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MILOVANOVIC-PECARIC-FINK INEQUALITY FOR DIFFERENCE OF
TWO INTEGRAL MEANS

J. Pecari¢ and A. Vukeli¢

Abstract. In this paper we show some generalizations of estimations of
difference of two integral means, Milovanovic-Pecari¢-Fink inequality.

1. INTRODUCTION

The following Ostrowski inequality is well known [8]:

(x a+b)2
(1.1) ‘ x——/f dt‘ - ;)2 (b—a)L, x€[a,b],
where f : [a,b] — R is a differentiable function such that |f’'(x)| < L, for every
x € [a,b].

Note that (1.1) can be given in the equivalent form

b v —a)? _ )2
/f(t)dt‘g( 2)(b+_(;’)

(12) 1f<w> -

b—a

The Ostrowski inequality has been generalized over the years in a number of ways.
G. V. Milovanovi¢ and J. Pecari¢ [7] and A. M. Fink [5] have considered general-
izations of (1.1) in the form

1 n—1 (] L b
- <f<x>+l;Fk <x>> — / f(t)dt

which is obtained from identity

(L.3) < K(n,p,2)[ £,
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1 = a,b] > 1 b

. f(fl')—f— }7[7 ((L‘) - f(t)dt
(1.4) n < b; k = a/a

- m / (& — )" K (¢, 2) O () dt,
where
F[a,b]( ) n—k f(k—l)(a)(x —a)k - f(k—l)(b)(x bk
) - b—a
and
(15) k[a’b](t,x):{ t—a, a<t<z<b;
t—b, a<z<t<b.

In fact, G. V. Milovanovi¢ and J. Pecari¢ have proved that

(x —a)"* + (b—2)"t!

(16) Kn.00m) = — =)

while A. M. Fink gave the following generalizations of this result:

Theorem 1. Let f(»=1) be absolutely continuous on [a,b] and let f( e
Lyla,b]. Then the inequality (1.3) holds with

_ ng+1 _ ng+1 1/q
a7 K- a)qn!w@x)q L (- g+ g+ 1)1

where 1 < p < oo, 1/p+ 1/q =1, B is the Beta function, and

(n—1)"t

max[(x —a)", (b—x)"].

In this paper we use the formula (1.4) to generalize the results from [2] and [6]
where is estimated the difference of the two integral means for absolutely continuous
mappings whose first derivative is in L [a, b]. We will give the results for functions
whose derivative of order n, n > 1, is from L,|a, b] spaces. See also [9] and [1].
We will make it in two cases: one is when z € [c,d] C [a, b] and the other when
x € [a,b]N e, d] = [c, b].

2. SOME INTEGRAL IDENTITIES

Theorem 2. Let f : [a,b] — R be such that f("—1) is absolutely continuous
function on [a, b] for some n > 1. Then if a < ¢ < d < b, for every z € [¢, d]
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t——/f )dt + = ZFk

(2.1)
-/ o= 0 ) O )
where
Fi(z) = F,L“’b](x) B F,Lc’d](x) _ n—=k <f(k_1)(a)(x —a)k — fE=D(p)(z — b)k
k! b—a
() (@~ o) = fE V() (2 — )
a d—c
and
t—a .
P if tela,cl;
22 (o) = ﬁk[“’bl (t,2) — ﬁk[adl (t.2) if t € (cd):
z:z it ¢ e (d,b].

Proof. First we write the identity (1.4) for interval [a, b] and for interval [c, d].
Then we subtract them to get the above statements. ]

Remark 1. If we put ¢ = d = z as a limit case in the identity (2.1), we get
/ FO)dt— f(z), FI9(z) ”T_lf( ) and FlN () = 0 for & > 2.

So, from the identity (1.4) for interval [c, d] we have

i [ ey oy o

and consequently, for ¢ = d = z the identity (2.1) becomes the identity (1.4).

