Vol. 11, No. 1, pp. 151-160, March 2007

This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE MULTIPLIERS OF THE INTERSECTION OF WEIGHTED FUNCTION SPACES

Serap Öztop

Abstract. In this paper we are interested in the problem of multipliers for the intersection of weighted $L^p(G)$ -spaces. We prove theorem by the different characterization of multipliers, which include the results of Murthy and Unni(1973) as particular case.

1. Introduction

Let $(A,\|.\|_A)$ be a Banach algebra, a Banach space $(V,\|.\|_V)$ is called a Banach A-module, if V is a module in the algebraic sense satisfying $\|av\|_V \leq \|a\|_A \|v\|_V$ for all $a \in A$ and $v \in V$. A Banach A-module is called essential if the closed linear span of AV coincides vith V. If the Banach algebra $(A,\|.\|_A)$ contains a bounded approximate identity, i.e., a bounded net $(e_\alpha)_{\alpha \in I}$ such that $\lim_\alpha \|e_\alpha a - a\|_A = 0$ for all $a \in A$ then a Banach A-module V is an essential one, by Cohen's factorization theorem, if and only if $\lim_\alpha \|e_\alpha v - v\|_V = 0$ for all $v \in V$ (Doran-Wichmann, [3]), (Hewitt-Ross, [7]).

Let V and W be a Banach A-module then $Hom_A(V,W)$ denotes the Banach space of all continuous A-module homomorphisms from V to W with the operator norm. The elements of $Hom_A(V,W)$ are traditionally called multipliers from V to W.

Let $V\otimes_\pi W$ denote the projective tensor product of V and W as Banach space for the norm $\|v\times w\|=\inf\left\{\sum_{i=1}^\infty\|v_i\|_V\,\|w_i\|_W\,|\,v\times w=\sum_{i=1}^\infty v_i\otimes w_i\right\}$. (Dunford-Schwartz, [4]), (Grothendieck, [6]), (Bonsall-Duncan, [1]), (Schatten, [14]), (Rieffel, [13]). Then the Banach algebra of all bounded operators from V to W^* , the dual of W, denoted by $B(V,W^*)$ identifies with the dual space $V\otimes_\pi W$ and naturally, if A is a subalgebra of $B(V,W^*)$, then

Received October 8, 2004, revised June 25, 2005.

Communicated by Sen-Yen Shaw.

2000 Mathematics Subject Classification: Primary 43A22.

Key words and phrases: Multipliers, Tensor Product, Weighted Spaces.

$$(1.1) Hom_A(V, W) \cong (V \otimes_{\pi} W / A)^* = (V \otimes_A W)^*.$$

Let G be a locally compact abelian group with Haar measure dx and ω be a non negative continuous function on G, $L^p_\omega(G)=\{f\mid f\omega\in L^p(G)\}$ denote the Banach space under the natural norm $\|f\|=\|f\omega\|_{p,\omega},\ 1\leq p\leq \infty.$ Then its dual space is $L^{p'}_{\omega^{-1}}(G)$ where $\frac{1}{p}+\frac{1}{p'}=1,\ 1\leq p<\infty.$ Moreover if $1< p<\infty,\ L^p_\omega(G)$ is a reflexive Banach space. $C_{\infty,\omega}(G)$ denotes a Banach subspace of $L^\infty_\omega(G)$ such that $f\omega\in C_0(G)$, the space of all continuous, complex valued functions on G which vanish at infinity. $C_C(G)$ is the space of all continuous functions on G with compact support.

Let $1 < p_1, p_2 < \infty$, $S(p_1, p_2, \omega)$ be the set of all (classes of) measurable, complex valued functions g which can be written as

$$g = g_1 + g_2 with (g_1, g_2) \in L^{p_1}_{\omega}(G) \times L^{p_2}_{\omega}(G).$$

We define a norm on $S(p_1, p_2, \omega)$ by

$$||g||_{S} = \inf \{ ||g_1||_{p_1,\omega} + ||g_2||_{p_2,\omega} \},$$

where the infimum is taken over all such decompositions of g. $S\left(p_1,p_2,\omega\right)$ is a Banach space under this norm.

Similarly, if $D(p_1, p_2, \omega)$ denotes the set of all (classes of) measurable, complex valued functions defined on G which are in $L^{p_1}_{\omega}(G) \cap L^{p_2}_{\omega}(G)$, we introduce a norm by

$$||f||_D = \max\left(||f||_{p_1,\omega}, ||f||_{p_2,\omega}\right).$$

Then $D(p_1, p_2, \omega)$ is also a Banach under this norm.

