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TOPOLOGY INDUCED BY QUOTIENTS ON NEARRING MODULES

Feng-Kuo Huang

Abstract. The aim of this paper is to study one special quotient in the class of
nearring modules. Contrast to the well known noetherian quotient, this quotient
is less noticed. Results and applications for this quotient are developed and
an induced topology in the class of type-1 N -modules is introduced.

1. INTRODUCTION

Let G and N be two algebraic objects with N acting on G from the right hand
side. This is usually denoted as G × N → G with an = b for a, b ∈ G and
n ∈ N . Two linear equations, say ax = b for given a, b ∈ G and yn = b for given
n ∈ N , b ∈ G, can be informally imposed. To solve the equation ax = b on N ,
the noetherian quotient (b : a) is introduced to denote the solution set in N . As the
other equation yn = b, the quotient [b : n] will be used to denote the solution set in
G [7, p. 41].

Let (G, +) be a group (not necessarily abelian) and (N, +, ·) a left nearring.
We call G a (right) N -module if a(f + g) = af + ag and a(fg) = (af)g for all
a ∈ G and all f, g ∈ N . Given subsets X, Y ⊆ G and U ⊆ N . Two quotients can
be defined as following:

(X : Y ) := {f ∈ N | af ∈ X for all a ∈ Y } and
[X : U ] := {a ∈ G | af ∈ X for all f ∈ U}.

The first one is the usual noetherian quotient commonly used in the class of ring
modules. The other while less studied is first defined in [7, p. 41] and will be
called in this paper as the inverse quotient of X by U . When X = {0}, we write

Received December 8, 2004, revised March 28, 2005.
Communicated by Shun-Jen Cheng.
2000 Mathematics Subject Classification: Primary 16Y30; Secondary 16Y99.
Key words and phrases: Nearring module, Quotient, Topology.
The author was partially supported by the National Science Council under the grant number NSC
92-2115-M-143-001.

1069



1070 Feng-Kuo Huang

(0 : Y ) and [0 : U ] for ({0} : Y ) and [{0} : U ] respectively. The set (0 : Y ) is
the annihilator of Y in N and is sometimes denoted as Ann(Y ) or AnnN(Y ) in
literatures. The set [0 : U ] is denoted as Z(U) and called the zero set of U in G

by Scott [10]. In fact, it is called an affine algebraic variety if we consider the
polynomial ring F [x1, x2, · · · , xn] acting on Fn where F is an algebraicly closed
fields. Note that the set [0 : U ] had been used by Johnson [4, 5] to characterize the
maximal right ideals in the class of transformation nearrings.

A topology had been introduced by Scott in [10] using zero sets [0 : U ] for 2-
primitive nearrings and further studied the applications of this topology in the class
of primary N -modules [11]. The attemp of this paper is to introduce a topology using
inverse quotient in the class of N -modules. It is shown in this paper that: Given N
a 1-primitive nearring on a group G. If G is a nonabelian group or N 0 a nonring,
then the collection of sets G \ [0 : U ] for all U ⊆ N forms a topology in G (by
Corollary 2.2 and Corollary 3.4), and all the mappings of G induced by elements in
N are continuous with respect to this topology (Theorem 3.8). Examples are given
to demonstrate and delimit our results. For other terminologies on nearring theory
not defined in this paper, please refer to [7, 9] but note that [9] using right nearrings
instead of left nearrings. Terminologies on topology are referred to Munkres [8].

2. INVERSE QUOTIENT

Let G be a (right) N -module. If X is a subset of G and U is a subset of
N , the following convention will be made for the inverse quotient of X by U
throughout this paper. If U = {0}, we write [X : 0] in place of [X : {0}]. A
similar simplification will be used if X or U is a singleton. When X or U is an
empty set, we make the following convention that [X : ∅] = G; [∅ : U ] = ∅ and
leave [∅ : ∅] undefined.

Proposition 2.1. Assume G is an N -module. Let X, U be subsets of G and
N respectively. Suppose {Xi}i∈I is a collection of subsets of G and {U j}j∈J is a
collection of subsets of N. Then we have:

(1)
⋂

j∈J [X : Uj] = [X :
⋃

j∈J Uj ]. In particular, [X : U ] =
⋂

f∈U [X : f ].

