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FINITE TYPE RULED SURFACES IN LORENTZ-MINKOWSKI SPACE

Dong-Soo Kim, Young Ho Kim and Dae Won Yoon

Abstract. In this article, we study ruled surfaces in a Lorentz-Minkowski
space, which has finite type immersion. We give a complete classification of
ruled surfaces of finite type immersion into a Lorentz-Minkowski space with
arbitrary codimension.

1. INTRODUCTION

In late 1970’s B.-Y. Chen ([3, 4]) introduced the notion of finite type immersion
into a Euclidean space. A lot of works have been done in this field of study since
then. He also extended the notion of finite type immersion of submanifolds into a
pseudo-Euclidean space in 1980’s. It can be defined formally in the following: A
pseudo-Riemannian submanifold M of an m-dimensional pseudo-Euclidean space
E

m
s with signature (s, m− s) is said to be of finite type if its position vector field

x can be expressed as a finite sum of eigenvectors of the Laplacian ∆ of M , that
is, x = x0 +

∑k
i=1 xi, where x0 is a constant map, x1, · · · , xk non-constant maps

such that ∆xi = λixi, λi ∈ R, i = 1, 2, · · · , k. If λ1, λ2, · · · , λk are different, then
M is said to be of k- type. Such a notion can be developed to a smooth map such
as the Gauss map of finite type, that is, the Gauss map G of the submanifold of
a Euclidean or a pseudo-Euclidean space is said to be of finite type if G can be
expressed as a finite sum of the ambient manifold valued eigenfunctions of ∆ ([1,
2, 6, 9, 10, 11, 12]).

Ruled surfaces in Euclidean space of finite type were studied by B.-Y. Chen et al.
([5]). On the other hand, F. Dillen et al. ([7]) classified ruled surfaces of finite type
in 3-dimensional Lorentz-Minkowski space as an open portion of minimal, circular
or hyperbolic cylinders and isoparametric surfaces with null rulings. Recently, the
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authors ([9, 10]) completely classified the family of ruled surfaces of a Lorentz-
Minkowski space with finite type Gauss map. Therefore, we may raise a natural
question: What kind of ruled surfaces have finite type immersion into a Lorentz-
Minkowski space?

In this article, we study ruled surfaces in a Lorentz-Minkowski m-space L
m,

and we give the complete classification theorem of such ruled surfaces.
Throughout this paper, we assume that all objects are smooth and all surfaces

are connected unless otherwise mentioned.

2. PRELIMINARIES

Let E
m
s be an m-dimensional pseudo-Euclidean space of signature (s, m − s)

with the metric ds2 = −dx2
1−· · ·−dx2

s+dx2
s+1+· · ·+dx2

m, where (x1, x2, · · · , xm)
denotes the standard coordinate system in E

m
s . In particular, for m ≥ 2, E

m
1 is called

a Lorentz-Minkowski m - space. For simplicity, we denote E
m
1 by L

m from now on.
Let x : M −→ E

m
s be an isometric immersion of an n-dimensional pseudo-

Riemannian submanifold M into E
m
s . From now on, a submanifold in E

m
s always

means pseudo-Riemannian, that is, the induced metric on the submanifold is non-
degenerate.

For the components gij of the induced pseudo-Riemannian metric 〈·, ·〉 on M

from that of E
m
s we denote by (gij) (resp. G) the inverse matrix (resp. the deter-

minant) of the matrix (gij). Then, the Laplacian ∆ on M is given by

(2.1) ∆ = − 1√|G|
∑
i,j

∂

∂xi
(
√
|G|gij ∂

∂xj
).

Now, we define a ruled surface M in L
m. Let I and J be open intervals

containing 0 in the real line R. Let α = α(s) be a curve of J into L
m and

β = β(s) a vector field along α with α′(s) ∧ β(s) �= 0 for every s ∈ J . Then, a
ruled surface M is defined by the parametrization given as follows:

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I.

