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TWO-SCALE HOMOGENIZATION AND MEMORY EFFECTS
OF A FIRST ORDER DIFFERENTIAL EQUATION

Jiann-Sheng Jiang

Abstract. We apply the two-scale convergence method introduced by G.
Nguetseng and G. Allaire to study the homogenization of a first order linear
differential equation. We show that it generates memory effects and the mem-
ory kernel is described by a Volterra integral equation. The explicit form of
the memory kernel is given in terms of a Radon measure.

1. INTRODUCTION

In this paper we consider the homogenization of a first order differential equation

(1.1)


∂uε(x, t)

∂t
+ aε(x, t)uε(x, t) = f(x, t), (x, t) ∈ Ω× (0, T )

uε(x, 0) = 0 , x ∈ Ω

where Ω is a bounded domain in RN , f(x, t) ∈ L∞((0, T );Lp(Ω)), 1 < p ≤ ∞,
a(x, y, t) ∈ C(Ω×Y ×(0, T )), Y -periodic in y, and aε(x, t) = a(x, x

ε , t) satisfying

(1.2)
α ≤ aε(x, t) ≤ β , a.e. in Ω × (0, T ),

aε w
⇀ a0 weakly-star in L∞(Ω× (0, T )),

and is equicontinuous in t, i.e., there is a function ϕ such that ϕ(σ) → 0 as σ → 0
and

(1.3) |aε(x, t)− aε(x, s)| ≤ ϕ(|t− s|)
We will apply the two-scale convergence method, introduced by G. Nguetseng in
[16, 17] and G. Allaire in [1, 2] to study the asymptotic behaviour of (1.1) as ε
tends to zero.
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Roughly speaking, the homogenization is a rigorous version of what is known
in physics or mechanics as averaging. In other words, homogenization extracts
homogeneous effective parameters from disorder or heterogeneous media. There-
fore, we will deal with sequences {aε}ε which describe microscopic quantities and
macroscopic quantities are limits of sequences for a suitable weak topology. The
homogenization theory studies the behavior of the solution sequence {uε}ε as ε→ 0
and asks whether average behavior can be discerned from differential equations that
are subject to high-frequency fluctuations when those fluctuations result from a
dependence on two widely separated spatial scales.

The basic idea of the two-scale convergence method is to consider the behaviour
of the homogenization process not only from the macroscopic point of view, but
also from the microscopic one by introducing an additional microscopic variable
y. To this end, test functions of the type ψ(x, y), where ψ is a smooth function,
[0, 1]N-periodic in y, are considered. Passing to the two-scale limit, the so called
two-scale homogenized problem is obtained; it is usually of the same type as the
original problem, but it involved two variables x and y. The classical homogenized
problem is then obtained by averaging with respect to y, but in this process, the
nice form of the two-scale homogenized problem can disappear. For an introduction
of homogenization, especially on the two scale homogenization, to the progress of
some current researches and applications we referred to [3] for material science and
[15] for the porous media.

When the coefficients satisfy (1.2)-(1.3) and are positive and bounded away
from zero such that

aε w
⇀ a0 weakly star in L∞(Ω× (0, T )),

the classical homogenization problem had been discussed by Tartar in [21]. He also
proposes an analysis in the case of small amplitude oscillations. For the complete
analysis and review we referred to [5] especially for the case when aε is independent
of t, aε(x, t) = aε(x). Our main results read as follows

Theorem 1.1. Under hypothesis (1.2)-(1.3) and 1 < p ≤ ∞, given f ∈
L∞((0, T );Lp(Ω)) there exists u0(x, t) ∈ W 1((0, T );Lp(Ω)) such that the ho-
mogenized equation of the equation (1.1) is

(1.4)


∂

∂t
u0(x, t) +a0(x, t)u0(x, t)−

∫ t

0
K(x, s, t)u0(x, s) ds = f(x, t)

u0(x, 0) = 0, x ∈ Ω ,

where the memory kernel K(x, s, t) is given by

(1.5) K(x, s, t) =
∂

∂s
D(x, s, t)− a0(x, s)D(x, s, t) .
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Here the kernel D defined on Ω × (0, T ) × (0, T ) is the solution of the Volterra
equation

(1.6)

 D(x, s, t) = C(x, s, t) +
∫ t

s
C(x, s, σ)D(x, σ, t) dσ.