(2)
⋃

j∈J [X : Uj] ⊆ [X :
⋂

j∈J Uj ]. If {Uj}j∈J is a chain by using set inclusion,
then

⋃
j∈J [X : Uj] = [X :

⋂
j∈J Uj].

(3)
⋂

i∈I[Xi : U ] = [
⋂

i∈I Xi : U ].

(4)
⋃

i∈I[Xi : U ] ⊆ [
⋃

i∈I Xi : U ]. If {Xi}i∈I is a chain by using set inclusion,
then

⋃
i∈I [Xi : U ] = [

⋃
i∈I Xi : U ].
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Proof. (1) Observe that

[X :
⋃
j∈J

Uj] = {a ∈ G | af ∈ X for all f ∈
⋃
j∈J

Uj}

=
⋂
j∈J

{a ∈ G | af ∈ X for all f ∈ Uj} =
⋂
j∈J

[X : Uj] .

(2) If
⋂

j∈J Uj = ∅, then it is clear that

G =


X :

⋂
j∈J

Uj


 ⊇

⋃
j∈J

[X : Uj] .

If
⋂

j∈J Uj �= ∅, then
⋃
j∈J

[X : Uj ] =
⋃
j∈J

{a ∈ G | af ∈ X for all f ∈ Uj}

⊆ {a ∈ G | af ∈ X for all f ∈
⋂
j∈J

Uj}=

X :

⋂
j∈J

Uj


 .

It is clear that if {Uj}j∈J is a chain then the above inclusion becomes equality.
(3) If

⋂
i∈I Xi = ∅, it is clear by definition that our assertion holds. We now

suppose
⋂

i∈I Xi �= ∅.[⋂
i∈I

Xi : U

]
= {a ∈ G | af ∈

⋂
i∈I

Xi for all f ∈ U}

=
⋂
i∈I

{a ∈ G | af ∈ Xi for all f ∈ U} =
⋂
i∈I

[Xi : U ] .

(4) Observe that⋃
i∈I

[Xi : U ] =
⋃
i∈I

{a ∈ G | af ∈ Xi for all f ∈ U}

⊆ {a ∈ G | af ∈
⋃
i∈I

Xi for all f ∈ U}=
[⋃

i∈I

Xi : U

]
.

It is clear that if {Xi}i∈I is a chain then the above inclusion becomes equality.

Let X be a fixed subset of G. A subset Y of G will be called X-closed if there
exists a subset U of N such that [X : U ] = Y . Since G = [X : ∅], the group
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G is considered as an X-closed set for all specified nonempty set X . Hereafter,
the empty subset ∅ of G shall also be regarded as an X-closed set. The following
results are immediate from Proposition 2.1.

Corollary 2.2. Any intersection of X-closed subsets of an N -module G is
X-closed.

Corollary 2.3. Let U1, U2 be subsets of N and X a subset of G. If U 1 ⊆ U2,
then [X : U1] ⊇ [X : U2].

Proposition 2.4. Let X, Y be nonempty subsets of an N -module G. Then
Y ⊆ [X : (X : Y )]. Furthermore, Y = [X : (X : Y )] if and only if Y is
X-closed.

Proof. If (X : Y ) is empty, then it is clear that Y ⊆ [X : (X : Y )] = G. If
(X : Y ) is not empty, then Y (X : Y ) ⊆ X and so Y ⊆ [X : (X : Y )].

Suppose Y = [X : (X : Y )], then Y is clearly X-closed. On the other hand,
suppose that Y is X-closed, say Y = [X : U ] for some subset U of N . If U is empty
then Y = G, so we have [X : (X : Y )] ⊆ Y. If U is not empty, then Y U ⊆ X and
so U ⊆ (X : Y ). Corollary 2.3 then implies that [X : (X : Y )] ⊆ [X : U ] = Y.
Hence [X : (X : Y )] = Y.

Corollary 2.5. Let X, W be subsets of an N -module G. Suppose Y is an
X-closed subset of G. Then we have (X : Y ) ⊆ (X : W ) if and only if W ⊆ Y.

Proof. The necessary part is trivial. We need to show that it is sufficient.
From Corollary 2.3, it follows that [X : (X : W )] ⊆ [X : (X : Y )]. Therefore
W ⊆ [X : (X : W )] ⊆ [X : (X : Y )] = Y by Proposition 2.4.

