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SPACES OF CESÀRO DIFFERENCE SEQUENCES OF ORDER r

DEFINED BY A MODULUS FUNCTION
IN A LOCALLY CONVEX SPACE

Mikail Et

Abstract. The idea of difference sequence spaces was introduced by Kizmaz
[12] and was generalized by Et and Colak [6]. In this paper we introduce and
examine some properties of the sequence spaces [V,λ,f,p]0(∆

r
v ,q), [V,λ,f,p]1(∆

r
v ,q),

[V,λ,f,p]∞(∆r
v ,q), Sλ(∆r

v ,q) and give some inclusion relations on these spaces.
We also show that the space Sλ(∆r

v ,q) may be represented as a [V,λ,f,p]1(∆
r
v ,q)

space. Furthermore, we compute Köthe-Toeplitz duals of the spaces of gener-
alized Cesàro difference sequences spaces.

1. INTRODUCTION

Let w be the set of all sequences of real or complex numbers and �∞, c and
c0 be respectively the Banach spaces of bounded, convergent and null sequences
x = (xk) with the usual norm ‖x‖ = sup |xk| , where k ∈ N = {1, 2, . . .} , the set
of positive integers.

Throughout this paper, let λ = (λn) be a nondecreasing sequence of positive
numbers tending to ∞ such that λn+1 ≤ λn + 1, λ1 = 1. The generalized de
laVallée-Pousin mean is defined by

tn (x) =
1
λn

∑
k∈In

xk, where In = [n − λn + 1, n] for n = 1, 2, ....

A sequence x = (xk) is said to be (V, λ)−summable to a number L [14] if
tn (x) → L as n → ∞. If λn = n, then (V, λ)−summability and strongly (V, λ)-
summability are reduced to (C, 1)-summability and strongly (C, 1)-summability,
respectively.
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The difference sequence spaces was first introduced by Kizmaz [12] and then
the concept was generalized by Et and Colak [6]. Later on, difference sequence
spaces have been discussed in [1, 2, 4, 5, 7, 10, 17].

Ruckle [20] used the idea of a modulus function to construct some spaces of
complex sequences. Maddox [16] investigated and discussed some properties of the
three sequence spaces defined using a modulus function f. Recently, Malkowsky
and Savaş [18] defined some λ−sequence spaces by using a modulus function.

The main object of this paper is to study some sequence spaces which arise from
the notation of generalized de la Vallée-Pousin mean, the generalized difference
operator ∆r

v and the concept of a modulus function.
We recall that a modulus f is a function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0,

(iii) f is increasing,

(iv) f is continuous from the right at 0.

Since |f (x) − f (y)| ≤ f (|x − y|), it follows from condition (iv) that f is
continuous on [0,∞). A modulus may be unbounded or bounded.

Let X, Y ⊂ w. Then we shall write

M (X, Y ) = ∩
x∈X

x−1 ∗ Y = {a ∈ w : ax ∈ Y for all x ∈ X} [22].

The set Xα = M (X, �1) is called Köthe-Toeplitz dual or the α−dual of X. If
X ⊂ Y, then Y α ⊂ Xα. It is clear that Xα ⊂ (Xα)α = Xαα. If X = Xαα, then
X is called an α−space. In particular, an α−space is called a Köthe space or a
perfect sequence space.

Let X be a sequence space. Then X is called:

(i) Solid (or normal), if (αkxk) ∈ X for all sequences (αk) of scalars with
|αk| ≤ 1 for all k ∈ N, whenever (xk) ∈ X ,

(ii) Symmetric, if (xk)∈X implies (xπ(k))∈X,whereπ(k) is a permutation of N,

(iii) Sequence algebra if x.y ∈ X, whenever x, y ∈ X.

It is well known that if X is perfect, then X is normal [11].
The following inequality will be used in the sequel.