D(x, t, t) = 0 ,

with the fluctuation C defined by

(1.7) C(x, s, t) =
∫

Y
[a(x, y, t)− a0(x, t)]e−

∫ t
s a(x,y,τ )dτdy ,

where a0(x, t) is the weak star limit of {aε} in L∞(Ω× (0, T )), a(x, y, t) is two-
scale limit of {aε} and Y = [0, 1]N .

Furthermore, the memory kernel K given by (1.5) can be represented explicitly
with the help of the Radon measure.

Theorem 1.2. There exists a nonnegative measure µ such that the memory
kernel K of (1.5) is given by

(1.8)
K(x, s, t)

=
∫

Y
[a(x, y, t)− a0(x, t)][a(x, y, s)− a0(x, s)]e−

∫ t
s a(x,y,τ )dτdµ(y)

for some positive measure dµ(y).

2. PROOF OF THE MAIN THEOREMS

This section is devoted to the proofs of Theorem 1.1 and Theorem 1.2. Before
getting into the heart of the matter, we introduce or recall some notations that we
shall use in the derivation of the convergence properties. We denote by C∞

# (Y )
the space of infinitely differentiable functions in RN that are periodic of period Y .
Then Lp

#(Y ), 1 < p ≤ ∞, is the completion for the norm of Lp(Y ). As stated in
the introduction, the two-scale convergence was introduced by G. Nguetseng [16]
and G. Allaire [2] in order to obtain an efficient method to study the homogenization
problem. A sequence of functions {uε}ε ⊂ Lp(Ω), 1 < p ≤ ∞, is said to two-
scale converge to a limit u(x, y) ∈ Lp(Ω × Y ) if for any function ψ(x, y) ∈
D(Ω;C∞

# (Y )), we have

lim
ε→0

∫
Ω
uε(x)ψ

(
x,
x

ε

)
dx =

∫
Ω

∫
Y
u(x, y)ψ(x, y)dydx .
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The following theorem states the compactness of two-scale convergence which
is the direct extension of the L2 case. It is the main tool for proving Theorem 1.1.

Theorem 2.1. For each bounded sequence {uε}ε in Lp(Ω), 1 < p ≤ ∞,
there exists a subsequence still denoted by {u ε}ε which two-scale converges to
u(x, y) ∈ Lp(Ω × Y ).

To establish Theorem 2.1, we need the following lemma. The proof is similar
to the L2 case as given by Allaire in [2] with modification (see also [3], [15]).
Therefore, the proof is omitted.

Lemma 2.2. Let ψ(x, y) ∈ Lq(Ω;C�(Y )), 1 ≤ q < ∞, then for ε > 0
ψ(x, x/ε) is measurable in Ω, we have∥∥∥∥ψ(

x,
x

ε

)∥∥∥∥
Lq(Ω)

≤ ‖ψ(x, y)‖Lq(Ω;C�(Y )) ≡
[∫

Ω
sup
y∈Y

|ψ(x, y)|qdx
]1

q

Moreover, it follows that if ψ(x, y) ∈ L q(Ω;C�(Y )) then

lim
ε→0

∫
Ω
ψq

(
x,
x

ε

)
dx =

∫
Ω

∫
Y
ψq(x, y)dydx

and ψ
(
x, x

ε

)
two-scale converges to ψ(x, y).

Proof of Theorem 1.1. We represent the solutions of the nonhomogeneous
differential equation (1.1) with the help of the Green’s function as

(2.1) uε(x, t) =
∫ t

0
Aε(x, s, t)f(x, s) ds ,

where

(2.2) Aε(x, s, t) ≡ exp
(
−

∫ t

s
a(x, x/ε, τ)dτ

)
.

