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PLANAR GRAPHS THAT HAVE NO SHORT CYCLES
WITH A CHORD ARE 3-CHOOSABLE

Wei-Fan Wang

Abstract. In this paper we prove that every planar graph G is 3-choosable if it
contains no cycle of length at most 10 with a chord. This generalizes a result
obtained by Borodin [J. Graph Theory 21(1996) 183-186] and Sanders and
Zhao [Graphs Combin. 11(1995) 91-94], which says that every planar graph
G without k-cycles for all 4 ≤ k ≤ 9 is 3-colorable.

1. INTRODUCTION

We only consider simple graphs in this paper unless otherwise stated. A plane
graph is a particular drawing of a planar graph in the Euclidean plane. For a
plane graph G, we denote its vertex set, edge set, face set, and minimum degree
by V (G), E(G), F (G), and δ(G), respectively. Let dG(x) (for short, d(x)) denote
the degree of a vertex or a face x of G. We use b(f) to denote the boundary of
a face f , and write f = [u1u2 · · ·un] if u1, u2, . . . , un are its boundary vertices
in a cyclic order. A vertex (or face) of degree k is called a k-vertex (or k-face).
We say that two cycles or faces of a plane graph are adjacent if they share at least
one common (boundary) edge. For a face f ∈ F (G), let Fk(f) denote the set
of k-faces adjacent to f , Vi(f) the set of i-vertices incident to f , and V

j
3 (f) the

set of 3-vertices in V3(f) each of which is incident to at least one j-face. Let
V ′

3(f) = V3(f) \ (V 3
3 (f) ∪ V 4

3 (f) ∪ V 5
3 (f)). For a graph G and a cycle C ⊆ G,

an edge xy is called a chord of C if xy ∈ E(G) \ E(C) but x, y ∈ V (C). C is
a chordal-k-cycle if C is of length k and has a chord in G. Let c∗(G) denote the
maximum integer k such that G contains no chordal-l-cycles for all l ≤ k. It is
easy to see that 3 ≤ c∗(G) ≤ |V (G)| if G is a simple graph, and c∗(G) < |V (G)|
if δ(G) ≥ 3.
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A coloring of a graph G is a mapping φ from V (G) to the set of colors
{1, 2, . . . , k} such that φ(x) �= φ(y) for every edge xy of G. The chromatic
number χ(G) is the smallest integer k such that G has a proper coloring into the
set {1, 2, . . . , k}. We say that L is an assignment for the graph G if it assigns a
list L(v) of possible colors to each vertex v of G. If G has a proper coloring φ

such that φ(v) ∈ L(v) for all vertices v, then we say that G is L-colorable or φ
is an L-coloring of G. The graph G is k-choosable if it is L-colorable for every
assignment L satisfying |L(v)| = k for all vertices v. The choice number or list
chromatic number χ�(G) of G is the smallest k such that G is k-choosable.

The concept of list coloring was introduced by Vizing [12] and independently by
Erd"os, Rubin and Taylor [5]. All 2-choosable graphs are completely characterized
in [5]. Thomassen [9] proved that every planar graph is 5-choosable, whereas Voigt
[13] presented an example of a planar graph which is not 4-choosable. Thomassen
[10, 11] showed that every planar graph of girth greater than or equal to 5 is 3-
choosable. Voigt [14] further constructed a non-3-choosable planar graph of girth
4. Alon and Tarsi [1] proved that every planar bipartite graph is 3-choosable. Other
results on list coloring planar graphs are referred to [15-17]. In this paper, we
investigate the 3-choosability of planar graphs G when c∗(G) is sufficiently large.

2. TRUCTURAL PROPERTIES

The following lemma is an easy observation from the definition of c∗(G).

Lemma 1. Let G be a 2-connected plane graph with δ(G) ≥ 3. If f and f ′

are two adjacent faces, then d(f) + d(f ′) ≥ c∗(G) + 3.

A plane graph G is normal if it contains no vertex and face of degree less than
3. It was known [2, 7] that every normal plane graph contains an edge xy such that
d(x) + d(y) ≤ 13.

Lemma 2. If G is a plane graph with c∗(G) ≥ 11, then δ(G) ≤ 2.