Theorem 3. Let f : [a,d] — R be such that f("=1) is absolutely continuous
function on [a, d] for some n > 1. Then if a < ¢ < b < d, for every z € [c, }]

WAE

2.3)

- o= e, w)f(” (1)t
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where Fj(x) is as in Theorem 2 and

t—a
it '
— if tela,cl;
24)  k(tw)=9q 1 gl 1 pled it .
b—ak (t,x) d—ck (t,z) if t € (cb];
a=t if tc(b,d).
Proof. Similar as the proof of Theorem 2. ]

3. EsTimATIONS OF THE DIFFERENCE OF Two INTEGRAL MEANS

3.1 Case [¢,d] C [a, b]

Theorem 4. Let f : [a,b] — R be such that f("—1) is absolutely continuous
on [a, b and let f(") ¢ Lyla,b] forsomen > 1. Thenfor1 < p < oo, 1/p+1/q=
1, a<c<d<band z € [c,d] we have

1 1 14
d_c/c f(t)dt—m/a f(t)dt+E;Fk(x)

m {(m — a,)nq—l—lB%(q—i— I,(n—1)g+1)

(3.1) n (c—a+b—d)z — so|™T!
(d—c)a

<

[\Pm (q +1, (n - 1)q + 1)

+ Blg+1,(n—1)g+ 1)+ ¥, ((n—1)g+1,q+1)]

1/
+ (b =2)" " Boalg+ 1, (0= Dg+ 1)} Fp,

where so = (bc —ad)/(c —a+b—d) and for sp < x <d

sg— ¢ d—x
and ry = ,
Tr — So Tr — So

T =

while for ¢ < z < sg we have

d— sg T —c
and ry = .
So— T So— T

1 =
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Here B(-,-) and B,(-,-) are the Beta and the incomplete Beta function of Euler

type given by
1 T
B(l,s):/ A1(1 — 1), Br(l,s):/ AL1 — 0l 15> 0
0 0

and ,
w5 = [ a0
0

is a real positive valued integral.
For p = 1 we have

d b n—1
[ 1w [ pwas 5 S E)
¢ e k=1

1
G2 = ag—a

n—1 n
l(n_1> (c—a+b—d)|z—s| 7(M_x)”_1(b—M)] 1LF)1,

max [(z — m)" Y m — a),

n n d—c

where m = min{a + &%, ¢} and M = max{b— =2 d}.
Moreover, for p > 1 the inequality (3.1) is sharp and for p = 1 the inequality

(3.2) is best possible.
Proof. Use the identity (2.1) and apply the Holder inequality to obtain

. d 1 b 1 n—1
= [ fae— = [ s+ > i)

(3.3)
L/ (n—1) e (n)
< ([t orar) 1o,

The integral of the right hand side of (3.3) needs to be calculated. Write it as
c _ q x _ t— q
/ (z—t)( e <Z__Z> dt+/ (z—t)(mDa t-a t=c

— | dt
b—a d—c
d q b b—t q
+ / (t—a) (e dt+/ (t—a) (D) (—) dt.
T d b—a

For the first of these let ¢t = a + s(z — a). Then

(3.4)
t—-b t—d

b—a d—c

c—a

c _ q _ 4\ng+1 r—a
/ (z — )P <Z_—Z> dt = %/ (1 —s) (D525

(x — a)natl
_ WB%(q +1,(n—1)g+1).
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If for the last integral of (3.4) we put ¢t = b — u(b — x), we get

b—d

= %Bm (q+1,(n—1)g+1).
Further
/cm(x—t)(n—l)q Z:Z - é:cc th = EZ : Z):—(Z: Ccl;;] /j(x_t)(n—l)q It — so|9dt
and
/:(t_x)(”_l)q R R = Ad<t—w>(”‘1>q £ soltdt.
We have that
So_czc_jﬁ(c—a) > 0, d_SOZC_Zﬁ(b—d) >0

and let first suppose that sg < z. Then with ¢ = sg — r(z — sg) we get

S”—C

S0 z—s
/ (& — £)=D9(s0 — $)9dt — (2 — 5)"+! / ° (14 1) Dapagy
c 0

= (z—30)""Wys-c(qg+1,(n—1)g+1).

z—s(

With ¢ = so + w(x — s¢) we have

x 1
/ (2 — )=Da( — 50)9dt = (3 — 5)" ! / (1 — w) =Dy

S0 0

= (z—s0)""B(g+1,(n—1)g+1)

and with ¢t = x + v(z — sq)

d—x

d —s
/ (t — 2)"=D9(t — 50)9dt = (3 — 5)"*! / " pn=Da(1 4 p)gy
T 0
= (2 —50)" W 4y (n—1)g+1,q+1).
z—s(

If x < s, similarly we get

/ (& — )90 — 1)7dt = (s9 — )T e (0~ D)+ 1, g+ 1),

sp—x
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50
/ (t — 2)"D9(s0 — 1)9dt = (59 — )" B(g+ 1, (n—1)g + 1)

and

d
/ (t = 2) "D — 50)9dt = (59— 2)" U asy (g + 1, (n— D)g + 1).