SinceAε ∈ L∞(Ω×(0, T )) and soAε(x, s, t)ψ(x, x/ε) is bounded inL1(Ω;C�(Y ))
for all test function ψ(x, y) ∈ D(Ω;C∞

# (Y )) and for all fixed but arbitrary s and
t, Lemma 2.2 implies the existence of A ∈ L∞(Ω×Y ) for s, t ∈ (0, T ); such that,
up to a subsequence, Aε two-scale convergences to A; that is

(2.3)

∫
Ω

exp(−
∫ t

s
aε(x, τ)dτ)ψ(x, x/ε)dx−→∫

Ω

∫
Y
A(x, y, s, t)ψ(x, y)dydx

=
∫

Ω

∫
Y

exp(−
∫ t

s
a(x, y, τ)dτ)ψ(x, y)dydx
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Next, we define the functions Bε ∈ L∞(Ω× (0, T )× (0, T )) by

(2.4) Bε(x, s, t) = aε(x, t)Aε(x, s, t) = a(x, x/ε, t) exp(−
∫ t

s
a(x, x/ε, τ)dτ)

in Ω × (0, T ) × (0, T ). Thus, for ψ(x, y) ∈ D(Ω;C∞
# (Y )), it is easy to see that

Bεψ is also in L1(Ω;C�(Y )), again using Lemma 2.2, up to a subsequence, we
have

(2.5)

lim
ε→0

∫
Ω
Bε(x, s, t)ψ

(
x,
x

ε

)
dx

=
∫

Ω

∫
Y
a(x, y, t) exp

(
−

∫ t

s
a(x, y, τ)dτ

)
ψ(x, y)dydx

≡
∫

Ω

∫
Y
B(x, y, s, t)ψ(x, y)dxdy

This means that there exists B = a(x, y, t)A(x, y, s, t) ∈ L∞(Ω × Y ) for s, t ∈
(0, T ); such that, up to a subsequence,Bε two-scale converges toB. For (x, y, s, t) ∈
Ω × Y × (0, T )× (0, T ), we define the function C̃ by

(2.6) C̃(x, y, s, t) ≡ B(x, y, s, t)− a0(x, t)A(x, y, s, t)

where a0(x, t) is the weak star limit of the subsequence of {aε(x, t)}ε in L∞(Ω)
for t ∈ (0, T ) . It is clear that uε defined by (2.1) satisfies the differential integral
equation

(2.7)
∂

∂t
uε(x, t) +

∫ t

0

aε(x, t)Aε(x, s, t)f(x, s) ds= f(x, t) .

On the other hand, since f(x, t) ∈ L∞((0, T );Lp(Ω)), we find from (2.1) – (2.3)
that there exists ū(x, y, t);

(2.8) ū(x, y, t) =
∫ t

0
A(x, y, s, t)f(x, s) ds ,

such that, up to a subsequence, uε two-scale converges to ū(x, y, t) ∈ Lp(Ω × Y )
for t ∈ (0, T ).

Next, we will study the two-scale convergence of the product of the sequence
{aε(x, t)uε(x, t)}ε. Similar argument as Bε, there exists a function w0(x, y, t) ∈
Lp(Ω×Y ) for t ∈ (0, T ); such that, up to a subsequence, aε(x, t)uε(x, t) two-scale
converges to w0(x, y, t). Clearly, w0 is given by

(2.9) w0(x, y, t) ≡
∫ t

0
B(x, y, s, t)f(x, s)ds .
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Letting ε tend to zero, we find from (2.7) that ū satisfies the equation

(2.10)
∂

∂t
ū(x, y, t) +

∫ t

0
B(x, y, s, t)f(x, s) ds= f(x, t)

in the sense of two-scale convergence. Then substituting (2.6) into (2.10), we derive

∂

∂t
ū(x, y, t) +

∫ t

0

[
C̃(x, y, s, t) + a0(x, t)A(x, y, s, t)

]
f(x, s) ds = f(x, t),

i.e.,

(2.11)
∂

∂t
ū(x, y, t) + a0(x, t)ū(x, y, t) +

∫ t

0
C̃(x, y, s, t)f(x, s) ds= f(x, t) .

Integrating over Y we obtain

∂

∂t
u0(x, t) + a0(x, t)u0(x, t) +

∫ t

0

C(x, s, t)f(x, s) ds= f(x, t) .

