

Example 5.1. Given fixed positive constants γ and L > 0, take

L(u) = γ + Lu.

Then, by (2.2)and (2.3),

r =
2

γ +
√

γ2 + 2L
, b =

∫ r

0
u(γ + Lu) du =

2(γ + 2
√

γ2 + 2L)

3(γ +
√

γ2 + 2L)2
.

Since

p(t) =
3
2 tγ + 2t2L

1− γt− 1
2Lt2

,

the solution r0 of the equation p(t) = 1 on (0, r) is

r0 =
−γ +

√
γ2 + 8

5L

2L
.

Thus from Theorems 3.1 and 4.1, we immediately obtain the following corollaries.
The first one was given in [7] while the second one is new.

Corollary 5.1. Suppose that ‖f ′(x0)−1f ′′(x0)‖ ≤ γ and

‖f ′(x0)−1(f ′′(x′) − f ′′(x))‖ ≤ L‖x′ − x‖,

∀x ∈ B(x0, r), ∀x′ ∈ B(x, r − ‖x − x0‖).

Let β = ‖f ′(x0)−1f(x0)‖. Then, if β ≤ 2(γ+2
√

γ2+2L)

3(γ+
√

γ2+2L)2
, the sequence {xn}

generated by (1.1) with initial point x0 converges to the solution x∗ of the equation
f(x) = 0 in B(x0, r).

Corollary 5.2. Let x∗ be a solution of f . Suppose that ‖f ′(x∗)−1f ′′(x∗)‖ ≤ γ
and

‖f ′(x∗)−1(f ′′(x′)− f ′′(x))‖ ≤ L‖x′ − x‖
∀x ∈ B(x∗, r), ∀x′ ∈ B(x∗, r − ‖x − x∗‖).
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Let

r0 =
−γ +

√
γ2 + 8

5L

2L
.

Then for any x0 ∈ B(x∗, r0), the sequence {xn} generated by (1.1) converges to
the solution x∗ of the equation f(x) = 0 in B(x∗, r).

Example 5.2. For fixed γ > 0, let

L(u) =
2γ

(1− γu)3
.

Again, by (2.2) and (2.3),

r = (1− 1√
2
)
1
γ

, b = (3 − 2
√

2)
1
γ

.

Moreover,

p(t) =
3γt(1− γt)

(1 − 3γt)[2(1− γt)2 − 1]

and the solution r0 of the equation p(t) = 1 on (0, r) is

r0 =
1

36γ

{
3

√
809 + 18

√
3 × 659 i (−1 +

√
3 i)

− 3

√
809− 18

√
3 × 659 i (1 +

√
3 i) + 34

}
,

where i =
√−1. From Theorems 3.1 and 4.1 again, we have the following corol-

laries.

Corollary 5.3. Suppose that ‖f ′(x0)−1f ′′(x0)‖ ≤ 2γ, and

‖f ′(x0)−1(f ′′(x′)−f ′′(x))‖ ≤ 2γ

(1 − γ‖x− x0‖ − γ‖x′ − x‖)3−
2γ

(1 − γ‖x− x0‖)3 ,

∀x ∈ B(x0, (1− 1√
2
)/γ), ∀x′ ∈ B(x, (1− 1√

2
)/γ − ‖x − x0‖).

Let β = ‖f ′(x0)−1f(x0)‖. Then, if β ≤ (3−2
√

2) 1
γ , the sequence {xn} generated

by (1.1) with the initial point x0 converges to the solution x∗ of the equation
f(x) = 0 in B(x0, r).

Corollary 5.4. Let x∗ be a solution of f . Suppose that ‖f ′(x∗)−1f ′′(x∗)‖ ≤ 2γ

and

‖f ′(x∗)−1(f ′′(x′)−f ′′(x))‖ ≤ 2γ

(1 − γ‖x− x∗‖ + γ‖x′ − x∗)3
− 2γ

(1 − γ‖x− x∗‖)3
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∀x ∈ B(x∗, r), ∀x′ ∈ B(x∗, r − ‖x − x∗‖).
Then for any x0 ∈ B(x∗, r0), the sequence {xn} generated by (1.1) converges to
the solution x∗ of the equation f(x) = 0 in B(x∗, r0).

Remark 5.1. Since the hypothesis stated in [1, Theorem 1] implies the one in
Corollary 5.3 above, [1, Theorem 1] is a direct consequence of Corollary 5.3.
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