S0 sg—x
So, the inequality (3.1) is proved. Equality holds in (3.1) when
FO) = (@ = 0" RNt )T sgn{ (x — )" R (¢, 2)}.

For p =1, (3.3) is replaced by

d b n—1
ﬁ/c f(t)dt_ﬁ/a f(t)dt+%;Fk($)

1 n— n
< - sup o — ¢ ey (2, )] [ £
n! te[a,b]

By an elementary exercise we have

max(x—t)”_lt_a _ (x —m)"(m—a)

t€la,c] b—a b—a
o (M — )1 (b — M)
b—t —xz)" (b —
t—a)nt = .
tgl[g,)li]( z) b—a b—a

If x > sy we get

max (z — )" H(sg —t) = (z — )" L(sg — ¢),
t€e,s0)

max (z — )" (t — 50) = % (” - 1>n_1 (@ — s0)"

t€[so,] n
and
max (t — )" (t — s0) = (d — )" (d — sp).
te|z,d]

Also, for x < sy we have

max (z — )" (sg — t) = (x — )" L(sg — ¢),

t€lc,z]

max (t = 2)" (s —t)—l(”‘l)M@ oy
te€|z,s0] 0 n n 0
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and
max (t —z)" 1t — s9) = (d — )" }(d — s0).
tE[SQ,d]

So, the inequality (3.2) holds. To argue that this is best possible one should take

e, te(to—eto);

fE”)(t) - { 0, else,

where ¢, is the point that gives maximum, ]

Remark 2. If we put ¢ = d = z as a limit case in (3.1) and (3.2), we get the
Ostrowski inequality (see (1.7) and (1.8)).

Corollary 1. Let f : [a,b] — R be such that f(»=1) is an L-Lipschitzian
function on [a, b] for some n > 1. Then for a < ¢ < d < b, we have

d_/f t——/f dt+ Fi(x)

L (1‘— )n—f—l )n+1
39 = n(n +1).[ b—a + b—a
(x =)t (d—2)"  2(c—a+b—d)|z — so|"H!
R B (b—a)(d—c) ]

for every z € [c, d].

Proof. For integrable function F' : [a, b] — R we have

/ bF(t)de-”(t)‘ <1 " \P)] dt,

since f(»=1) is L-Lipschitzian function. So, we use the Theorem 4 with p = oo
and by integration by parts we have
1 r(l—r)® (1 —r)ntt 1

n(n—i—l)’Br(Q’n):_ n " n(n+1) +n(n—|—1)’

B(2,n) =

r(L+r)" (1 +47r)nt! 1 Cr(l4r) et
n nn+1) nn+1) Vr(n,2) = n nn+1)

Then with easy calculation we get the inequality (3.5). ]

U.(2,n) =

Remark 3. If we put ¢ = d = x as a limit case in the inequality (3.5), we get
the Ostrowski inequality for L-Lipschitzian function (see (1.6)).
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Now we will consider the inequalities from Theorem 4 and Corollary 1 in case
when n = 1.

Corollary 2. Let f : [a,b] — R be such that f’ € Ly[a,b]. Then for
l<p<oo, 1/p+1/g=1and a <c<d<b, we have inequality

Ry grvmmy o

ooy ooyt Y
[(Q+1)(b—a)q—1(c_a+b_d)] 1£1lps

while for p = 1 we have
1 b
Ry
b—a J,

c—a+b—d+|c—a—-b+d|
< .
= 2(b—a) Hf”l

(3.6)

(3.7)

Proof. Put n=1 in the inequalities from Theorem 4. See also [3], [9] and [1].