Proof. Suppose to the contrary that δ(G) ≥ 3. Then G∗, the dual of G, contains
no face of degree less than 3. Since G is simple, G∗ further contains no vertex of
degree less than 3. Thus, G∗ is a normal plane graph. By the previous result, G∗

contains an edge xy such that dG∗(x) + dG∗(y) ≤ 13. Let fx and fy denote the
faces of G that correspond to x and y in G∗, respectively. Therefore, fx is adjacent
to fy in G and dG(fx) + dG(fy) ≤ 13. However, this contradicts Lemma 1, which
asserts that dG(fx) + dG(fy) ≥ c∗(G) + 3 ≥ 14. This proves Lemma 2.

Lemma 2 is best possible in the sense that there exist plane graphs G having
a cycle of length at most 11 with a chord such that δ(G) ≥ 3. Let H denote the
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graph obtained from the dodecahedron by sawing all its corners off. It is easy to see
that H is a 3-regular plane graph containing cycles of length eleven with a chord.

For a fixed integer N ≥ 4, it is easy to observe that if a graph G contains no
k-cycles for all 4 ≤ k ≤ N , then G contains no any cycle of length at most N + 1
with a chord. This fact together Lemma 2 imply the following consequence.

Corollary 3. If G is a plane graph without k-cycles for all 4 ≤ k ≤ 10, then
δ(G) ≤ 2.

Lemma 4. If G is a plane graph with δ(G) ≥ 3 and c ∗(G) = 10, then G

contains a cycle of length ten such that each of its vertices is of degree 3 in G.

Proof. Suppose that the lemma is false. Let G be a connected counterexample.
If G is not 2-connected, choose an end-block B of G that contains exactly one cut
vertex u of G. Then B is 2-connected, c∗(B) = 10, dB(u) ≥ 2, and dB(x) ≥ 3
for all x ∈ V (B) \ {u}. Assume that u lies on the boundary of the infinite face of
B, and let v �= u be a vertex of B lying on the infinite face. Take eleven copies
B1, B2, · · · , B11 of B, and let ui and vi be the copies of u and v in Bi, respectively.
Let H denote the graph constructed from B1, B2, · · · , B11 by identifying v11 with
u1, and vi with ui+1 for i = 1, 2, · · · , 10. It is easy to see that H is a 2-connected
plane graph with δ(H) ≥ 3 and c∗(H) = 10 which contains no cycle of length ten
with each vertex being of degree 3 in H . Hence H also is a counterexample to the
lemma.

Thus we may now assume that G is 2-connected and hence all its facial walks
are cycles. Using Euler’s formula |V (G)|− |E(G)|+ |F (G)| = 2 and the relations∑
v∈V (G)

d(v) =
∑

f∈F (G)

d(f) = 2|E(G)|, we can derive the following identity.

(1)
∑

v∈V (G)

(d(v)− 6) +
∑

f∈F (G)

(2d(f)− 6) = −12.

Let w denote a weight function defined on V (G) ∪ F (G) by w(v) = d(v) − 6
if v ∈ V (G) and w(f) = 2d(f) − 6 if f ∈ F (G). We shall discharge the face
weight w(x) to its incident vertices while keeping the total sum fixed so that the
new weight w′(x) is nonnegative for all x ∈ V (G) ∪ F (G). Hence

0 ≤
∑

x∈V (G)∪F (G)

w′(x) =
∑

x∈V (G)∪F (G)

w(x) = −12.

This is an obvious contradiction.
For a face f , let m3(f) = |F3(f)|, ni(f) = |Vi(f)|, nj

3(f) = |V j
3 (f)|, and

n′
3(f) = |V ′

3(f)|. Let α(f) = 2d(f) − 6 − 3
2n3

3(f) − 5
4n4

3(f) − 11
10n5

3(f), and
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β(f) = a(f)/(n′
3(f) + n4(f) + n5(f)). With the aid of these notations, we define

a discharging rule as follows.

(R) Every face f of degree at least 4 sends 3
2 to each 3-vertex in V 3

3 (f), 5
4 to

each 3-vertex in V 4
3 (f), 11

10 to each 3-vertex in V 5
3 (f), and β(f) to each vertex in

V ′
3(f) ∪ V4(f) ∪ V5(f) provided n′

3(f) + n4(f) + n5(f) > 0.

