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BOUNDING THE NUMBER OF COLUMNS WHICH APPEAR ONLY IN
POSITIVE POOLS

H. B. Chen, F. K. Hwang and C. M. Li

Abstract. d-separable, d-separable and d-disjunct matrices are the major
tools in constructing pooling designs which has many applications to DNA
experiments, for example, the clone library screening problem. While there
exists a simple decoding for d-disjunct matrices, only brute-force methods are
known for the other two. In this paper we identify structures in these two
matrices which lead to significant improvements for decoding.

1. INTRODUCTION

Nonadaptive group testing has been intensively studied recently due to its bio-
logical applications. For a set C' of given objects consisting of positive and negative
ones, a group test is performed on an arbitrary subset S C C with two possible out-
comes: a positive outcome signifies that .S contains a positive object and a negative
outcome signifies otherwise. The goal is to identify all positive objects through a
minimum number of group tests. In biological experiments, the objects are usually
clones and a clone is positive if it contains a prespecified DNA segment. To save
experiment time, it is important that all test subsets are specified before any testing
is done, known as nonadaptive group testing in the group testing literature, and a
pooling design in biological applications (each test-subset is a pool).

Let M denote the incidence matrix of a pooling design with rows as pools and
columns as clones. We will view a column as the set of locations of its 1-entries,
i.e., a column is a subset of the set of row indices. We will use the terminology a
positive (negative) column to mean that the column represents a positive (negative)
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object, and a positive (negative) pool to mean that the test has a positive (negative)
outcome. Let V denote the (binary) outcome vector, i.e., = 1(0) if row ¢ is
positive (negative).Then V' can be interpreted as the union of all positive columns.

Three types of binary matrices have become the major tools in constructing a
pooling design:

(i) M is d-separable if no two unions of d columns are same.
(ii) M is d-separable if no two unions of at most d columns are same.
(iif) M is d-disjunct if no column is contained in the union of any other d columns.

Let p denote the actual (unknown) number of positive objects. It is well known
[2] that the d-separable matrix can identify all p positive clones if p = d, and the
d-separable matrix or the d-disjunct matrix can identify all p positive clones if p < d
(the d-disjunct matrix also has a simple decoding). These matrices have also been
studied in extremal set theory [5, 7, 8] and coding [4, 10], other than the biological
applications.

Let M denote a d-separable or d-separable or d-disjunct matrix. We will bound
the number of columns not appearing in any negative pool. Later, we consider the
same with an additional constraint. We give two applications of our results in the
decoding of positive clones in a pooling design.

2. MaIN REsuULTS

Let M be at xn d-separable or d-separable or d-disjunct matrix, {D1, - - -, D,}
the set of positive clones, and V' the outcome vector corresponding to { D, - - - , D},

p
ie, V = {JD;. LetTyand T; denote the sets of negative pools and positive pools,

=1
respectively, with |Ty| = ¢y and |Ty| = 1, to + 1 = t. Let My(My) be the
t1(to) x m1(ng) submatrix of M such that the rows are 73 (7p) and the columns are
those which have no 1-entries in Ty(T4).

Lemma 2.1. M is d-separable (or d-separable or d-disjunct) implies M is
d-separable (or d-separable or d-disjunct).

Proof. Obvious from the fact that a column in M7 preserves all the 1-entries
in M, hence M inherits the property of M. ]

An immediate consequence of Lemma 2.1 is that we can use bounds of n for a
d-separable(or d-separable or d-disjunct) matrix to bound ng(ny). For a d-disjunct
matrix, Furedi [8] proved n < d - 94t/d” by a combinatorial argument. D'yachkov
and Rykov [4] gave the asymptotic bound n < d - 22t/d2(1 +0(1)).
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Bounds of n; for d-separable and d-separable matrices can be obtained through
their relation with d-disjunct matrices. Kautz and Singleton [10] proved that a
d-separable matrix is a (d — 1)-disjunct matrix. Thus

Theorem 2.2. Suppose M is d-separable. Then n; < (d — 1) - 24t1/(d=1)°,
Also ny < (d— 1) -2201/(d=1)%(1 4 o(1)) asymptotically.