If ω is a weight function, i.e., a continuous function satisfying $\omega(x) \geq 1$, $\omega(x+y) \leq \omega(x)\omega(y)$ for all $x,y \in G$. Then the space $L^1_\omega(G)$ is a Banach algebra with respect to convolution. It is called a Beurling algebra (Reiter, [12]). It follows that $L^p_\omega(G)$ is an essential Banach $L^1_\omega(G)$ —module.

It is not hard to prove that $D(p_1,p_2,\omega)$ and $S(p_1,p_2,\omega)$ are reflexive Banach $L^1_\omega(G)$ -modules and the following duality relations hold:

$$D(p_1, p_2, \omega)^* \cong S(p'_1, p'_2, \omega^{-1}),$$

 $D(p_1, p_2, \omega^{-1})^* \cong S(p'_1, p'_2, \omega)$

where $\frac{1}{p_i} + \frac{1}{p_i'} = 1$, (i = 1, 2), (Murthy-Unni, [11]), (Liu-Wang, [9]), (Liu-Rooij [10]).

So, if the relation (1.1) applied to the $L^p_{\omega}(G)$ becomes

$$Hom_{L^{1}_{\omega}(G)}(L^{p}_{\omega}(G), L^{q'}_{\omega^{-1}}(G)) \cong (L^{p}_{\omega}(G) \otimes_{L^{1}_{\omega}(G)} L^{q}_{\omega}(G))^{*}$$

for $1 \le p \le \infty$ and $1 \le q < \infty$.

We remark that the relation (1.1) does not immediately apply to the case of $Hom_{L^1_\omega(G)}(L^p_\omega(G),L^1_\omega(G))$, since $L^1_\omega(G)$ is not a dual space. (Gaudry, [5]) showed that $Hom_{L^1_\omega(G)}(L^1_\omega(G),L^1_\omega(G))\cong M(\omega)$, the space of Radon measure μ on G for which $\|\mu\|_\omega<\infty$. However, when $p=q=\infty$, using the similar approach of (Larsen, [8]), we get the following proposition. We shall denote by $L^{\infty,w}_{\omega^{-1}}(G)$ the space $L^\infty_{\omega^{-1}}(G)$ considered with the weak* topology induced by elements of $L^1_\omega(G)$.

Proposition 1.1. Let G be a locally compact abelian group and suppose $T:L^{\infty,w}_{\omega^{-1}}(G)\to L^{\infty,w}_{\omega^{-1}}(G)$ is a linear transformation. Then the following are equivalent

- (1) $T \in M(L^{\infty,w}_{\omega^{-1}}(G), L^{\infty,w}_{\omega^{-1}}(G)),$
- (2) There exists a unique $\mu \in M(\omega)$ such that $Tf = \mu * f$ for each $f \in L^{\infty,w}_{\omega^{-1}}(G)$.

It is well known that if G is non-compact and p>q then $M(L^p,L^q)=\{0\}$, for the weighted L^p spaces we can assume hereafter that $p_i>1$ and $q_i>1, (i=1,2)$ with $p_i\leq q_i$.

In section 2, the function space $\Lambda^D_S(G)$ is defined as in (Rieffel, [13]) and the basic properties are studied. In section 3 and 4 the multipliers spaces $Hom_{L^1_\omega(G)}(L^{p_1}_\omega(G)\cap L^{p_2}_\omega(G),L^{q_1}_\omega(G)\cap L^{q_2}_\omega(G))$ and $Hom_{L^1_\omega(G)}(L^1_\omega(G),\Lambda^D_S(G))$ are also considered.

2. The Space
$$\Lambda^D_S(G)$$
 and Some Properties

Throughout this section we will assume that G is a locally compact abelian group and ω is a symmetric weight function on G.