Here u0(x, t) is the weak limit in Lp(Ω) for t ∈ (0, T ) of the sequence {uε} and

(2.12) C(x, s, t) =
∫

Y
C̃(x, y, s, t)dy.

To describe the memory or nonlocal kernel, we let

(2.13) g(x, t) ≡ f(x, t)−
∫ t

0

C(x, s, t)f(x, s) ds .

The solution f(x, t) of this Volterra integral equation is given by

(2.14) f(x, t) = g(x, t) +
∫ t

0
D(x, s, t)g(x, s) ds

where the kernel D solves the resolvent equation

(2.15) D(x, s, t) = C(x, s, t) +
∫ t

s
C(x, s, σ)D(x, σ, t) dσ .

Due to the initial conditions in (2.1), it is easy to see that

D(x, t, t) = 0 , ∂tD(x, t, t) = 0 .

It is obvious from (2.15) that the kernel D is bounded and equicontinuous in t and
has a bounded derivative in s. In fact

∂

∂s
D(x, s, t) =

∂

∂s
C(x, s, t) +

∫ t

s

∂

∂s
C(x, s, σ)D(x, σ, t) dσ
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i.e., D has the same regularity as C. Notice that (2.11) has the same form as (2.14)
by letting

(2.16) g(x, t) =
∂

∂t
u0(x, t) + a0(x, t)u0(x, t) .

This implies that the weak limit u0 satisfies the differential integral equation

(2.17)

∂

∂t
u0(x, t) + a0(x, t)u0(x, t)

+
∫ t

0
D(x, s, t)

[
∂

∂s
u0(x, s) + a0(x, s)u0(x, s)

]
ds = f(x, t) ,

which after being integrated by part and using the initial conditions will become

(2.18)

∂

∂t
u0(x, t) + a0(x, t)u0(x, t)

−
∫ t

0

[
∂

∂s
D(x, s, t)− a0(x, s)D(x, s, t)

]
u0(x, s) ds = f(x, t)

or

(2.19)
∂

∂t
u0(x, t) + a0(x, t)u0(x, t)−

∫ t

0
K(x, s, t)u0(x, s) ds = f(x, t)

where the kernel K is given by

(2.20) K(x, s, t) =
∂

∂s
D(x, s, t)− a0(x, s)D(x, s, t)

with (x, s, t) ∈ Ω × (0, T )× (0, T ). This completes the proof of Theorem 1.1.

Remark 2.3. Let us remark that the classical method of asymptotic expansions
can also be used to prove this theorem. However, this is at the price of more assump-
tions on the smoothness of the physical data. Under the same hypothesis, Tartar
[21] had proved that there exists a subsequence of {aε}ε such that {uε}ε converges
in W 1,∞(0, T ;w∗-L∞(Ω)) to u0 satisfying the same homogenized equation. This
theorem is, therefore, a generalization of Tartar’s.

To obtain the exact form of the kernel, K(x, s, t) we have to figure out the
kernel D(x, s, t) in (2.15) first. Indeed, we need the following important lemma.

Lemma 2.4. There exists a Radon measure µ on Y , such that the solution
D(x, s, t) of the resolvent equation (2.15) is explicitly given by

(2.21) D(x, s, t) =
∫

Y
F (x, y, s, t)dµ(y)
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where

(2.22) F (x, y, s, t) =
[
a(x, y, t)− a0(x, t)

]
exp

(
−

∫ t

s
a(x, y, τ)dτ

)

Proof. For any φ ∈ C(Ω × Y × [0, T ] × [0, T ]; R), we denote by H the set
that is

H ≡ {φx̄,s̄,t̄ : Y → R|s̄, t̄ ∈ [0, T ]; x̄∈ Ω} ≡ {φx̄,s̄,t̄} .
Let M be the vector space generated by H , then clearly M is a subspace of the
space C(Y ). Now we define a linear operator T : M → R by
(2.23)

〈T, φx̄,s̄,t̄(y)〉 =
∫

Y
φx̄,s̄,t̄(y)dy+

∫ T

0
χ[s̄,t̄](σ̄)

[∫
Y
φx̄,σ̄,t̄(y)dy

]
D(x̄, s̄, σ̄)dσ̄

then
|〈T, φx̄,s̄,t̄(y)〉| ≤ ‖φ‖C(Y ) + ‖φ‖C(Y ) · C1 ≤ C‖φ‖C(Y )

where C is a constant. This shows that T is a bounded functional on M . Then
by Hahn-Banach Theorem, there exists a bounded functional Λ on C(Y ), such that
Λ|M = T ; therefore using the Riesz representation theorem, we deduce that there
exists a Radon measure µ on Y such that

(2.24) 〈Λ, ψ〉 =
∫

Y
ψ(y)dµ(y), ∀ψ ∈ C(Y ).