For such a ruled surface, α and β are called the base curve and the director vector
field, respectively. The director vector field β is a curve along the base curve α.
In particular, if β is constant, the ruled surface over a base curve α is said to be a
cylinder. In this case, a base curve can be chosen as a curve in (m−1)-dimensional
affine space E

m−1
s (s = 0, 1) orthogonal to the constant vector β, where the index

s is determined according to β. Thus, a cylinder means the right cylinder in L
m.

Or, else it is called non-cylindrical.
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In case that the base curve α and the director vector field β are non-null, the
base curve α can be chosen to be orthogonal to the director vector field β and β
can be normalized satisfying 〈β(s), β(s)〉 = ε(= ±1) for all s ∈ J , i.e., β can be
regarded as a spherical curve lying in a pseudo-Riemannian sphere Sm−1

1 = {p ∈
L

m|〈p, p〉 = 1} or a hyperbolic space Hm−1 = {p ∈ L
m|pm > 0, 〈p, p〉 = −1},

where p = (p1, p2, · · · , pm). In this case, according to the character of vector fields
α′ and β, we have ruled surfaces of five different kinds as follows: If the base
curve α is space-like or time-like, then the ruled surface M is said to be of type
M+ or type M−, respectively. Also, the ruled surface of type M+ can be divided
into three types. If the vector field β is space-like, it is said to be of type M1

+ or
M2

+ if β′ is non-null or null, respectively. When the vector field β is time-like, β ′

is space-like because of the causal character. In this case, M is said to be of type
M3

+. On the other hand, for the ruled surface of type M−, the director vector field
is always space-like. According as its derivative β′ is non-null or null, it is also
said to be of type M1− or M2−, respectively.

A curve in E
m
s is called null if its tangent vector field is null along it. If the

base curve α is a null curve and the director vector field β along α is a null vector
field, then the ruled surface M is called a null scroll.

Remark. Let M be a ruled surface in L
m defined by a null base curve α

and a non-null director vector field β. In this case, passing to a curve defined by
α̃ = α(s)+f(s)β(s) as a base curve for a certain function f , M can be determined
by a non-null base curve α̃ and a non-null director vector field β, i.e., M is reduced
to one of M1±, M2± or M3

+-type. A ruled surface M with a non-null base curve α
and a null director vector field β is turned out to be a null scroll by taking a null
base curve α̃ = α(s) + f(s)β(s) for a suitable function f .

The authors found a class of flat ruled surfaces of type M2
+ with finite type

Gauss map in [ 9, 11 ], which is the only class of non-cylindrical ruled surfaces
with finite type Gauss map in L

m. We call such flat ruled surfaces as ruled surfaces
of type FNC-M2

+.
If the base curve and the director vector field regarded as a curve are of finite

type in L
m, the ruled surfaces are said to be of bi-finite type. In particular, a null

scroll with Cartan frame in L
3 is said to be a B-scroll ([ 1, 8 ]). The authors ([ 9, 10

]) defined an extended B-scroll and a generalized B-scroll in a Lorentz-Minkowski
m-space L

m.
A generalized B-scroll in L

m is defined as follows: Let M be a null scroll
generated by a null curve α = α(s) in L

m (m ≥ 4) and β = β(s) a null vector
field along α, which is up to congruences parametrized by

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I

such that 〈α′, α′〉=0, 〈β,β〉=0, whereI andJ are some open intervals. Without loss
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of generality, we may assume 〈α′, β〉=−1 by passing β to another null vector field
β̃=− 1

〈α′,β〉β.
Let α = α(s) be a null curve in L

m and let A(s), B(s), C1(s), · · · , Cm−2(s)
be a null frame along α satisfying

〈A, A〉 = 〈B, B〉 = 〈A, Ci〉 = 〈B, Ci〉 = 0,

〈A, B〉 = −1, 〈Ci, Cj〉 = δij , α′(s) = A(s)

for 1 ≤ i, j ≤ m−2. Let X(s) be the matrix (A(s) B(s) C1(s) · · · Cm−2(s))
consisting of column vectors of A(s), B(s), C1(s), · · · , Cm−2(s) with respect to the
standard coordinate system in L

m.
A system of ordinary differential equations

X ′(s) = X(s)M(s)

with

M(s) =




0 0 −a 0 0 · · · 0
0 0 −k1(s) −k2(s) −k3(s) · · · −km−2(s)