Proposition 2.1. If
$$1 < p, \ q' < \infty, \ \frac{1}{p} + \frac{1}{q'} = \frac{1}{r} + 1 \ and \ \frac{1}{p} + \frac{1}{q'} \ge 1 \ then$$
 $L^p_{\omega}(G) * L^{q'}_{\omega^{-1}}(G) \subset L^r_{\omega^{-1}}(G)$

Proposition 2.2. If
$$1 < p_i, \, q_i^{'} < \infty, \, \frac{1}{p_i} + \frac{1}{q_i^{'}} = \frac{1}{r_i} + 1 \, \text{and} \, \frac{1}{p_i} + \frac{1}{q_i^{'}} \geq 1 \, (i = 1, 2)$$
 then $f * g \in S \left(r_1, r_2, \omega^{-1} \right)$ for any $f \in D(p_1, p_2, \omega), \, g \in S \left(q_1^{\prime}, q_2^{\prime}, \omega^{-1} \right)$ and

$$||f * g||_S \le ||f||_D ||g||_S$$

Proof. For each $f \in D(p_1, p_2, \omega)$ and $g \in S\left(q_1', q_2', \omega^{-1}\right), g = g_1 + g_2$, where $g_1 \in L^{q_1'}_{\omega^{-1}}(G), g_2 \in L^{q_2'}_{\omega^{-1}}(G)$, from Proposition 2.1, $f * g_1 \in L^{r_1}_{\omega^{-1}}(G)$, $f * g_2 \in L^{r_2}_{\omega^{-1}}(G)$ and so,

$$||f * g||_S \le ||f||_D ||g||_S$$
.

In view of Proposition 2.2 we can define a bilinear map b from $D(p_1, p_2, \omega) \times S(q'_1, q'_2, \omega^{-1})$ into $S(r_1, r_2, \omega^{-1})$, $(p_i \neq q_i)$ or $S(\infty, \infty, \omega^{-1})$, $(p_i = q_i)$ by

$$b(f,g) = f^{\sim} * g$$
 $f \in D(p_1, p_2, \omega), g \in S(q'_1, q'_2, \omega^{-1})$

where $f^{\sim}(x) = f(-x)$. It is easy to see $||b|| \leq 1$. The b lifts to a linear map B from $D(p_1, p_2, \omega) \otimes_{\gamma} S\left(q_1', q_2', \omega^{-1}\right)$ into $S\left(r_1, r_2, \omega^{-1}\right)$ or $S\left(\infty, \infty, \omega^{-1}\right)$ and $||B|| \leq 1$ by Theorem 6 in (Bonsall-Duncan, [1]).

Definition 2.2. The range of B, with the quotient norm, will be denoted by $\Lambda_S^D(G)$.

Thus $\Lambda^D_S(G)$ is a Banach space of functions on G which can be viewed as a subspace of $S\left(r_1,r_2,\omega^{-1}\right)$ or $S\left(\infty,\infty,\omega^{-1}\right)$ and every element h of $\Lambda^D_S(G)$ has at least one expansion of the form

$$h = \sum_{i=1}^{\infty} f_i^{\sim} * g_i,$$

where $f_i \in D(p_1,p_2,\omega),\,g_i \in S\left(q_1',q_2',\omega^{-1}\right)$, and $\sum\limits_{i=1}^{\infty}\|f_i\|_D\,\|g_i\|_S < \infty$,

with the expansion converging in the norm of $S\left(r_1,r_2,\omega^{-1}\right)$ or $S\left(\infty,\infty,\omega^{-1}\right)$. Furthermore the norm on $\Lambda_S^D(G)$ will be denoted by $\|.\|_{\Lambda_S^D}$.

Proposition 2.3. $D(p_1, p_2, \omega)$ and $S(p_1, p_2, \omega)$ are an essential Banach $L^1_{\omega}(G)$ -modules.

Proposition 2.4. $\Lambda^D_S(G)$ is an essential Banach $L^1_\omega(G)$ -module.

Proof. It is easy to prove that $\Lambda^D_S(G)$ is a Banach $L^1_\omega(G)$ —module.Let $(e_\alpha)_{\alpha\in I}$ be an approximate identity bounded in $L^1_\omega(G)$ it is also an approximate identity in $D(p_1,p_2,\omega)$ from Proposition 2.3. Assume that $\|e_\alpha\|_{1,\omega}\leq K$ for all $\alpha\in I$. Let $h\in\Lambda^D_S(G)$ be given; we get

$$h = \sum_{i=1}^{\infty} f_i^{\sim} * g_i, f_i \in D(p_1, p_2, \omega), g_i \in S(q_1', q_2', \omega^{-1})$$