The assumption that Y is X-closed in G in Corollary 2.5 is not superfluous.
For instance, let G = (Z3, +) = ({0, 1, 2}, +) be the group of order three written
additively and N = Mc(G) = {θ0, θ1, θ2} the nearring of constant mappings on
G. Let X = {0}, Y = {1}, W = {2} be subsets of Z3. Observe that Z3 and
∅ are the only 0-closed sets, and thus Y is not X-closed in this case. However,
(X : Y ) = (0 : 1) = {θ0} ⊆ (X : W ) = (0 : 2) = {θ0} but {2} �⊆ {1}.

Corollary 2.6. Let X be a subset of an N -module G. Suppose Y 1 and Y2 are
X-closed subsets of G. Then Y1 = Y2 if and only if (X : Y1) = (X : Y2).

Proof. This follows immediately from Corollary 2.5.

Corollary 2.6 reveals that there is a one-one correspondence between X-closed
subsets of G and their noetherian quotient with respect to X . This correspondence
is lattice reversing as indicated in Corollary 2.5.
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It is also interesting to see that most of the conclusions above have “dual”
results when the role of noetherian quotient and inverse quotient interchanged. We
put some of them in the following proposition.

Proposition 2.7. Let X, Y1, Y2 be nonempty subsets of an N -module G and
U, U1, U2 nonempty subsets of N .

(1) If Y1 ⊆ Y2, then (X : Y1) ⊇ (X : Y2).

(2) The set U ⊆ (X : [X : U ]). Furthermore, U = (X : [X : U ]) if and only if
U = (X : Y ) for some Y ⊆ G.

(3) Assume U1 = (X : Y ) for some Y ⊆ G. Then [X : U1] ⊆ [X : U2] if and
only if U2 ⊆ U1.

(4) Suppose U1 = (X : Y1) and U2 = (X : Y2). Then U1 = U2 if and only if
[X : U1] = [X : U2].

Proof.

(1) This result follows from the identity that ∩j∈J (X : Yj) = (X : ∪j∈JYj).

(2) It suffices to show the case when [X : U ] �= ∅. Observe that [X : U ]U ⊆ X ,
and thus U ⊆ (X : [X : U ]).

Furtheremore, if U = (X : [X : U ]), then simply let Y = [X : U ] ⊆ G.
On the other hand, assume U = (X : Y ) for some Y ⊆ G. If Y = ∅, then
U = N and thus (X : [X : U ]) ⊆ U . If Y �= ∅, then Y U ⊆ X and so Y
⊆ [X : U ]. Therefore (X : [X : U ]) ⊆ (X : Y ) = U by (1). Hence result.

(3) Assume [X : U1] ⊆ [X : U2] where U1 = (X : Y ) for some Y ⊆ G. Observe
that (X : [X : U1]) ⊇ (X : [X : U2]) by (1) and U2 ⊆ (X : [X : U2]) by (2).
Therefore U2 ⊆ (X : [X : U2]) ⊆ (X : [X : U1]) = U1 by (2) again.

On the other hand, assume U2 ⊆ U1. Let a ∈ [X : U1]. Then aµ ∈ X for
all µ ∈ U1. Consequently aµ ∈ X for all µ ∈ U2 or a ∈ [X : U2]. Therefore
[X : U1] ⊆ [X : U2].

(4) This result follows immediately from (3).

Proposition 2.8. Let X, Y be subsets of an N -module G and f ∈ N . If Y is
X-closed, then [Y : f ] = [X : f(X : Y )].

Proof. If [Y : f ] = ∅, then clearly [Y : f ] ⊆ [X : f(X : Y )]. If (X : Y ) = ∅,
then [X : f(X : Y )] = G and so [Y : f ] ⊆ [X : f(X : Y )]. Suppose that both
[Y : f ] �= ∅ and (X : Y ) �= ∅. Since [Y : f ]f ⊆ Y , we have [Y : f ]f(X : Y ) ⊆
Y (X : Y ) ⊆ X . Therefore [Y : f ] ⊆ [X : f(X : Y )].