−k1(s) −a 0 −w2(s) −w3(s) · · · −wm−2(s)
−k2(s) 0 w2(s) 0 0 · · · 0
−k3(s) 0 w3(s) 0 · · · · · · ·

...
...

...
...

...
...

...
−km−2(s) 0 wm−2(s) 0 · · · · · · 0




has a unique solution with respect to a given initial condition X(0) = (A(0) B(0)
C1(0) · · ·Cm−2(0)). Making use of a solution vector field B, we can define a null
scroll x(s, t) = α(s)+ tB(s) that is called a generalized B-scroll. (For the details,
see [10]).

2. RULED SURFACES WITH NON-NULL BASE CURVES

In this section, we study finite type ruled surfaces in L
m with non-null base

curve and non-null director vector field.

Theorem 3.1. If a cylinder with space-like or time-like base curve in L
m is

of finite type, then the base curve is of finite type.

Proof. Let M be a cylinder in L
m with a space-like or a time-like smooth

(m − 1)−curve α = α(s) and a space-like or time-like unit constant vector field
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β = β(s) along α orthogonal to α, where s is the arc length of α. Then, M is
parametrized by

x = x(s, t) = α(s) + tβ, s ∈ J, t ∈ I

such that 〈α′, α′〉 = ε1(= ±1), 〈α′, β〉 = 0, 〈β, β〉 = ε2(= ±1).
In this case, the cylinder M is only of type M1

+, M3
+ or M1−.

We divide it by two cases.

Case 1. Let M be a cylinder of type M1
+ or M1−, that is, ε2 = 1. Then, by

(2.1) the Laplacian ∆ of M is given in terms of s and t by

∆ = −ε1
∂2

∂s2
− ∂2

∂t2
.

We denote by ∆′ the Laplacian of α, that is ∆′ = −ε1
∂2

∂s2 . In this case, by the
straightforward computation, the surface M is of finite type if and only if each
component of α(s) can be written as a finite sum of eigenfunctions of ∆, i.e.,

(3.1) α(s) = Γ0 +
k∑

i=1

Γi(s, t)

where ∆Γi = λiΓi. We may assume that all the λi are mutually different. If we
apply

∏k
i=2(∆ − λi) to (3.1), we obtain that Γ1 does not depend on t. Similarly,

we find that none of the Γi depends on t. Moreover, we see

∆′Γi(s) = −ε1
∂2

∂s2
Γi(s) = −ε1

∂2

∂s2
Γi(s)− ∂2

∂t2
Γi(s) = ∆Γi(s) = λiΓi(s)

for all i. Hence, every component of α can be written as a finite sum of eigenfunc-
tions of ∆′. This means that α is of finite type. Thus, M is of finite type if and
only if α is of finite type.

Case 2. Let M be a cylinder of type M3
+, that is, ε1 = 1, ε2 = −1. In this

case the Laplacian ∆ of M is given by

∆ = − ∂2

∂s2
+

∂2

∂t2
.

Similarly to Case 1, we can obtain the same result.
Consequently, by combining the Case 1 and Case 2, the proof is completed.

Let M be a non-cylindrical ruled surface of one of three types M1
+, M3

+ or M1−
according to the character of the base curve α and the director vector field β. In
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dealing with this case, we suppose that s is the arc-length of the director vector
field β. Since it is viewed as a spherical curve, the director vector field β can be
normalized with unit speed.