where $\sum_{i=1}^{\infty} \|f_i\|_D \|g_i\|_S < \infty$. Hence we have

$$\|h-e_{\alpha}*h\|_{\Lambda^{D}_{S}(G)} = \left\|\sum_{i=1}^{\infty}(f_{i}^{\sim}-e_{\alpha}*f_{i}^{\sim})*g_{i}\right\|_{\Lambda^{D}_{S}(G)} \leq \sum_{i=1}^{\infty}\|f_{i}^{\sim}-e_{\alpha}*f_{i}^{\sim}\|_{D}\|g_{i}\|_{S}$$

and also we obtain

$$\lim_{\alpha \in I} ||h - e_{\alpha} * h||_{\Lambda_S^D(G)} = 0.$$

Consequently, by Corollary 15.3 in (Doran-Wichmann, [3]), we get

$$(\Lambda_S^D(G))_e = \Lambda_S^D(G).$$

3. Multipliers from
$$D(p_1, p_2, \omega)$$
 To $D(q_1, q_2, \omega)$

In this section, we will extend Theorem 2 in (Murthy-Unni, [11]) as a multipliers of from $D(p_1,p_2,\omega)$ to $D(q_1,q_2,\omega)$ by using the method in (Rieffel, [13]). Let us mention that we assume $\omega_1=\omega_2$ to simplify our proof and let us recall that (Murthy-Unni, [11]) defines the space $\tau(p_1,\omega_1,p_2,\omega_2)$ to be the set of all functions u which can be written in the form

$$u = \sum_{j=1}^{\infty} f_j * g_j$$

where $f_j \in C_c(G) \subset D(p_1, \omega_1, p_2, \omega_2)$ and $g_j \in S(p_1', \omega_1^{-1}, p_2', \omega_2^{-1})$ with $\sum_{j=1}^{\infty} \|f_j\|_D$ $\|g_j\|_S < \infty$ and they prove that the space of multipliers $M(D(p_1, \omega_1, p_2, \omega_2))$ is isometrically isomorphic to $\tau(p_1, \omega_1, p_2, \omega_2)^*$, the conjugate space of $\tau(p_1, \omega_1, p_2, \omega_2)$.

Since following (Rieffel, [13]) we get a general theorem. We start by recalling the following definition.

Definition 3.1. Let K be the closed linear subspace of $D(p_1, p_2, \omega) \otimes_{L^1_{\omega}} S(q'_1, q'_2, \omega^{-1})$ which is spanned by all elements of the form

$$(\varphi * f) \otimes g - f \otimes (\varphi^{\sim} * g)$$

where $f\in D(p_1,p_2,\omega),\,g\in S\left(q_1',q_2',\omega^{-1}\right)$ and $\varphi\in L^1_\omega(G)$. Then the Banach $L^1_\omega(G)$ —module tensor product $D(p_1,p_2,\omega)\otimes_{L^1_\omega}S\left(q_1',q_2',\omega^{-1}\right)$ is defined to be the quotient Banach space

$$D(p_1, p_2, \omega) \otimes_{L^1_{\omega}} S(q'_1, q'_2, \omega^{-1}) = D(p_1, p_2, \omega) \otimes_{\gamma} S(q'_1, q'_2, \omega^{-1}) / K$$

Lemma 3.2. Let G be locally a compact abelian group and $1 < p_i, \ q_i' < \infty$, $\frac{1}{p_i} + \frac{1}{q_i'} \ge 1$, (i = 1, 2). Given any $\varphi \in C_c(G)$ define T_φ by $T_\varphi(f) = f * \varphi$. Then $T_\varphi \in Hom_{L^1_*}(D(p_1, p_2, \omega), D(q_1, q_2, \omega))$ and the inequality

$$||T_{\varphi}|| \leq ||\varphi||_{1,\omega}^{\frac{p_1}{q_1}} ||\varphi||_{p'_1,\omega}^{1-\frac{p_1}{q_1}}$$

or the inequality

$$||T_{\varphi}|| \le ||\varphi||_{1,\omega}^{\frac{p_2}{q_2}} ||\varphi||_{p_2',\omega}^{1-\frac{p_2}{q_2}}$$

is satisfied.

Proof. Since $C_c(G) \subset L^p_\omega(G)$ for all p and ω , using the Proposition 2.1, Proposition 2.2 and Riesz-Thorin's interpolation theorem, it is obtained.