(1) |ak + bk|pk ≤ G {|ak|pk + |bk|pk} ,

where ak, bk ∈ C, 0 < pk ≤ supk pk = H, G = max
(
1, 2H−1

)
[15].
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2. MAIN RESULTS

In this section we prove some results involving the sequence spaces [V, λ, f, p]0
(∆r

v, q) , [V, λ, f, p]1 (∆r
v, q) and [V, λ, f, p]∞ (∆r

v, q) .

Definition 1. Let f be a modulus function, X be a locally convex Hausdorff
topological linear space whose topology is determined by a set Q of continuous
seminorms q and p = (pk) be a sequence of strictly positive real numbers. By
w (X) we shall denote the space of all sequences defined over X. Let v = (vk)
be any fixed sequence of nonzero complex numbers. Now we define the following
sequence spaces:

[V, λ, f, p]1 (∆r
v, q) =


x ∈ w(X) : lim

n

1
λn

∑
k∈In

[f (q (∆r
vxk − L))]pk = 0,

for some L} ,

[V, λ, f, p]0 (∆r
v, q) =


x ∈ w(X) : lim

n

1
λn

∑
k∈In

[f (q (∆r
vxk))]

pk = 0


 ,

[V, λ, f, p]∞ (∆r
v, q) =


x ∈ w(X) : sup

n

1
λn

∑
k∈In

[f (q (∆r
vxk))]pk < ∞


 ,

where r ∈ N, ∆0
vx = (vkxk) , ∆vx = (vkxk − vk+1xk+1) , ∆r

vx = (∆r−1
v xk

−∆r−1
v xk+1) and so ∆r

vxk =
r∑

i=0
(−1)i (r

i

)
vk+ixk+i.

The above sequence spaces contain some unbounded sequences for r ≥ 1. For
example, let X = C, f (x) = x, q (x) = |x| , λn = n for all n ∈ N, v = (1, 1, 1, ...)
and pk = 1 for all k ∈ N, then (kr) ∈ [V, λ, f, p]∞ (∆r

v , q) but (kr) /∈ �∞.
If x ∈ [V, λ, f, p]1 (∆r

v, q) , then we will write that xk → L [V, λ, f, p]1 (∆r
v, q)

and L will be called λr
qv− difference limit of x with respect to the modulus f.

Throughout the paper Z will denote any one of the notation 0, 1, or ∞.

In the case f (x) = x, pk = 1 for all k ∈ N and pk = 1 for all k ∈ N, we
shall write [V, λ]Z (∆r

v, q) and [V, λ, f ]Z (∆r
v , q) instead of [V, λ, f, p]Z (∆r

v , q) ,
respectively.

Also in the special case q (x) = |x| , λn = n for all n ∈ N and X = C we shall
write [C, 1]Z (∆r

v) instead of [V, λ]Z (∆r
v, q) .

The proofs of the following theorems are obtained by using the well-known
standard techniques, therefore we give them without proofs.

Theorem 2.1. Let the sequence (pk) be bounded. Then the spaces [V, λ, f, p]Z
(∆r

v, q) are linear spaces.
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Theorem 2.2. Let f be a modulus function, then [V, λ, f, p]0 (∆r
v, q) ⊂

[V, λ, f, p]1 (∆r
v, q) ⊂ [V, λ, f, p]∞ (∆r

v , q) and the inclusions are strict.

Theorem 2.3. [V, λ, p]0 (∆r
v, q) is a paranormed (need not total paranorm)

space with

g
∆

(x) = sup
n


 1

λn

∑
k∈In

[(q (∆r
vxk))]pk




1
M

where M = max(1, suppk).

Theorem 2.4. If r ≥ 1, then the inclusion [V, λ, f, p]Z
(
∆r−1

v , q
) ⊂ [V, λ, f, p]Z

(∆r
v, q) is strict. In general [V, λ, f, p]Z

(
∆i

v, q
) ⊂ [V, λ, f, p]Z (∆r

v, q) for all
i = 1, 2, . . . , r − 1 and the inclusions are strict.