Let w′(x) denote the new weight function for x ∈ V (G) ∪ F (G) once the
discharging process is complete according to the rule (R). It remains to prove that
w′(x) ≥ 0 for all x ∈ V (G) ∪ F (G).

Claim. Suppose that f is a face of degree at least 4. Then
(1) α(f) ≥ 0.
(2) β(f) ≥ β0, where β0 = 3

2 if d(f) ≥ 12; β0 = 1 if d(f) = 11; β0 = w(f)
d(f) if

4 ≤ d(f) ≤ 9; and β0 = 1 if d(f) = 10 with the following exceptions:
(2.1) β(f) = 1

2 if n3
3(f) = n3(f) = 9 and n4(f) + n5(f) = 1;

(2.2) β(f) = 3
4 if n3

3(f) = 8, n4
3(f) = 1 and n4(f) + n5(f) = 1;

(2.3) β(f) = 9
10 if n3

3(f) = 8, n5
3(f) = 1 and n4(f) + n5(f) = 1.

Remarks. For 1 ≤ i ≤ 3, suppose that fi is a 10-face satisfying Condition (2.i).
Then fi is incident to the unique vertex v of degree more than 3. And if d(v) = 4,
then fi is adjacent to some (i + 2)-face f∗ such that v ∈ b(fi) ∩ b(f∗). However,
v is not incident to any 3-face other than f∗.

Proof of the Claim. Let T (f) = 3
2n3

3(f) + 5
4n4

3(f) + 11
10n5

3(f) + β0(n′
3(f) +

n4(f) + n5(f)). It suffices to check that T (f) ≤ w(f).
If d(f) ≥ 12, then β0 = 3

2 and T (f) = 3
2n3

3(f)+ 5
4n4

3(f)+ 11
10n5

3(f)+ 3
2 (n′

3(f)+
n4(f) + n5(f)) ≤ 3

2 (n3(f) + n4(f) + n5(f)) ≤ 3
2d(f) ≤ 2d(f)− 6 = w(f).

Suppose that d(f) = 11, then w(f) = 16 and β0 = 1. If n3(f) ≤ 10, then
T (f) ≤ 3

2n3(f) + n4(f) + n5(f) ≤ 3
2n3(f) + (11 − n3(f)) = 11 + 1

2n3(f) ≤
11 + 5 = 16. Assume that n3(f) = 11. It is easy to derive that m3(f) ≤ 5. If
m3(f) ≤ 4, then n3

3(f) ≤ 8, and hence T (f) ≤ 8 · 3
2 + 3 · 5

4 = 153
4 . If m3(f) = 5,

then some 3-vertex in b(f) is not incident to any face of degree less than 6 by Lemma
1. This implies that n3

3(f) = 10 and n′
3(f) = 1, hence T (f) = 10 · 3

2 + 1 = 16.
Suppose that d(f) = 9. Then β0 = (2 · 9 − 6)/9 = 4

3 . By Lemma 1, f is
not adjacent to any 3-face. Thus, n3

3(f) = 0, and T (f) ≤ 5
4n4

3(f) + 11
10n5

3(f) +
4
3 (n′

3(f) + n4(f) + n5(f)) ≤ 4
3d(f) = 12 = w(f).

Suppose that d(f) = 8. Then w(f) = 10 and β0 = 5
4 . It follows from Lemma

1 that f is not adjacent to any face of degree less than 5. Thus, n3
3(f) = n4

3(f) = 0,
and T (f) ≤ 11

10n5
3(f) + 5

4 (n′
3(f) + n4(f) + n5(f)) ≤ 5

4d(f) = 10.
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Suppose that 4 ≤ d(f) ≤ 7. Then β0 = w(f)/d(f). Lemma 1 asserts that f is
not adjacent to any face of degree less than 6. Thus, n3

3(f) = n4
3(f) = n5

3(f) = 0,
and T (f) ≤ β0(n′

3(f) + n4(f) + n5(f)) ≤ w(f)
d(f) · d(f) = w(f).