Definition 3.3. Let G be a locally compact abelian group. If every element of $Hom_{L^1_\omega}(D(p_1,p_2,\omega),D(q_1,q_2,\omega))$ can be approximated in the ultraweak operator topology by operators of the form T_φ , $\varphi\in C_c(G)$ then G is called to satisfy property $P_{q_1,q_2,\omega}^{p_1,p_2,\omega}$.

Theorem 3.4. Let G be a locally compact abelian group. If $1 < p_i', q_i < \infty$, $\frac{1}{p_i} + \frac{1}{q_i'} = \frac{1}{r_i} + 1$ and $\frac{1}{p_i} + \frac{1}{q_i'} \geq 1$ (i = 1, 2) then G satisfies property $P_{q_1, q_2, \omega}^{p_1, p_2, \omega}$ if and only if the kernel of B is K and the space $D(p_1, p_2, \omega) \otimes_{L^1_\omega} S\left(q_1', q_2', \omega^{-1}\right)$ is isometrically isomorphic to the space $\Lambda_S^D(G)$.

Proof. Suppose that G satisfies property $P_{q_1,q_2,\omega}^{p_1,p_2,\omega}$. It is easy to see that $K \subset KerB$. To show that $KerB \subset K$ it is suffices to show $K^{\perp} \subset (KerB)^{\perp}$. Let $F \in K^{\perp}$ be given. From the isometric isomorphism

$$K^{\perp} \cong (D(p_1, p_2, \omega) \otimes_{L^1_{\omega}} S(q'_1, q'_2, \omega^{-1}))^* \cong Hom_{L^1_{\omega}}(D(p_1, p_2, \omega), D(q_1, q_2, \omega))$$

there is a multiplier $T \in Hom_{L^1_\omega}(D(p_1,p_2,\omega),D(q_1,q_2,\omega))$ corresponding F such that

(3.1)
$$\langle t, F \rangle = \sum_{i=1}^{\infty} \langle g_i, Tf_i \rangle,$$

where $t \in KerB$, $t = \sum_{i=1}^{\infty} f_i \otimes g_i$ and $\sum_{i=1}^{\infty} \|f_i\|_D \|g_i\|_S < \infty$. We wish to show that $\sum_{i=1}^{\infty} \langle g_i, Tf_i \rangle = 0$, since G satisfies property $P_{q_1,q_2,\omega}^{p_1,p_2,\omega}$ there is a net (φ_j) , of

elements $C_c(G)$ such that the operators T_{φ_j} defined in Lemma 3.2 converge T in the ultraweak operator topology.

(3.2)
$$\lim_{j} \sum_{i=1}^{\infty} \langle g_i, T_{\varphi_j} f_i \rangle = \sum_{i=1}^{\infty} \langle g_i, T f_i \rangle.$$

Thus to prove it suffices to show that

$$(3.3) \qquad \sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = 0$$

for each j. On the other hand, we have

(3.4)
$$\sum_{i=1}^{\infty} \langle g_i, f_i * \varphi_j \rangle = \langle \sum_{i=1}^{\infty} f_i^{\sim} * g_i, \varphi_j \rangle = 0$$

Hence from (3.2) and (3.4) we get $F \in (KerB)^{\perp}$ and also using the following

$$\begin{array}{c} B^- \text{ isomorphism such that } B^- \circ \Phi = B \\ (D(p_1,p_2,\omega) \otimes_{L^1_\omega} S\left(q_1',q_2',\omega^{-1}\right)) \to^B \Lambda^D_S(G) \to^i S\left(r_1,r_2,\omega^{-1}\right) \\ \Phi \searrow \qquad \nearrow B^- \\ (D(p_1,p_2,\omega) \otimes_\gamma S\left(q_1',q_2',\omega^{-1}\right)) \diagup KerB \\ \text{we have } (D(p_1,p_2,\omega) \otimes_{L^1_\omega} S\left(q_1',q_2',\omega^{-1}\right)) \cong \Lambda^D_S(G). \end{array}$$

Suppose conversely that KerB=K. We will show that the set $N=\{T_{\varphi}\mid \varphi\in C_C(G)\}$ is everywhere dense in $Hom_{L^1_{\omega}}(D(p_1,p_2,\omega),D(q_1,q_2,\omega))$ in the ultraweak operator topology. It is sufficient to show that the set of the linear functionals which corresponds to the operators T_{φ} , denoted by M, is everywhere dense in $(D(p_1,p_2,\omega)\otimes_{L^1_{\omega}}S\left(q_1',q_2',\omega^{-1}\right))^*$ in the weak* topology.