Proof. Proof follows from the inequality

1
λn

∑
k∈In

[f (q (∆r
vxk))]pk ≤ G

λn

∑
k∈In

[
f
(
q
(
∆r−1

v xk

))]pk

+
G

λn

∑
k∈In

[
f
(
q
(
∆r−1

v xk+1

))]pk .

To show the inclusion is strict, let X = C, q (x) = |x| , v = (1, 1, 1, ...), pk = 1 for
all k ∈ N and λn = n for all n ∈ N. Then the sequence x = (kr) , for example,
belongs to [V, λ, f, p]∞ (∆r

v, q) , but does not belong to [V, λ, f, p]∞
(
∆r−1

v , q
)

for
f(x) = x.

The proof of the following result is a routine work.

Proposition 2.5. [V, λ, f, p]1
(
∆r−1

v , q
) ⊂ [V, λ, f, p]0 (∆r

v , q) .

Theorem 2.6. Let f, f1, f2 be modulus functions. For any two sequences
p = (pk) and t = (tk) of strictly positive real numbers and any two seminorms q 1,
q2 we have

(i) [V, λ, f1, p]Z (∆r
v, q) ⊂ [V, λ, f ◦ f1, p]Z (∆r

v , q) ,

(ii) [V, λ, f1, p]Z (∆r
v, q) ∩ [V, λ, f2, p]Z (∆r

v , q) ⊂ [V, λ, f1 + f2, p]Z (∆r
v , q) ,

(iii) [V, λ, f, p]Z (∆r
v , q1) ∩ [V, λ, f, p]Z (∆r

v, q2) ⊂ [V, λ, f, p]Z (∆r
v, q1 + q2) ,

(iv) If limsup f1(x)
f2(x)

< ∞, then [V, λ, f2, p]Z (∆r
v, q) ⊂ [V, λ, f1, p]Z (∆r

v, q) ,

(v) If q1 is stronger than q2 then [V, λ, f, p]Z (∆r
v, q1) ⊂ [V, λ, f, p]Z (∆r

v , q2) ,

(vi) If q1 is equivalent to q2 then [V, λ, f, p]Z (∆r
v , q1) = [V, λ, f, p]Z (∆r

v, q2) ,
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(vii) [V, λ, f, p]Z (∆r
v, q1) ∩ [V, λ, f, t]Z (∆r

v , q2) �= ∅.

Proof. (i) We shall only prove (i) for Z = 0 and the other cases can be proved
by using the similar arguments. Let ε > 0 and choose δ with 0 < δ < 1 such that
f(t) < ε for 0 ≤ t ≤ δ. Write yk = f1 (q (∆r

vxk)) and consider∑
k∈In

[f(yk)]pk =
∑

1

[f(yk)]
pk +

∑
2

[f(yk)]
pk

where the first summation is over yk ≤ δ and second summation is over yk > δ.

Since f is continuous, we have

(2)
∑

1

[f(yk)]pk < λn max
(
εinf pk , εH

)
.

By the definition of f we have for yk > δ,

f(yk) < 2f(1)
yk

δ
.

Hence

(3)
1
λn

∑
2

[f(yk)]
pk ≤ max

(
1,
(
2f(1)δ−1

)H) 1
λn

∑
2

[yk]
pk .

From (2) and (3), we obtain [V, λ, f1, p]0 (∆r
v , q) ⊂ [V, λ, f ◦ f1, p]0 (∆r

v , q) .
The following result is a consequence of Theorem 2.6 (i).

Corollary 2.7. Let f be a modulus function. Then [V, λ, p]Z (∆r
v , q) ⊂

[V, λ, f, p]Z (∆r
v, q).

Theorem 2.8. Let (X, q) be a complete seminormed space. Then the sequence
spaces [V, λ]Z (∆r

v , q) are complete, seminormed by

g∆(x) =
r∑

i=1

q (vixi) + sup(
1
λn

∑
k∈In

(q (∆r
vxk)))

where vk �= 0 for each k ∈ N and X is any sequence space.