Finally, suppose that d(f) = 10. So, w(f) = 14. Since G contains no a
10-cycle with each boundary vertex being of degree 3, we know n3(f) ≤ 9. If
n3(f) ≤ 8, then T (f) ≤ 8 · 3

2 + 2 · 1 = 14. Assume that n3(f) = 9. It follows that
n4(f) + n5(f) ≤ 1. If n4(f) + n5(f) = 0, then T (f) ≤ 9 · 3

2 = 13.5. So suppose
that n4(f)+ n5(f) = 1. If n3

3(f) ≤ 7, then T (f) ≤ 7 · 3
2 + 2 · 5

4 + 1 = 14. Assume
that n3

3(f) = 8. If n4
3(f) = 1, then Case (2.2) holds and T (f) = 8 · 3

2 + 5
4 + 3

4 = 14.
If n5

3(f) = 1, then Case (2.3) holds and T (f) = 8 · 3
2 + 11

10 + 9
10 = 14. If n3

3(f) = 9,
then Case (2.1) holds and T (f) = 9 · 3

2 + 1
2 = 14. This proves the Claim.

The statement (1) in the Claim implies that w ′(f) ≥ 0 for all f ∈ F (G) with
d(f) ≥ 4. If d(f) = 3, then w′(f) = w(f) = 0.

Let v ∈ V (G). Thus d(v) ≥ 3 by δ(G) ≥ 3. If d(v) ≥ 6, then w′(v) = w(v) =
d(v)− 6 ≥ 0. Assume that d(v) = 5, then w(v) = −1. By Lemma 1, v is incident
to at most two 3-faces. Since each of the faces of degree at least 4 that are incident
to v sends at least 1

2 to v by the Claim, and hence w′(v) ≥ −1+3 · 1
2 = 1

2 . Assume
that d(v) = 3, then w(v) = −3. Let f1, f2, f3 be the incident faces of v that
satisfies d(f1) ≤ d(f2) ≤ d(f3). If d(f1) = 3, then d(fi) ≥ 10 by Lemma 1 and
τ(fi → v) = 3

2 by (R) for i = 2, 3, thus w′(v) ≥ −3+2 · 3
2 = 0. If d(f1) = 4, then

τ(f1 → v) ≥ 1
2 by the Claim. Since d(fi) ≥ 9 by Lemma 1 and τ(fi → v) = 5

4
by (R) for i = 2, 3, we have w′(v) ≥ −3 + 1

2 + 2 · 5
4 = 0. If d(f1) = 5, then

τ(f1 → v) ≥ 4
5 by the Claim. Since d(fi) ≥ 8 by Lemma 1 and τ(fi → v) ≥ 11

10
by (R) for i = 2, 3, we deduce w′(v) ≥ −3+ 4

5 +2 · 11
10 = 0. Now assume d(fi) ≥ 6

for all i = 1, 2, 3. It is easy to note that fi doesn’t satisfy (2.1), (2.2), and (2.3) and
thus τ(fi → v) ≥ 1 by the Claim. It turns out that w′(v) ≥ −3 + 3 · 1 = 0.

Suppose that d(v) = 4 and so w(v) = −2. Let f1, f2, f3, f4 denote the incident
faces of v in clockwise direction with d(f1) = min

1≤i≤4
{d(fi)}. If d(f1) ≥ 4, then

each of the faces fi’s sends at least 1
2 to v by the Claim and therefore w′(v) ≥

−2 + 4 · 1
2 = 0. So suppose that d(f1) = 3. By Lemma 1, d(f2), d(f4) ≥ 10.

If d(f3) = 3, then it is easy to check that fi for i = 2, 4 does not satisfy (2.1)-
(2.3) whenever d(fi) = 10. By the Claim, τ(fi → v) ≥ 1, and consequently
w′(v) ≥ −2 + 1 + 1 = 0.