1074 Feng-Kuo Huang

On the other hand, if [X : f(X : Y )] = ∅, then clearly [X : f(X : Y )] ⊆
[Y : f ]. Suppose that [X : f(X : Y )] �= ∅ and v ∈ [X : f(X : Y )]. Then
vf(X : Y ) ∈ X and so (X : Y ) ⊆ (X : vf). Thus vf ∈ Y by Corollary 2.5 and
hence v ∈ [Y : f ] or [X : f(X : Y )] ⊆ [Y : f ]. Hence result.

Let N be a nearring, G an N -module. A subgroup H of G such that af ∈ H
for all a ∈ H , f ∈ N is called an N-submodule of G. A nearring N is called a
distributively generated nearring (abbre. d. g. nearring) if (N, +) is generated as
a group by a semigroup (S, ·) of distributive elements in N . This d. g. nearring
is generally denoted (N, S) or N [S]. An N -module G is called a d. g. module or
N [S]-module provided that N [S] is a d. g. nearring and that (a+b)s = as+bs for
all a, b ∈ G and all s ∈ S. In general, there is no particular algebraic structure for
inverse quotient in an N -module. However, some can be said in an N [S]-module.

Proposition 2.9. Suppose G is an N [S]-module. Let K be a subset of G and
U a subset of S.

(1) If K is a subgroup of G and f ∈ S, then [K : f ] is a subgroup of G.

(2) If K is a subgroup of G, then [K : U ] is a subgroup of G.

(3) If K is an N -submodule of G and U is contained in the multiplicative center
of the semigroup (S, ·), then [K : U ] is an N -submodule of G.

(4) If K is a subgroup of G and SU ⊆ U , then [K : U ] is an N -submodule of
G. In particular, [K : S] is an N -submodule of G for any subgroup K of G.

Proof.
(1) Since f ∈ S, f induces an endomorphism on G. By corresponding theorem

for groups and our assumption that K is a group, it is routine to see that
[K : f ] is a subgroup of G.

(2) From Proposition 2.1 and (1) above.

(3) From (2), we know that [K : U ] is a subgroup of G. We need to show that
[K : U ]f ⊆ [K : U ] for all f ∈ N . Let a ∈ [K : U ]. Then aα ∈ K for all
α ∈ U . Now (af)α = (aα)f ∈ Kf ⊆ K , so af ∈ [K : U ] for all f ∈ N .
Therefore [K : U ] is an N -submodule of G.

(4) Let a ∈ [K : U ], α ∈ U and f ∈ N . Since N is d. g., we can write f as
f =

∑n
i=1 εiαi where εi ∈ {1, −1} and αi ∈ S for i ∈ {1, 2, · · · , n}. Now

we have

(af)α =

(
a

n∑
i=1

εiαi

)
α =

n∑
i=1

εi(aαi)α =
n∑

i=1

εia(αiα) ∈ K.

Therefore af ∈ [K : U ] and so [K : U ] is an N -submodule of G.
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3. TOPOLOGY INDUCED BY INVERSE QUOTIENT

The purpose of this section is to introduce a topology on an N -module G using
X-closed sets. Let N be a nearring, G an N -module. A normal subgroup K of
G such that (k + m)n − mn ∈ K for all k ∈ K; m, n ∈ N is called an N-ideal
of G. An N -ideal K of an N -module G is called abelian, if (K, +) is an abelian
group and (x + y)α = xα + yα for all x, y ∈ K and for all α ∈ N0 where N0 is
the zero-symmetric subnearring of N .

The following lemma is modified from [10, Proposition 2.1] and detailed proof
will be included for easier reference.

Lemma 3.1. Let N be a nearring, G an N -module. Assume H1, H2 and W
are N -ideals of G such that G is a direct sum of N -ideals H 1 ⊕ H2. If H2 is
minimal and nonabelian, then either W ⊆ H 1 or H2 ⊆ W .

Proof. Assume on the contrary that W �⊆ H1 and H2 �⊆ W . Since H1 is a
maximal N -ideal of G, H1 +W = G. Notice that kn = (k +0)n−0n ∈ K for all
k in an arbitrary N -ideal K and for all n ∈ N0. It follows that any N -ideal K is
both an N0-submodule and N0-ideal of G. By Wielandt’s Lemma [7, Lemma 3.22]
and the minimality of H2, the N -ideal

[(H1 + W ) ∩ (H2 + W )]/[(H1 ∩ H2) + W ] 
 (H2 + W )/W 
 H2

is abelian, contradicting the hypothesis that H2 is nonabelian. Hence result.