Proof. We shall prove only that [V, λ]∞ (∆r
v, q) is complete with respect to the

above seminorm. The others can be proved by the same way. Let (xs) be a Cauchy
sequence in [V, λ]∞ (∆r

v , q) , where xs = (xs
i )

∞
i=1. Then we have

g∆(xs − xt) → 0, as s, t → ∞.
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Let ε > 0 be given, then there exists a positive integer n0 such that g∆(xs−xt) < ε

for all s, t > n0. So we have

r∑
i=1

q
(
xs

i − xt
i

)
+ sup(

1
λn

∑
k∈In

(
q(∆r

v

(
xs

i − xt
i

)
)
)
) < ε, for all s, t > n0.

Hence (xs
i ) , ( for i ≤ r ) and (∆r

v (xs
k)) for all k ∈ N, are Cauchy sequences in X.

Since X is complete, these sequences are convergent in X. Suppose that xs
i → xi,

( for i ≤ r ) and ∆r
v (xs

k) → yk as s → ∞, for each k ∈ N. Then we can find a
sequence (xk) such that yk = ∆r

vxk for each k ∈ N. These xk
′s can be written as

xk = v−1
k

k−r∑
i=1

(−1)r

(
k − i− 1

r − 1

)
yi = v−1

k

k∑
i=1

(−1)r

(
k + r − i − 1

r − 1

)
yi−r ,

for sufficiently large k, for instance k > r, where y1−r = y2−r = . . . = y0 = 0.
Thus (∆r

v (xs
k)) =

((
∆r

v

(
x1

k

))
,
(
∆r

v

(
x2

k

))
, . . .

)
converges to ∆r

vxk, for each k ∈ N

in X. Hence g∆ (xs − x) → 0 as s → ∞. Since (xs − x) , (xs) ∈ [V, λ]∞ (∆r, q)
and the space [V, λ]∞ (∆r

v , q) is a linear space we have x = xs − (xs − x) ∈
[V, λ]∞ (∆r

v, q) . Hence [V, λ]∞ (∆r
v, q) is complete.

Theorem 2.9. Let 0 < pk ≤ tk and
(

tk
pk

)
be bounded. Then[V, λ, f, t]Z (∆r

v, q)
⊂ [V, λ, f, p]Z (∆r

v, q) .

Proof. We prove it for Z = 0 and the other cases will follow on applying
similar techniques. Let x ∈ [V, λ, f, t]0 (∆r

v, q) . Write wk = [f (q (∆r
vxk))]

tk and
µk = pk

tk
, so that 0 < µ < µk ≤ 1 for each k.

We define the sequences (uk) and (sk) as follows:
Let uk = wk and sk = 0 if wk ≥ 1, and let uk = 0 and sk = wk if wk < 1.

Then it is clear that for all k ∈ N, we have wk = uk + sk, wµk
k = uµk

k + sµk
k . Now

it follows that uµk
k ≤ uk ≤ wk and sµk

k ≤ sµ
k . Therefore

λ−1
n

∑
k∈In

wµk
k ≤ λ−1

n

∑
k∈In

wk +


λ−1

n

∑
k∈In

sk




µ

.

Hence x ∈ [V, λ, f, p]0 (∆r
v, q) .

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [8]. Over the
years and under different names statistical convergence has been discussed in the
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theory of Fourier analysis, ergodic theory and number theory. Later on it was
further investigated from sequence space point of view and linked with summability
theory by Fridy [9], Connor [3], Salát [21], Mursaleen [19], Işik [10], Kolk [13],
Malkowsky and Savaş [18] and many others. The notion depends on the density of
subsets of the set N of natural numbers.

A subset E of N is said to have density δ (E) if

δ (E) = lim
n→∞

1
n

n∑
k=1

χE (k) exists,

where χE is the characteristic function of E.

A sequence (xk) is said to be statistically convergent to L if for every ε > 0,
δ ({k ∈ N : |xk − L| ≥ ε}) = 0.

In this section we introduce λr
qv− statistically convergent sequences and give

some inclusion relations between Sλ(∆r
v, q) and [V, λ, f, p]1 (∆r

v , q).