Now assume d(f3) ≥ 4. First we see τ(f3 → v) ≥ 1
2 by the Claim. If

either d(f2) ≥ 11, or d(f2) = 10 and f2 does not satisfy (2.1)-(2.3), then w′(v) ≥
−2 + 2 · 1

2 + 1 = 0. Otherwise, the above Remarks implies that f2 does not satisfy
(2.2) and (2.3) because the 4-vertex v is incident to the 3-face f1. Thus we may
assume that d(f2) = 10 and f2 satisfies (2.1). Then n3

3(f2) = n3(f2) = 9 and
n4(f2) = 1. Let f2 = [x1x2 . . . x10] such that v = x1, x1x2 ∈ b(f1) ∩ b(f2),
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and x10x1 ∈ b(f3) ∩ b(f2). There exists a 3-face f∗ = [x9ux10] adjacent to f3.
By Lemma 1, d(f3) ≥ 10. If d(f3) ≥ 11, then we similarly have w′(v) ≥ 0. If
d(f3) = 10, f3 does not satisfy (2.1)-(2.3) since the unique 4-vertex v is not on the
common boundary of f3 and some face of degree at most 5. We also derive that
w′(v) ≥ 0.

3. 3-CHOOSABILITY

In this section, we are ready to prove our main result. Every subgraph H of a
planar graph G with c∗(G) ≥ 10 is also a planar graph with c∗(H) ≥ 10. Every
subgraph of a list k-colorable graph is also list k-colorable. These straightforward
facts are essential in carrying out the induction in the following proof.

Theorem 5. Every plane graph G with c∗(G) ≥ 10 is 3-choosable.

Proof. We use induction on the vertex number |V (G)|. If |V (G)| ≤ 4, the
theorem is trivially true. Let G be a planar graph with c∗(G) ≥ 10 and |V (G)| ≥ 5.
Let L denote an assignment for G such that |L(v)| = 3 for all v ∈ V (G). If
δ(G) ≤ 2, let u be a vertex of minimum degree in G. By the induction hypothesis,
G − u is L-colorable. Obviously, we can extend any L-coloring of G − u into an
L-coloring of G. If δ(G) ≥ 3, then c∗(G) = 10 by Lemma 2. Further, G contains
a 10-cycle C such that each of its vertices is of degree 3 in G by Lemma 4. Since
c∗(G) = 10, C is chordless in G. Thus, for every x ∈ V (C), there exists a vertex
x ∈ V (G) \ V (C) adjacent to x in G. By the induction hypothesis, G − V (C)
has an L-coloring φ. We define an assignment L′(x) = L(x) \ {φ(x)} for every
x ∈ V (C). It is easy to see that |L′(x)| ≥ |L(x)| − 1 = 3 − 1 = 2. Thus C is
L′-colorable. Consequently, G is 3-choosable. This proves Theorem 5.

Steinberg ([6], p. 42) conjectured that every planar graph without 4- and 5-cycles
is 3-colorable. This conjecture still remains open. Borodin [3], and independently
Sanders and Zhao [8], proved that every planar graph without k-cycles for all
4 ≤ k ≤ 9 is 3-colorable. Actually their result is an immediate corollary of our
Theorem 5. The best known partial result on Steinberg’s conjecture was obtained
recently by Borodin et al.[4], where 9 is replaced by 7.

Remarks. Steinberg’s conjecture cannot be extended to the chordal-cycle-free
situation. Namely, a planar graph G without chordal-k-cycles for 4 ≤ k ≤ 5 may
not be 3-colorable. To construct such an example, let H̄ be the plane graph obtained
by adding the edges x1x3, x2x6, x5x7 to a 8-cycle x1x2 · · ·x8x1. Take a copy H′

of H̄ and let x′
i be the copy of xi in H ′ for all i = 1, 2, · · · , 8. Define the graph

Ḡ = H̄∪H ′∪{x4x
′
4, x8x

′
8, x4x

′
8, x8x

′
4}. The graphs H̄ and Ḡ are depicted in Fig. 1
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and Fig. 2, respectively. Then Ḡ is a 2-connected planar graph with four 3-cycles,
one 4-cycle, twelve 5-cycles, and without chordal-4-cycles and chordal-5-cycles. It
is easy to show that χ�(Ḡ) = χ(Ḡ) = 4.
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Fig. 1. The graph H̄ Fig. 2. The graph Ḡ

Let γ denote the least integer k such that every planar graph G with c∗(G) ≥ k

is 3-choosable. The graph Ḡ and Theorem 5 show that 6 ≤ γ ≤ 10. We would
like to propose the following conjecture which implies Steinberg’s conjecture if
established.

Conjecture 6. γ = 6.
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