Remark 4. If p = oo we get
c—a)2—|—(b—d)2

1 b
= [t - = /f D < ST
which is the inequality (1.2) for ¢ = d = z. See also [6] and [2].

L

)

3.2 Case [a, b] N [c, d] = [c, b].

Theorem 5. Let f : [a,d] — R be such that f("=1) is absolutely continuous
and let £ € L,[a,d]. Thenfor 1 <p <oo, 1/p+1/g=1, a <c<b<dand
x € [c, b] we have

d b n—1
ﬁ/c F(t)dt — ﬁ/@ f(t)dt + % ;Fk(w)
1 (1‘ _ a)nq—f—l
a{—@tzﬁ—B
(c—a+b—d)i(sy— x)""H! [
(b—a)i(d - c)?

ca(q+1,(n—1)g+1)

(3.8)

Voe((n=1)g+1,¢+1)

sp—x

b B (0 Dt L+ 1)
sg—x
(d _ (I;)Wﬁ—l

1/q
— L £(m)
(d—c)4 B%(q—i—l,(n 1)‘1""1)} 1L |-
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For p = 1 we have

1 10 1 &~
= | roa-= | o+ 5 3 Rile)

(x—m)" Y (m—a) (c—a+b—d)
b—a " (b—a)(d—c)

(My — )" (d — M) n)
ey,

(my —x)”_l(so —myq),

(3.9) < i max {
n!

where m as in Theorem 4, m; = min{z + 2 b} and M; = max{d — =2, b}.
Moreover, for p > 1 the inequality (3.8) is sharp and for p = 1 the inequality
(3.9) is best possible.

Proof. Because we have that

d—c b—a

- (¢—a)>0 and —b=———-(d—-0b)>0
c—a—l—b—d(c a) 20 and s c—a—l—b—d( )2

Sg —C—=

without loss of generality we can take that c —a + b —d > 0 and then s — ¢ > 0
and so — b > 0. Now, similarly as in the Theorem 4 we have

c _ q _ ng+1
/(x_t)(n—l)q <Z_a> dt — w&:a (g+1,(n—1)g+1),

—a (b—a)d
x q
_ \(n—1)q t—a_t—c gt
/c(x t) b—a d-c
_(c—a+b—d)?

T (- a)(d- q/ (o = (50 — 1)

)
:@—a+dew—@W“m£qm—nm4ﬂ+m

(b—a)i(d—c)1 S0
b q

_ g |Emb tdi
/m (t—=2) b—a d-c

c—a E b

)
—a (g — )"t

and

d d—1t\1 d— ng+1
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For p =1 we have

. <t - a) _ (@—m)"(m—a)

max (z — t)"

tefa,d b—a b—a ’
onelft—a t—c|  c—a+b-d Con—lg.
g{iﬁ](m ) b—a d—c| (b—a)(d—-c) g{iﬁ](m " (50— ¥)
_(z— c)" L(c—a)
N b—a ’
_ Tb—l t_b_t_d _C_a+b_d _ nl _
tgl[%](t ?) b—a d—c| (b—a)d—-c) tgl[%](t )" (s —1)
_(ezat+b-d) el
T hadg M o)
e (M — 2y (d - M)
d—t My —x)"H(d— M
_oyn—1 _ 1 1
tgl[fli)c%](t @) <d — c) d—c '
Proof of sharpness and best possibility is the same as in the Theorem 4. ]

Remark 5. If we put ¢ = b = z in inequalities (3.8) and (3.9) we get

d - n—1 )
ﬁ/x f(t)dt_xlfa/a f(t)dt+%l;Fk($)

= % {[(w - a’)(n_l)ﬁlﬂd—x)(”_l)ﬁl} B(q+1, (n—l)q+1)}1/q NI
and
s [ a2 [ som LS A
= %m“ (2 —a)"", (d—)""] Hf(”)Hl,
where

T —a d—

) n— =1 ()2 — a)* (k-1) z— d)F
Fiula) = k!k<f @a—af | [V d))_

Corollary 3. Let f : [a,d] — R be such that ("~ is an L-Lipschitzian
function on [a, d] for some n > 1. Then for a < ¢ < b < d, we have

/f dt——/f )dt + — ZFk

_ )n+1 (b _ )n+1 (x _ )n+1 (d _ x)n+1:|

(3.10)

(x
< —
- (n—i—l).[ b—a b—a d—c * d—c
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for every z € [c, b].