Thus, the ruled surface M can be parametrized by

x = x(s, t) = α(s) + tβ(s), s ∈ J, t ∈ I

such that 〈α′, β〉 = 0, 〈β, β〉 = ε2(= ±1) and 〈β′, β′〉 = ε3(= ±1). Since M is
non-degenerate, the tangent vector field xs = ∂x

∂s cannot be null. For later use we
define smooth functions q, u and v as follows:

q = ‖xs‖2 = ε4〈xs, xs〉, u = 〈α′, β′〉, v = 〈α′, α′〉,
where ε4 = sign〈xs, xs〉. In turn, q can be given as

(3.2) q = ε4(ε3t
2 + 2ut + v).

It is easy to show that the Laplacian ∆ of M can be expressed as by using (2.1)

∆ = −ε4(
1
q

∂2

∂s2
− 1

2q2

∂q

∂s

∂

∂s
) − ε2(

∂2

∂t2
+

1
2q

∂q

∂t

∂

∂t
).

Let P be a polynomial in t with functions in s as coefficients with degree deg(P ) =
d. By a straightforward computation, for each positive integer m we have

∂

∂s
(
P (t)
qm

) =
1

qm+1
P̃1(t),

∂2

∂s2
(
P (t)
qm

) =
1

qm+2
P̃2(t),

∂

∂t
(
P (t)
qm

)

=
1

qm+1
P̃3(t),

∂2

∂t2
(
P (t)
qm

) =
1

qm+2
P̃4(t),

where P̃i(t) (i = 1, 2, 3, 4) are some polynomials in t with functions in s as co-
efficients with deg P̃1(t) ≤ d + 2, deg P̃2(t) ≤ d + 4, deg P̃3(t) ≤ d + 1, and
deg P̃4(t) ≤ d + 2.

Thus,

∆(
P (t)
qm

)=
1

qm+3
{−ε4P̃2(t)+

1
2
ε4

∂q

∂s
P̃1(t)−ε2qP̃4(t)−1

2
ε2

∂q

∂t
qP̃3(t)}=

1
qm+3

P̃ (t),

where P̃ is a polynomial in t with functions in s as coefficients with deg P̃ (t) ≤
d + 4.

Therefore, we have the following

Lemma 3.2. If P is a polynomial in t with functions in s as coefficients
and deg(P ) = d, then ∆( P (t)

qm ) = 1
qm+3 P̃ (t) where P̃ (t) is a polynomial in t with

functions in s as coefficients and deg( P̃ ) ≤ d + 4.
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By a straightforward computation, we obtain

∆x =
P1(t)
q2

where P1(t) is a polynomial in t with functions in s such that deg(P1) = d (0 ≤
d ≤ 3). Suppose that M is of k-type. Then, there exist numbers λ1, λ2, · · · , λk

such that

(3.3) ∆k+1x + λ1∆kx + · · ·+ λk∆x = 0.

Let r ≥ 1 be an integer. By applying Lemma 3.2, we have

∆rx =
Pr(t)
q3r−1

,

where Pr(t) is a vector whose components are polynomials in t with functions in s

as coefficients and deg(Pr) ≤ d + 4(r − 1). Substituting this into (3.3) yields

Pk+1

q3k+2
+ λ1

Pk

q3k−1
+ · · ·+ λk

P1

q2
= 0.

Suppose λk �= 0, that is, M is of non-null k-type. Multiplying q3k+2 to the last
equation, we get

Pk+1 + λ1q
3Pk + · · ·+ λkq

3kP1 = 0.

The degree of q3kP1 is 6k + d and those of the rest terms are less than or equal to
6k + d − 2. Thus, the sum in (3.3) can never be zero unless ∆x = 0. Therefore,
M is minimal.

In the case of λk = 0, that is, M is of null k-type. Then, λk−1 �= 0. By
applying the same argument as above, we see that ∆2x = 0, in other words, M
is of bi-harmonic. Quite similarly to the case of bi-harmonic submanifolds of
Euclidean space of finite type, it is easily proved that a bi-harmonic submanifold of
pseudo-Euclidean space of finite type is minimal (cf. [3]). Hence, we have

Proposition 3.3. A non-cylindrical ruled surface of the type M 1
+, M3

+ or M 1−
in L

m is of finite type if and only if it is minimal.