An N -module G is called monogenic if there exists g ∈ G such that gN = G.
A monogenic N -module G is said to be type-0 if G has no nontrivial proper N -
ideals. A monogenic N -module G is called strongly monogenic if gN = 0 or
gN = G for all g ∈ G. A strongly monogenic nontrivial N -module G is said to be
of type-1 if G has no nontrivial proper N -ideals. It is said to be of type-2 if G has
no nontrivial proper N0-ideals. A nearring N is called ν-primitive on G if G is a
faithful type-ν N -module. A nearring which is not a ring is called a nonring.

Lemma 3.2. Let Y1, Y2 be 0-closed subsets of a type-1 N -module G. If one of
the following conditions holds, then Y 1 ∪ Y2 is 0-closed in G.

(1) G is a nonabelian group.

(2) N0/(0 : G) is a nonring.

Proof. Without lost of generality, we may suppose that both Y1 and Y2 are not
empty. Let U1 and U2 be subsets of N such that Y1 = [0 : U1] and Y2 = [0 : U2].
Let U = (0 : Y1 ∪ Y2). From Proposition 2.4, we have

Y1 ∪ Y2 ⊆ [0 : (0 : Y1 ∪ Y2)] = [0 : U ].
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Let a ∈ [0 : U ]. As aµ = 0 for all µ ∈ U, we have U ⊆ (0 : a). If (0 : Y1) ⊆ (0 : a),
then we have a ∈ Y1 by Corollary 2.5. Thus [0 : U ] ⊆ Y1. It follows that
[0 : U ] = Y1 ∪ Y2 and Y1 ∪ Y2 is 0-closed.

We may now assume that (0 : Y1) �⊆ (0 : a). Recall that Y1 is not empty. If
a = 0 then (0 : Y1) �⊆ (0 : 0) = N0 implies the existence of a nonzero constant
map θc ∈ N such that Y1θc = 0, a contradiction. So a �= 0. Since G is strongly
monogenic, aN = 0 or aN = G. If aN = 0 then (0 : a) = N , consequently,
(0 : Y1) ⊆ (0 : a), a contradiction. If aN = G then N/(0 : a) 
 G as a
simple N -module. It follows that (0 : a) is a maximal right ideal of N , and so
N = (0 : a) + (0 : Y1). Let M = (0 : a) ∩ (0 : Y1). Then N/M can be written as
a direct sum as N/M = (0 : a)/M ⊕ (0 : Y1)/M , and so (0 : Y1)/M is a minimal
N -ideal of N/M . Now we have

(0 : Y1)/M 
N (N/M)/((0 : a)/M) 
N N/(0 : a) 
N aN = G.

From the hypothesis, if G is a nonabelian group, then clearly (0 : Y1)/M is
nonabelian. Note that (0 : G) is zero-symmetric and is an ideal in N0. It is then
routine to see that G is a faithful N0/(0 : G)-module. If N0/(0 : G) is a nonring,
then from [7, Lemma 3.7.], we can conclude that (0 : Y1)/M is nonabelian either.
Hence (0 : Y1)/M is a nonabelian minimal N -ideal of N/M .

By Lemma 3.1, we have either

(0 : Y1)/M ⊆ (M + (0 : Y2))/M

or
(M + (0 : Y2))/M ⊆ (0 : a)/M.

This implies that

either (0 : Y1) ⊆ M + (0 : Y2) or M + (0 : Y2) ⊆ (0 : a).

If (0 : Y1) ⊆ M + (0 : Y2) = (0 : a) ∩ (0 : Y1) + (0 : Y2), then

(0 : Y1) = (0 : a) ∩ (0 : Y1) + (0 : Y2) ∩ (0 : Y1).

Moreover, U = (0 : Y1 ∪ Y2) = (0 : Y1) ∩ (0 : Y2), and U ⊆ (0 : a), we thus
have (0 : Y1) ⊆ (0 : a). It follows that a ∈ Y1 by Corollary 2.5. On the other hand,
if M + (0 : Y2) ⊆ (0 : a), it is clear that (0 : Y2) ⊆ (0 : a) or a ∈ Y2 by Corollary
2.5. Therefore [0 : U ] ⊆ Y1 ∪ Y2. Hence Y1 ∪ Y2 = [0 : U ] is 0-closed in G.