Choosing ψ(y) = φx,s,t(y), then by (2.23) – (2.24), we obtain∫
Y
φx,s,t(y)dµ(y) = 〈Λ, φx,s,t(y)〉

=
∫

Y
φx,s,t(y)dy +

∫ T

0
χ[s,t](σ)

[∫
Y
φx,σ,t(y)dy

]
D(x, s, σ)dσ.

In particular, let

(2.25) φx,s,t(y) = [a(x, y, t)− a0(x, t)] exp
(
−

∫ t

s
a(x, y, τ)dτ

)
and use the equations (1.7) and (2.15), we derive the relation∫

Y
φx,s,t(y)dµ(y)

∫
Y
φx,s,t(y)dy +

∫ T

0
χ[s,t](σ)

[∫
Y
φx,σ,t(y)dy

]
D(x, s, σ)dσ

= D(x, s, t)
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equivalently,

D(x, s, t) =
∫

Y

[
a(x, y, t)− a0(x, t)

]
e−

∫ t
s

a(x,y,τ )dτdµ(y)

This completes the proof of the lemma.

We now return to the proof of the Theorem 1.2. We denote the fluctuation
function C(x, s, t) by

(2.26) C(x, s, t) =
∫

Y

[
a(x, y, t)− a0(x, t)

]
e−

∫ t
s a(x,y,τ )dτdy

It follows immediately from (2.20), (2.21) and (2.22) that

K(x, s, t)

=
∫
Y

[
a(x, y, t)− a0(x, t)

][
a(x, y, s)− a0(x, s)

]
e−

∫ t
s a(x,y,τ )dτdµ(y).

Thus, we have proved Theorem 1.2.

3. SOME EXAMPLES

In this section we will apply the main theorem to some concrete examples. We
first give the explicit characterization for the K when aε is of separable variables,
aε(x, t) = θε(t)aε(x), then the equation (1.1) becomes

(3.1)


∂uε(x, t)

∂t
+ θε(t)aε(x)uε(x, t) = f(x, t), (x, t) ∈ Ω × (0, T )

uε(x, 0) = 0 , x ∈ Ω .

We suppose that

(3.2a) 0 < θ− ≤ θε(t) ≤ θ+ , θε w
⇀ θ0 in L∞(0, T ) weak star

(3.2b) 0 < a− ≤ aε(x) ≤ a+ , aε w
⇀ a0 in L∞(Ω) weak star.

The solutions of the equation (3.1) are given by

(3.3) uε(x, t) =
∫ t

0

exp
[
− aε(x)Θε(s, t)

]
f(x, s)ds

where Θε is the antiderivative of θε

(3.4) Θε(s, t) =
∫ t

s
θε(τ)dτ .
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Due to the hypothesis (3.2a) and the strong convergence of Θε to

Θ0(s, t) =
∫ t

s
θ0(τ)dτ

we deduce that the solution sequence given by (3.3) behaves like

(3.5) vε(x, t) =
∫ t

0
exp

[
− aε(x)Θ0(s, t)

]
f(x, s)ds .

Therefore, to study the homogenization problem of (3.1) is equivalent to consider
the following equation

(3.6)


∂vε(x, t)

∂t
+ θ0(t)aε(x)vε(x, t) = f(x, t), (x, t) ∈ Ω × (0, T )

vε(x, 0) = 0 , x ∈ Ω .