We now consider a non-cylindrical ruled surface M of type M2
+ or M2− with

finite type immersion into L
m. The parametrization for M may be given by

x(s, t) = α(s) + tβ(s)

such that 〈β, β〉 = 1, 〈α′, β〉 = 0, 〈α′, α′〉 = ε1(= ±1) and β′ is null. Similarly
to proof of Proposition 3.3, we also define functions q and u by

q = ||xs||2 = ε4〈xs, xs〉, u = 〈α′, β′〉, ε4 = sign〈xs, xs〉,
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which give
q = ε4(2ut + ε1),

where the parameter t runs in such a way that q > 0. By the straightforward
computation, we easily have the Laplacian ∆ of M in the form of

(3.4) ∆ = −ε4(− 1
2q2

∂q

∂s

∂

∂s
+

1
q

∂2

∂s2
) − (

1
2q

∂q

∂t

∂

∂t
+

∂2

∂t2
).

Quite similarly to prove Lemma 3.2, we can obtain the following lemma.

Lemma 3.4. If P is a polynomial in t with functions in s as coefficients
and deg(P ) = d, then ∆( P (t)

qm ) = 1
qm+3 P̃ (t) where P̃ (t) is a polynomial in t with

functions in s as coefficients and deg( P̃ ) ≤ d + 2.

A straightforward computation yields

(3.5) ∆x=
1
q2

{
(u′β′−2uβ′′)t2+(u′α′−2uα′′−ε1β

′′−2u2β)t−ε1α
′′−ε1uβ

}
.

Let P1(t) = (u′β′ − 2uβ′′)t2 + (u′α′ − 2uα′′ − ε1β
′′ − 2u2β)t − ε1α

′′ − ε1uβ.
Then, deg(P1) = d with 0 ≤ d ≤ 2. By using Lemma 3.4, we have

∆rx =
Pr(t)
q3r−1

, (r ≥ 1)

where Pr(t) is a vector whose components are polynomial in t with functions in s

as coefficients and deg(Pr) ≤ 2(r − 1) + d.
Suppose that M is not minimal. Then, there exists a non-empty open subset

U = {p ∈ M |∆x �= 0}. If u(p) �= 0 at p ∈ U, then u �= 0 at every point in
a neighborhood V of p contained in U. Suppose there exists a non-empty open
subset W ⊂ V such that u′β′ − 2uβ′′ �= 0 or u′α′ − 2uα′′ − ε1β

′′ − 2u2β �= 0 on
W. Then, P1 and q are polynomials in t with functions in s as coefficients such
that deg(P1) ≥ 1 and deg(q) = 1 on W. Using the similar argument adapted to a
non-cylindrical ruled surface of type M1± or M3

+ and Lemma 3.4, (3.3) cannot be
achieved unless ∆x = 0 on W, which is a contradiction. Therefore, W is empty and
thus we have

(3.6) u′β′ − 2uβ′′ = 0,

(3.7) u′α′ − 2uα′′ − ε1β
′′ − 2u2β = 0

on V. From (3.6), β′′ = u′
2uβ′ on V. Taking the scalar product with α′ in (3.7)

and using β ′′ = u′
2uβ′, we obtain u′ = 0 and thus β ′′ = 0 on V. Putting these into
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(3.7), we see that α′′ + uβ = 0 that makes P (t) = 0 and hence ∆x = 0 on V,
a contradiction. Therefore, the subset V is empty and the function u is identically
zero on U.