The following example shows that assuming G is a type-1 N -module is not
superfluous in Lemma 2.2.
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Example 3.3. There exists an N -module G (not type-1) such that G is a
nonabelian group and N= N0 is a nonring but the union of 0-closed sets is not
0-closed.

Let G = S3 = {0, a, b, c, d, e} be the symmetric group of degree 3, N = E(S3)
the nearring generated additively by the group endomorphisms of S3. This nearring
is of order 54 and a detailed description of all its elements is in [6, p. 70]. Consider
S3 as an E(S3)-module. The alternating group A3 = {0, d, e} is an E(S3)-ideal
of S3. Thus the E(S3)-module S3 is not type-1. All the 0-closed sets are ∅, {0},
{0, a}, {0, b}, {0, c}, {0, d, e}, {0, a, b, c}, {0, a, d, e}, {0, c, d, e}, {0, b, d, e} and
S3. The set {0, a, b} = {0, a} ∪ {0, b} is a union of 0-closed sets but it is not
0-closed.

The following corollary is a generalization of Scott’s result [10, Theorem 2.2]
on 2-primitive nearrings.

Corollary 3.4. Let N be a 1-primitive nearring on a group G. If G is a
nonabelian group or N0 is a nonring, then the union of 0-closed subsets in G is
0-closed.

Lemma 3.5. Let G be an N -module and K an N -ideal of G. Let ρ : G →
G/K be the canonical N -homomorphism. Then there is a one-one correspondence
between the

Proof. Let Y be a nonempty K-closed subset of G, and let U ⊆ N such
that Y = [K : U ]. Clearly Y ρ ⊆ [0G/K : U ]. If a + K ∈ [0G/K : U ], then
(a + K)µ = 0G/K or aµ ∈ K for all µ ∈ U . That is a ∈ Y and a + K ∈ Y ρ.
Hence Y ρ = [0G/K : U ] and Y ρ is 0-closed in the N -module G/K . On the other
hand, let W be a nonempty 0-closed subset of G/K over N , say W = [0G/K : U ]
for some U ⊆ N. Claim that Wρ−1 = [K : U ]. Since K is an N -ideal, we have
(g + k)n − gn ∈ K for all k ∈ K, g ∈ G, n ∈ N .

Now let a ∈ Wρ−1 and µ ∈ U . From our assumption, we have

aµ + K = (a + K)µ = (aρ)µ ∈ WU = 0G/K .

Therefore aµ ∈ K and a ∈ [K : U ]. Hence Wρ−1 ⊆ [K : U ].
If a ∈ [K : U ], then aµ ∈ K for all µ ∈ U and so we get (a+K)µ = aµ+K =

K or aρ ∈ [0G/K : U ] = W . Hence a ∈ Wρ−1 and [K : U ] ⊆ Wρ−1.

Theorem 3.6. Let G be an N -module and K an N -ideal of G such that G/K
is a type-1 N -module. If G/K is a nonabelian group or N 0/((K : G) ∩ N0) is a
nonring, then the finite union of K-closed subsets of N -module G are K-closed.
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Proof. This follows immediately from Lemma 3.2 and Lemma 3.5 and the fact
that (0G/K : G/K) = (K : G).

From Corollary 2.2 and Theorem 3.6, a topology exists for a certain type-1
N -module G with respect to a particular N -ideal K. This topology is referred as
inverse K-topology in this paper. However, this topology is usually non-Hausdoff
[ 8, p. 98] as demonstrated in the following example.

Example 3.7. Let G = Z4 = {0, 1, 2, 3} and N = {f ∈ M0(G) | 3f = 0}.
This group G is a faithful type-2 N -module [7, Example 3.36]. The nearring N
is a 0-symmetric nonring of order 16. Hence the collection of all 0-closed sets
in G forms a topology τ . There are five 0-closed sets in this topology, namely,
Z4, {0, 1, 3}, {0, 2, 3}, {0, 3}, ∅. Therefore the collection of all open sets is τ =
{∅, {2}, {1}, {1, 2}, Z4}. This topology is not Hausdoff for the singletons {0} and
{3} can not be seperated by open sets.