But to show this it is sufficient to prove that $M^{\perp} = KerB$. Since $(D(p_1, p_2, \omega) \otimes_{L^1_{\omega}} S\left(q'_1, q'_2, \omega^{-1}\right))^* \cong (KerB)^{\perp}$ then < t, F>=0 for all $t \in KerB$ and $F \in M$. Thus $T \in M^{\perp}$. That means $KerB \subset M^{\perp}$. Conversely for every $t \in M^{\perp}$ and $F \in M$ we have < t, F>=0. Using (3.4) and Hann-Banach theorem we find that $\sum_{i=1}^{\infty} f_i^{\sim} * g_i = 0$. Therefore $M^{\perp} \subset KerB$. This completes the proof.

Corollary 3.5 Let G be a locally compact abelian group and $1 < p_i, \ q_i' < \infty$, $\frac{1}{p_i} + \frac{1}{q_i'} = \frac{1}{r_i} + 1, \ \frac{1}{p_i} + \frac{1}{q_i'} \geq 1, \ (i=1,2).$ If G satisfies property $P_{q_1,q_2,\omega}^{p_1,p_2,\omega}$ then we have the identification

$$Hom_{L^1_{\omega}}(D(p_1, p_2, \omega), D(q_1, q_2, \omega)) \cong \Lambda^D_S(G)^*.$$

4. Multipliers from $L^1_{\omega}(G)$ To $\Lambda^D_S(G)$

Proposition 4.1. Let G be a locally compact abelian group. Hom $L^1_{\omega}(L^1_{\omega}(G), \Lambda^D_S(G))$ is an essential Banach module over $L^1_{\omega}(G)$.

Proof. It is easy to see that $(Hom_{L^1_\omega}(L^1_\omega(G),\Lambda^D_S(G)))$ is a $L^1_\omega(G)$ -Banach module, defined by (fT)(g)=T(f*g), for all $f\in L^1_\omega(G)$ and $T\in (Hom_{L^1_\omega}(L^1_\omega(G),\Lambda^D_S(G)))$. On the other hand take $(e_\alpha)_{\alpha\in I}$ bounded approximate identity in $L^1_\omega(G)$. For every $T\in (Hom_{L^1_\omega}(L^1_\omega(G),\Lambda^D_S(G)))$ we obtain

$$\begin{split} \|e_{\alpha}T - T\| &= \sup_{\|f\|_{1.\omega} = 1} \|(e_{\alpha}T - T)(f)\|_{\Lambda^{D}_{S}(G)} \\ &= \sup_{\|f\|_{1.\omega} = 1} \|T(e_{\alpha}*f) - T(f)\|_{\Lambda^{D}_{S}(G)} \leq \sup_{\|f\|_{1.\omega} = 1} \|T\| \|e_{\alpha}*f - f\|_{1,\omega} \,. \end{split}$$

This completes the proof by Corollary 15. 3 in (Doran-Wichmann, [3]).

Theorem 4.2. Let G be a locally compact abelian group. The space $Hom_{L^1_{\omega}}(L^1_{\omega}(G), \Lambda^D_S(G))$ is isometrically isomorphic to the space $\Lambda^D_S(G)$.

Proof. It is the consequence of the Theorem 3.3. in (Datry-Muraz, [2]).

Remark 1. (1) If $p_1 = p_2 = p$ and $q_1 = q_2 = q$, we get $\frac{1}{p} + \frac{1}{q'} \ge 1$ and $\frac{1}{p} + \frac{1}{q'} = \frac{1}{r} + 1$, then it is obtained Theorem 1 in (Murthy-Unni, [11]):

$$\begin{split} &Hom_{L^{1}_{\omega}}(L^{p}_{\omega}(G),L^{q}_{\omega}(G)) \cong (L^{p}_{\omega}(G) \otimes_{L^{1}_{\omega}} L^{q'}_{\omega^{-1}}(G))^{*} \cong (\Lambda^{p}_{q'}(G))^{*} \\ &= \left\{ t = \sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty} \|f_{i}\|_{p,\omega} \|g_{i}\|_{q',\omega^{-1}} < \infty, f_{i} \in L^{p}_{\omega}(G), g_{i} \in L^{q'}_{\omega^{-1}}(G) \right\}^{*} \end{split}$$