Next, on the subset M − U, we have from (3.5)

(3.8) u′β′ − 2uβ′′ = 0,

(3.9) u′α′ − 2uα′′ − ε1β
′′ − 2u2β = 0,

(3.10) α′′ + uβ = 0

on M − U. Substituting (3.10) into (3.9), we get β ′′ = ε1u
′α′. Together this with

(3.8), u′(β′ − 2ε1uα′) = 0 on M −U. Suppose that S = int(M − U) is not empty,
where int(M −U) denotes the interior of M −U. If u′(p) �= 0 at some point p ∈ S,
u′ �= 0 at every point of an open neighborhood S1 ⊂ S. Then, β′ = 2uε1α

′ on
S1. Taking the scalar product with β ′ yields u = 0 on S1, which is a contradiction.
Thus, the function u is constant on each component of S. Since u is zero on U and
continuous on M , u is identically zero on M . In this case, α′′ = 0 and β′′ = 0 on
M −U. If int(M −U) = ∅, there is nothing to say that u ≡ 0 on M by continuity.

Since there is no time-like vector orthogonal to a null vector in a Lorentz-
Minkowski space, the base curve α must be space-like and ε1 = 1, i.e., M cannot
be of M2−-type and the only possibility is that M is of M2

+-type. Therefore, we
have α′′ = β′′ = 0 on M − U and ∆x = −α′′ − β′′t on U. Thus, we have

Proposition 3.5. Let M be a non-cylindrical ruled surface of the type M 2
+ or

M2− in L
m is of finite type. Then, it is either minimal or bi-finite of type M 2

+.

Remark. In Proposition 3.5, if we regard the director vector field β as a curve
in L

m, it is a null curve. Therefore, the meaning of finiteness of curve β is formally
defined.

Corollary 3.6. The only finite type non-cylindrical ruled surfaces of M 2−-type
are minimal.

Putting together Proposition 3.3 and Proposition 3.5, we get

Theorem 3.7. A non-cylindrical ruled surface M in a Lorentz-Minkowski space
L

m is of finite type if and only if it is either minimal or bi-finite of type M 2
+.

Example 3.8. Let α be a space-like curve of the form α = α(s) = (sin s, sin s, 0, s)
and β a vector field along α such that β = β(s) = (cos s, cos s, 1, 0) in L

4. Con-
sider a ruled surface M parametrized by x(s, t) = α(s)+ tβ(s) on s ∈ I and t ∈ J

for some open intervals I and J . Then, M is a non-cylindrical finite type ruled
surface of type M2

+.
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4. NULL SCROLLS OF FINITE TYPE AND CLASSIFICATION OF RULED SURFACES IN L
m

First of all, we consider a null scroll M in L
m parametrized by

x(s, t) = α(s) + tβ(s)

where α is a null curve in L
m and β a null vector field along α satisfying

〈α′(s), α′(s)〉 = 〈β(s), β(s)〉 = 0, 〈α′(s), β(s)〉 = −1 for some open intervals I

and J . Furthermore, without loss of generality we may choose α as a null geodesic
of M . We then have 〈α′(s), β′(s)〉 = 0 for all s. Therefore, we have the natural
frame {xs, xt} given by

xs = α′ + tβ′, xt = β.

Using the induced Lorentz metric on M and formula (2.1), we have the Lapla-
cian operator ∆ on M given by

∆ = 2
∂2

∂s∂t
+

∂q

∂t

∂

∂t
+ q

∂2

∂t2
,

where q = 〈xs, xs〉. From which, using the Beltrami-equation, we have the mean
curvature vector field H given by

(4.1) H(s, t) = −β′(s) − tv(s)β(s),

where v = 〈β′, β′〉. We need the following lemma for later use.

Lemma 4.1 ([9]). Let V (s) be a smooth l(≥ 2)-dimensional non-degenerate
distribution of index 1 in a Lorentz-Minkowski m(≥ 3)-space L

m along a curve
α = α(s). Then, we can choose orthonormal vector fields C1(s), · · · , Cm−l(s)
along α which generate the orthogonal complement V ⊥(s) satisfying C ′

i(s) ∈ V (s)
for 1 ≤ i ≤ m − l.