We can apply Theorem 1.1 to conclude that:

Theorem 3.1. After extracting a subsequence, there exists a positive measure
dµ(y) associated with {aε}, and a kernel K(x, s, t):

(3.7) K(x, s, t) =
∫

Y
θ0(t)θ0(s)

[
a(x, y)− a0(x)

]2
e−a(x,y)

∫ t
s θ0(τ )dτdµ(y)

defined in Ω × (0, T )× (0, T ), such that the sequence {uε}ε converges weakly in
L∞((0, T );Lp(Ω)), 1 < p ≤ ∞, to u0 which is the solution of

(3.8)
∂

∂t
u0(x, t) + θ0(t)a0(x)u0(x, t)−

∫ t

0
K(x, s, t)u0(x, s) ds = f(x, t) .

We are also interested in the homogenization of the following hyperbolic equa-
tion

(3.9)

 ∂tu
ε(x, t) + b(x, t)∂xu

ε(x, t) + aε(x, t)uε(x, t) = f(x, t)

uε(x, 0) = 0

with b(x, t) ∈ C(Ω× (0, T )) and aε(x, t) the same result as given in section 2. The
characteristic curve X(x, t, s) is defined, for s ∈ (0, T ) and x ∈ Ω, by

(3.10)
dX(x, t, s)

dt
= b(X, t), t ∈ (0, T ), X |t=s= x.

Clearly, for (x, t) ∈ Ω × (0, T ) the function

(3.11) wε(x, t) = uε(X(x, t, 0), t)
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is the solution of the equation

(3.12)

 ∂tw
ε(x, t) + aε(X(x, t, 0), t)wε(x, t) = f(x, t)

wε(x, 0) = 0

where aε(X(x, t, 0), t) := a(X(x, x/ε, t, 0), t). By characteristic,

(3.13) wε(x, t) = uε(X(x, t, 0), t) =
∫ t

0
e−

∫ t
s aε(X(x,τ,0),τ)dτf(x, s)ds.

Passing to the limit as ε → 0, up to a subsequence, the sequence {wε} converges
in the sense of two-scale convergence to w given by

(3.14) w(x, t, y) =
∫ t

0
e−

∫ t
s a(X(x,y,τ,0),τ )dτf(x, s)ds,

and the weak limit function w0 of wε in Lp(Ω), given by

(3.15) u0(X(x, t, 0), t) = w0(x, t) =
∫

Y

w(x, t, y)dy, t ∈ (0, T ).

Now applying the main theorem we deduce that the homogenized equation of (3.12)
is given by

(3.16) ∂tw
0(x, t) + a0(X(x, t, 0), t)w0(x, t) −

∫ t

0
K(x, s, t)w0(x, s) = f(x, t)

where the kernel K is given by

(3.17)

K(x, s, t) =
∫

Y

[
a(X(x, y, t, 0), t)− a0(x, t)

]
[
a(X(x, y, s, 0), s)− a0(x, s)

]
e−

∫ t
s a(X(x,y,τ,0),τ )dτdµ(y)

with (x, s, t) ∈ Ω× (0, T )× (0, T ) for some positive measure dµ(y). Returning to
the (x, t) variables we have proved the following theorem.

Theorem 3.2. The homogenized equation of (3.9) is

(3.18)

∂tu
0(x, t) + b(x, t)∂xu

0(x, t) + a0(x, t)u0(x, t)

−
∫ t

0

K(x, s, t)w0(x, s) = f(x, t)

where the kernel K is given by (3.17).



974 Jiann-Sheng Jiang

REFERENCES

1. G. Allaire, Homogenization of the unsteady stokes equations in porous media, In:
Progress in Partial Differential Equations: “Calculation of Variation and Applica-
tions”, (C. Bandle et al. eds.), Pitman Research Notes in Mathematics, New York,
(1992), pp. 109-123.

2. G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal, 23
(1992), 1482-1518.

3. G. Allaire, Homogenization and Applications to Material Science, Lecture note at
Newton Institute, Cambridge, 1999.

4. Y. Amirat, K. Hamdache and A. Ziani, Some results on homogenization of convection
diffusion equations, Arch. Rational Mech. Anal., 114 (1991), 155-178.

5. Y. Amirat, K. Hamdache and A. Ziani, On homogenization of ordinary differential
equations and linear transport equations, In: Calculus of Variations, Homogenization
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