(2) If $p_1 = p_2 = p$ and $q_1 \neq q_2$, we have a new multipliers space such that

$$Hom_{L_{\omega}^{1}}(L_{\omega}^{p}(G), L_{\omega}^{q_{1}}(G) \cap L_{\omega}^{q_{2}}(G)) \cong (L_{\omega}^{p}(G) \otimes_{L_{\omega}^{1}} S(q'_{1}, q'_{2}, \omega^{-1}))^{*} \cong (\Lambda_{S}^{p}(G))^{*}$$

$$= \left\{ t = \sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty} \|f_{i}\|_{p,\omega} \|g_{i}\|_{S} < \infty, f_{i} \in L_{\omega}^{p}(G), g_{i} \in S(q'_{1}, q'_{2}, \omega^{-1}) \right\}^{*}$$

(3) If $p_1 \neq p_2$, $q_1 = q_2 = q$ we get the following new multipliers space such that

$$\begin{split} & Hom_{L_{\omega}^{1}}\!(L_{\omega}^{p_{1}}(G) \cap L_{\omega}^{p_{2}}(G), L_{\omega}^{q}(G)) \cong (L_{\omega}^{p_{1}}(G) \cap L_{\omega}^{p_{2}}(G) \otimes_{L_{\omega}^{1}}\!L_{\omega^{-1}}^{q'}(G))^{*} \cong (\Lambda_{q'}^{D}(G))^{*} \\ & = \left\{ t = \sum_{i=1}^{\infty} f_{i}^{\sim} * g_{i} \mid \sum_{i=1}^{\infty} \|f_{i}\|_{D} \|g_{i}\|_{q',\omega^{-1}} < \infty, \ f_{i} \in D(p_{1}, p_{2}, \omega), g_{i} \in L_{\omega^{-1}}^{q'}(G) \right\}^{*} \end{split}$$

Note that in Remarks 1, 2 and 3, the norm of t is the infimum of the expression for all representations of t

(4) If $\omega = 1$, it is obtained the classical case of $L^p(G)$ -spaces.

ACKNOWLEDGMENT

The author would like to thank to the referee for the significant suggestions.

REFERENCES

- 1. F. F. Bonsall and J. Duncan, *Complete Normed Algebras. Berlin*, Heidelberg, Newyork: Springer-Verlag, 1973.
- 2. C. Datry and G. Muraz, *Multiplier Problems, Proceedings of the third Asian Mathematical Conference*, Diliman-Philippines, 2000.
- 3. R. S. Doran and J. Wichmann, *Approximate Identities and Factorazation in Banach Modules*, Lecture notes in Mathematics, 768. Springer-Verlag, 1979.
- 4. N. Dunford and J. T. Schwartz, Linear Operators, I, Interscience Publisher, 1958.
- 5. Gaudry G. I. Multipliers of Weighted Lebesque and Measure Spaces. *Proc. London Math. Soc.*, **19(3)** (1969), 327-340.
- 6. A. Grothendieck, *Produits tensoriels topologiques et espaces nucleaires*, American Mathematical Society, Providence, Rhode Island, 1955.
- 7. E. Hewitt, K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1963.
- 8. R. Larsen, An Introduction to Theory of Multipliers, New York, Springer-Verlag, 1970.
- 9. T. S. Liu and J. K. Wang, Sums and Intersections of Lebesque Spaces, *Math. Scand*, **23** (1968), 241-251.
- 10. T. S. Liu and A. V. Rooij, Mathematiche Nachrichten Band, 42 (1969), 1-3.
- 11. G. N. K. Murthy and K. R.Unni, *Multipliers on Weighted Spaces. Functional Analysis and its Applications*, International conference. Lecture Notes in Mathematics 399, Springer-Verlag, 1973.
- 12. H. Reiter, *Classical Harmonic Analysis and Locally Compact Groups+*, Oxford at the Clarendon Press. 1968.
- 13. M. A. Rieffel, Multipliers and Tensor Product of L^p -spaces of Locally Compact Groups, Studia Mathematica, T, **XXXIII** (1969), 71-82.
- 14. R. Schatten, Theory of Cross-Spaces, Annals of Mathematics studies, 26 (1950).

Serap Öztop Department of Mathematics, Faculty of Sciences, Istanbul University, 34459 Vezneciler, Istanbul, Turkey

E-mail: serapoztop@hotmail.com oztops@istanbul.edu.tr