Suppose that M is of finite type. Then, there exist constants λ1, λ2, · · · , λk

such that
∆k+1x + λ1∆kx + · · ·+ λk−1∆2x + λk∆x = 0

for some positive integer k. By a direct computation, the last equation holds if and
only if

(4.2) 2k(vkβ)′ + 2k−1λ1(vk−1β)′ + · · ·+ 2λk−1(vβ)′ + λkβ
′ = 0,

(4.3) 2kvk+1 + 2k−1λ1v
k + · · ·+ 2λk−1v

2 + λkv = 0,

where v = 〈β′, β′〉.
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Suppose v is identically zero. From the causal character of the vector field β,
β′ must be space-like. Thus (4.1) implies that M is minimal. We now consider an
open subset U = {p ∈ M |v(p) �= 0} of M . Suppose U �= ∅. We then have from
(4.3)

λk + 2λk−1v + · · ·+ 2k−1λ1v
k−1 + 2kvk = 0

on U . v is a solution of an algebraic equation λk + 2λk−1z + · · ·+ 2k−1λ1z
k−1 +

2kzk = 0 with real coefficients and thus v is a real constant. By the causal character
of β, v is a positive constant on each component of U . Since v vanishes on M −U ,
by continuity, U = M . In this case, we obtain ∆H = 2vH . Therefore, we have
the following:

Proposition 4.2. Let M be a null scroll of finite type in a Lorentz-Minkowski
m-space L

m. Then, it is of either 1-type or null 2-type.

Considering a result in [10], we obtain

Corollary 4.3. Let M be a null scroll in a Lorentz-Minkowski m-space L
m.

Then, M is of finite type if and only if M has finite type Gauss map.

Let v be a nonzero constant. By the causal character of β, v is a positive number
a2 (a > 0). Let A(s) = α′(s), B(s) = β(s), C1(s) = − 1

aβ′(s). Let V (s) be
the vector space spanned by A(s), B(s), C1(s) along α. According to Lemma 4.1,
we have orthonormal vector fields C2(s), · · · , Cm−2(s) generating the orthogonal
complement V ⊥(s) satisfying C′

j(s) ∈ V (s) for j = 2, · · · , m − 2. Let kj(s) =
〈C′

j(s), A(s)〉 = −〈A′(s), Cj(s)〉 (j = 1, · · · , m− 2) and wj(s) = 〈C′
1(s), Cj(s)〉

(j = 2, · · · , m− 2). Then, we have

C′
1(s) = −aA(s) − k1(s)B(s) +

m−2∑
j=2

wj(s)Cj(s),

A′(s) = −
m−2∑
j=1

kj(s)Cj(s), C′
i(s) = −ki(s)B(s) − wi(s)C1(s)

for i = 2, · · · , m−2. It defines the so-called generalized B-scroll given by x(s, t) =
α(s) + tB(s). Therefore, we have

Theorem 4.4. Let M be a null scroll of finite type in a Lorentz-Minkowski
m-space L

m. Then, M is minimal or an open part of a generalized B-scroll.

Combining Theorem 3.1 and Theorem 3.7 in the previous section with Theorem
4.4, we obtain the following classification theorem for ruled surfaces in a Lorentz-
Minkowski space L

m.
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Theorem 4.5 (Classification). Let M be a ruled surface in a Lorentz-Minkowski
m-space L

m of finite type. Then, M is an open portion of a cylinder over finite
type base curve, a non-cylindrical minimal ruled surface, a bi-finite M 2

+-type ruled
surface, a minimal null scroll or a generalized B-scroll.

By considering this theorem and the last section of [ 9 ], we have

Corollary 4.6 ([7]). A ruled surface M in L
3 is of finite type if and only if M

is one of the following:

(1) M is minimal,
(2) M is a part of a circular cylinder,
(3) M is a part of a hyperbolic cylinder,
(4) M is an isoparametric surface with null rulings.
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