Proof. We use Theorem 5 with p = oo and by partial integration and with easy
calculation we get the inequality (3.10). ]

Remark 6. If we put ¢ = b = z in the inequality (??), we get

d 1 T 1n_1 .
/mf(t)dt—x_a/a f(t)dt+E;F x

[(z—a)"+ (d—2x)"].

-z
< L
~ n(n+1)!

Corollary 4. Let f : [a,d] — R be such that f’ € Lp[a,d]. Then for
l<p<oo, 1/p+1/g=1, a<c<b<dwe have inequality

Sy T—

+1 _pyatly Ve
a)™_ (d=by ]} TR

(3.11)

(g+1)(c—a+b—d) [(b @)1 (d— )it

while for p = 1 we have
d
t)dt — ——
/f =R ‘

(3.12)
<1 c—a+d b+c a_d 17
“2b—a d—c |b—a d— -
Proof. Put n =1 in the inequalities in Theorem 5. See also [1]. |

Remark 7. For ¢ = b = x we have

1 x _ 1/q

L [Crwa- o [Croa] <[] 1r,
T d

[ rwa- 2 [ rod] <11

Remark 8. If p = oo we get

'bia/abf dt__/f dt' a+d b,

and

See also [1].
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and for ¢ = b = = we have (see [1])

[ a2 [ o] < 52

4. ON SoME FURTHER GENERALIZATIONS

In [4] Lj. Dedi€, J. Pecari¢ and N. Ujevi¢ generalized Milovanovic-Pecari¢-
Fink inequality using harmonic sequence of polynomials, where (P,) is a harmonic
sequence of polynomials, if P, = P,_;, n>1, Py =1.

Theorem 6. Let f : [a,b] — R be such that f("~1) is absolutely continuous
for some n > 1 and let f € L,[a,b] for 1 <p < oo, 1/p+ 1/q = 1. Then the

inequality
=l +Z AP S (o +ZF R
n k(@ b—al,

< C(n,p, w)Hf(” lp
holds for = € [a, b], and

(4.1)

(42) C(nvpv II,') - n(b_a)HPn—lk[mb]('7x)HQ7
where is
—1k(n —
£ = CU B )60 @) — P )11 )

This inequality follows from the identity
+Z 1)k Py () fP) (@ +ZF o
(-u!

b
- n(b—a,)/ Pn—l(t)k[a’b](t,(L‘)f(n)(t)dt

Now we will give two theorems which generalize Theorem 2 and the Theorem 3.

i [

(4.3)

Theorem 7. Let f : [a,b] — R be such that f(*~1 is absolutely continuous
function on [a, b] for some n > 1. Then if a < ¢ < d < b, for every z € [¢, d]

b n—1
_C/f dt — ia/f(t)dt—i—%ZFk

a k=1
_ L / Okt ) f O (1)t

n

(4.4)
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where
B = (-D)n-#) (P @D — RS0
_ Pk(c)f(k—l)(c) — Pk(d)f(k—l)(d)>
d—c

and k1 (t, ) as in Theorem 2.

Proof. First we write the identity (4.3) for interval [a, b] and for interval [c, d].
Then we subtract them and get the above statements. ]

Theorem 8. Let f : [a,d] — R be such that f(*~1 is absolutely continuous
function on [a, d] for some n > 1. Then if a < ¢ < b < d, for every z € [c, }]

d b ol
ﬁ/c f(t)dt—ﬁ/a f(t)dt+%kZ;Fk
a l/dPn—1(75)k2(757 ) [ (t)dt

nJa

(4.5)

where F}, is as in Theorem 7 and ks (t, ) as in Theorem 3.
Proof. Similar to the proof of Theorem 7.

Remark 9. From Theorem 7 and Theorem 8 now follow the generalizations
of Theorem 4 and Theorem 5. Also we can note that Theorems 2 and 3 are special
case of Theorems 7 and 8 when Py (t) = (t — x)*/k!.
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