Proposition 2.7 shows that result related to inverse quotient often has a dual one
in noetherian quotient and vice versa. In this example, the collection of all sets in the
form (0 : Y ) for some Y ⊆ G are: N = (0 : 0); {(0000), (0010), (0020), (0030)} =
(0 : 1); {(0000), (0100), (0200), (0300)} = (0 : 2); {(0000)} = (0 : {1, 2}). Here
the notation (abcd) represents the mapping in N which maps 0, 1, 2, 3 to a, b, c, d
respectively. The union (0 : 1) ∪ (0 : 2) is a set of order 7 which cannot be the
annihilator of any subsets of G. Therefore a possible dual for inverse 0-topology
does not exist in this case.

The following result can be expected from the definition of K-closed set.

Theorem 3.8. Let G be an N -module and K an N -ideal of G such that G/K
is a type-1 N -module. If G/K is a nonabelian group or N 0/((K : G) ∩ N0) is a
nonring then the maps induced by the elements of N are continuous from G to G

with respect to

Proof. Let Y be a K-closed subset of G and f ∈ N . From Proposition 2.8,
it follows that Y f−1 = [Y : f ] = [K : f(K : Y )] which is clearly K-closed in G
and so f is continuous.

As indicated in Proposition 2.1(1), any K-closed set [K : U ] can be generated
as the intersection of K-closed sets [K : f ] for all f ∈ U . In other words, arbitrary
open sets in the inverse K-topology can be generated by union of open sets of the
form G \ [K : f ] for f ∈ N . Explicitly,

G \ [K : U ] = G \ (∩f∈U [K : f ]) = ∪f∈U(G \ [K : f ]).
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Let βK(GN) denote the set {G \ [K : f ] | for all f ∈ N}. Then βK(GN) is indeed
a base [8, p. 78] for the inverse K-topology in an N -module G. We write this as
the following.

Proposition 3.9. Let G be an N -module with inverse K-topology defined on
G where K is an N -ideal of G. Let βK(GN) = {G \ [K : f ] | for all f ∈ N}.
Then βK(GN) is a base for this topology.

Proof. Assume O is a nonempty open set in the inverse K-topology. Say
O = G \ [K : U ] for some U ⊆ N . Since O is nonempty, U cannot be an
empty set. Let a ∈ O be arbitrary. Then a ∈ G \ [K : f ] for some f ∈ U . Let
C = G \ [K : f ] ∈ βK(GN). Since [K : U ] ⊆ [K : f ] by Corollary 2.3. It follows
that a ∈ C ⊆ O. Thus βK(GN) is a base for the inverse K-topology by [8, Lemma
13.2].

Proposition 3.9 will be helpful in finding examples to demonstate the inverse
K-topology. In the following, examples will be given to motivate further stuty in
this topic.

Example 3.10. (Near modules over nearring of polynomials) Let G = R be
the group of real numbers, and N = (R[x], +, ◦) the nearring of polynomials using
the usual addition of polynomials and substitution as multiplication [1, 2]. Consider
R as an R[x]-module. The linear polynomial b

ax ∈ R[x] will map any nonzero a
to any chosen b ∈ R[x]. Thus R is a type-2 R[x]-module. The zero-symmetric part
R0[x] is a nonring, so the hypothesis in Theorem 3.6 hold.

Observe that [0 : −a + x] = {a} for all a ∈ R. That is all singletons in R are
0-closed. Thus the inverse 0-topology is the finite complement topology [8, p. 77]
on R. Note that this is also the Zariski topology [3, p. 427] on R.

Further, consider the reals R as an R0[x]-module. Using similar arguments as
above, R is a type-2 R0[x]-module. Observe that [0 : ax − x2] = {0, a} for all
a ∈ R. Thus all finite subsets containing {0} in R are 0-closed. In other words,
the open sets in R are either R, ∅ or those infinite subsets of R not containg {0}
and having finite complement.

Both topologies defined on R are T1 but not T2 and irreducible in the sense that
any two nonempty open sets has nonempty intersection. In other words, the closure
of any nonempty open set is R.