Recently, Chen and Hwang [1] proved that a d-separable matrix can be converted
to a |d/2]-disjunct matrix by adding a row. Thus

Theorem 2.3. Suppose M is d-separable. Then ny < |d/2] - 24(t1+1)/1d/2)*,
Also ny < |d/2] - 22(+D/1d/2)*(1 4 o(1)) asymptotically.

Ironically, the M being d-disjunct case does not have any analogous result. This
is because that a much stronger result is well known. Suppose the actual number
of positive clones is p < d. Then n; = p [10].

Note that M, actually satisfies an additional constraint that there exists a set D
of d columns in M, such that the union of D intersects all rows in M (any set of d
columns containing all positive clones will do). We will make use of this constraint
to derive a new bound for the d-separable case.

Let N; denote the set of columns in M; and let D = {Dy,---, Dg}. Define

J#
Lemma24. CND;#C'ND;forallC,C"e Ny\Dand1<i<d.
Proof. Suppose to the contrary that there exist C', C’ and ¢ such that
CnDf=C"ND;j.
Since the union of D intersects all rows in M7,

C\D; | JD; and

JF
'\ D; c | JD;.
JF
Thuswe have C'U (| D;) = C"U (|JD;), violating the assumption of d-separ-
J#i JFi
ability. -

Theorem 2.5. n; < d+ 2"/4 — 1 for M d-separable.

Proof. Clearly,
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i Dt < .

1%%‘ 71< [ta/d]
Without loss of generality, assume D} achieves the minimum. By Lemma 2.4, all
columns in N \ D have distinct intersections with D, hence there are at most
21D71 < 2lt1/d] of them. But we have to subtract one since the intersection number
cannot be | D} |, or the union of that column with | J D; equals D, violating the

J#
assumption of d-separability. [ |
Compare the two bounds in Theorems 2.3 and 3.5, the bound in Theorem 2.5
is better for d < 16, which is usually the case in biological applications.

Theorem 2.6. For a d-separable matrix M,

n
<d+2t/d 9 ifp=ad.

Proof. Since M; is d-separable, hence (d — 1)-disjunct, the only columns in
M are the positive clones if p < d — 1.
If p = d, then CND; can be neither D nor () (leading to CU(|J D;) = U D).
J# J#
Hence 2 is subtracted from 2lt1/d!, m

3. Two APPLICATIONS

As mentioned before, the d-disjunct matrix comes with a simple decoding,
namely, a column is positive if and only if it does not appear in a negative row.
On the other hand, the d-separable matrix and the d-separable matrix have fewer
tests but have no simple decoding. The only known decoding is the brute-force
method [11] by computing the output vectors of all candidate sets of positive clones
(this can be done in advance) and check which matches the actual outcome vector.
Let S and S denote the sizes of the candidate sets for d-separable and d-separable,
respectively. Then essentially,

S = (’21> and § = jzdg (’;1>

Our results show that n can be replaced by the bounds of n’ in Theorem 2.3 or 2.5
in S, and by the bounds in Theorem 2.2 or Theorem 2.6 in S for large savings.

In some biological applications, besides the positive and negative objects, there
is a third category called inhibitors where the presence of an inhibitor in a pool
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dictates its outcome to be negative regardless of how many positive clones are
present. Such a model was first proposed in [6].

Assume there are at most d positive clones and at most r inhibitors, it was shown
[3, 9] that a (d + r)-disjunct matrix can identify all positive clones. However, the

decoding for positive clones requires inspecting all (’1) r-subsets of the n” columns
which are candidates of inhibitors. In [3], n’ was just set to n. In [9], n’ was
somewhat reduced, but no upper bound was derived.

Note that an inhibitor cannot appear in a positive pool. So a column is a
candidate of inhibitor if it does not intersect 7. By Lemma 2.1, My is (d + r)-
disjunct, hence n’ < (d+r) - 2*/(447)% or p/ < (d+r) - 22/(4+7)°(1 4 o(1)). The
reason that the bound in Theorem 2.5 is not applicable is that the set of inhibitors
does not necessarily span Ty, which is needed in the proof of Lemma 2.4. Namely,
T, can contain a row consisting of negative clones but no inhibitor.
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