Example 3.11. (Near modules over transformation nearrings) Let G be a group
with order at least 3. Then the nearring of group mappings M0(G) = {f : G → G |
0f = 0} is a nonring. Observe that the mapping αb : G → G such that 0αb = 0
and aαb = b for all a ∈ G \ {0} is in M0(G). Thus aM0(G) = G for any nonzero
a ∈ G. It follows that G is both a type-2 M(G)-module and M0(G)-module. For
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any nonempty set C of G, define the mapping αC : G → G via aαC = 0 for all
a ∈ C and bαC = d for some fixed nonzero d ∈ G and for all b ∈ G \ C. Then
αC ∈ M(G) and [0 : αC ] = C. Thus the inverse 0-topology in the M(G)-module
G is the discrete topology. Further, observe that αC ∈ M0(C) if and only if 0 ∈ C.
Thus the nonempty 0-closed set in the M0(G)-module G is a subset containing 0
and vice versa. When G is a simple nonabelian group, it is a type-2 Mc(G)-module.
In this case, the inverse 0-topology is the trivial topology.

Proposition 3.9 shows that βK(GN ) is a base for the inverse K-topology. If
the nearring N is generated by a subsemigroup S additively, we may ask: Is the
set τK(GN) = {G \ [K : α] | for all α ∈ S} a subbase for this topology? This
is not true in general. Let G be a finite simple nonabelian group. Consider G as
an M0(G)-module, Example 3.11 shows that the nonempty 0-open sets are those
subsets not containing 0. Observe that M0(G) = I(G) is generated additively
by Inn(G), the group of inner automorphisms of G. But [0 : α] = {0} for all
α ∈ Inn(G). Therefore τ0(GM0(G)) = {0} which can not be the subbase for the
inverse 0-topology.

Proposition 3.12. Let N be a 0-symmetric nearring with unity. Assume G is
a unital N -module with inverse 0-topology defined. Let A be a nonempty 0-closed
subset of G. Then A contains no nonempty proper 0-closed subset if and only if
(0 : A) is a maximal right ideal of N .

Proof. Since N contains unity, the right ideal (0 : A) �= N . Let R be a right
ideal of N containing (0 : A). Then [0 : R] ⊆ [0 : (0 : A)] = A by Proposition
2.4. Observe that 0 ∈ [0 : R] for N is 0-symmetric. Since A contains no nonempty
proper 0-closed subset, [0 : R] = A. It follows that R ⊆ (0 : A) and thus (0 : A)
is maximal.

Conversely, if A contains a nonempty proper 0-closed subset B, then (0 : A) ⊆
(0 : B) by Corollary 2.5. If (0 : A) = (0 : B), then B = [0 : (0 : B)] = [0 : (0 :
A)] = A by Proposition 2.4. Thus (0 : B) properly contains (0 : A). Since the
N -module is unital, 1 �∈ (0 : B). Consequently, (0 : B) is a proper ideal of N and
(0 : A) can not be maximal. Hence result.

According to Proposition 3.12, we call a nonempty 0-closed set principle if it
contains no nonempty proper 0-closed subset. Recall that a ∈ G is called a generator
if aN = G. The following corollary provide a partial converse for Theorem 3.5.

Corollary 3.13. Suppose N is a 0-symmetric nearring with unity, G a unital
monogenic N -module with inverse 0-topology defined. Let a ∈ G be a generator.
Then the following are equivalent.
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(1) The doubleton {0, a} is principlly closed.

(2) The annihilator (0 : {0, a}) is a maximal right ideal of N .

(3) The annihilator (0 : a) is a maximal right ideal of N .

(4) The N -module G is simple (i.e., G has no nontrivial N -ideals).

(5) G is a type-0 N -module.

Proof. The equivalence of (1) and (2) follows from Proposition 3.12. Further,
it is clear that (0 : {0, a}) ⊆ (0 : a). If f ∈ (0 : a), then af = 0 and 0f = 0 for N
is 0-symmetric. Thus f ∈ (0 : {0, a}). Hence (0 : {0, a}) = (0 : a). This shows
the equivalence of (2) and (3). Since a is a generator, G 
 N/(0 : a) as N -module.
The equivalence of (3) and (4) follows immediately. For the last equivalence of (4)
and (5), this follows the definition of type-0 N -module.
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