Definition 2. A sequence x = (xk) is said to be λr
qv− statistically convergent

to the number L if for every ε > 0,

lim
n

1
λn

|{k ∈ In : q (∆r
vxk − L) ≥ ε}| = 0,

where the vertical bars denote the cardinality of the enclosed set. In this case we
write Sλ (∆r

v, q)− limx = L or xk → LSλ (∆r
v , q).

In the case λn = n and L = 0 we shall write S(∆r
v, q) and Sλ0(∆

r
v, q) instead

of Sλ(∆r
v, q), respectively.

The proofs of the following two theorems are easily obtained by using the same
techniques of Mursaleen [19, Theorem 2.1 and Theorem 3.1], therefore we give
them without proofs.

Theorem 3.1. Let λ = (λn) be the same as in Section 1, then
(i) If xk → L [V, λ]1 (∆r

v , q) , then xk → LSλ (∆r
v, q),

(ii) If x ∈ �∞ (∆r
v, q) and xk → LSλ (∆r

v , q) , then xk → L [V, λ]1 (∆r
v, q),

(iii) Sλ (∆r
v, q) ∩ �∞ (∆r

v, q) = [V, λ]1 (∆r
v, q) ∩ �∞ (∆r

v, q) ,

where �∞ (∆r
v , q) = {x ∈ w(X) : supk q (∆r

vxk) < ∞} .

Remark 1. In fact the set [V, λ]1 (∆r
v , q) is a proper subset of Sλ (∆r

v , q).

Theorem 3.2. If lim inf λn
n > 0, then S (∆r

v , q) ⊆ Sλ (∆r
v, q) .

Theorem 3.3. Let f be a modulus function and 0 < h = inf k pk ≤ pk ≤
supk pk = H < ∞ . Then [V, λ, f, p]1 (∆r

v, q) ⊂ Sλ (∆r
v , q) .
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Proof. Let x ∈ [V, λ, f, p]1 (∆r
v, q) and ε > 0 be given. Then

1
λn

∑
k∈In

[f (q (∆r
vxk − L))]pk ≥ 1

λn

∑
k∈In

q(∆r
vxk−L)≥ε

[f (q (∆r
vxk − L))]pk

≥ 1
λn

|{k ∈ In : q (∆r
vxk − L) ≥ ε}|

min
(
[f (ε)]h , [f (ε)]H

)
.

Hence x ∈ Sλ (∆r
v , q) .

Theorem 3.4. If f is bounded then Sλ (∆r
v, q) ⊂ [V, λ, f, p]1 (∆r

v, q) .

Proof. Suppose that f is bounded and let ε > 0 be given. Since f is bounded
there exists an integer K such that f (x) < K, for all x ≥ 0. Then

1
λn

∑
k∈In

[f (q (∆r
vxk − L))]pk =

1
λn

∑
k∈In

q(∆r
vxk−L)≥ε

[f (q (∆r
vxk − L))]pk

+
1
λn

∑
k∈In

q(∆r
vxk−L)<ε

[f (q (∆r
vxk − L))]pk

≤ max
(
Kh, KH

) 1
λn

|{k ∈In : q (∆r
vxk−L)≥ε}|

+ max
(
f (ε)h , f (ε)H

)
.

Hence x ∈ [V, λ, f, p]1 (∆r
v, q) .

Theorem 3.5. Sλ (∆r
v , q) = [V, λ, f, p]1 (∆r

v, q) if and only if f is bounded.

Proof. Let f be bounded. By Theorem 3.3 and Theorem 3.4 we have
Sλ (∆r

v, q) = [V, λ, f, p]1 (∆r
v, q) .

Conversely suppose that f is unbounded. Then there exists a sequence (tk) of
positive numbers with f (tk) = k2, for k = 1, 2, ... . If we choose

∆r
vxi =

{
tk, i = k2, i = 1, 2, . . .

0, otherwise

then we have
1
λn

|{k ∈ In : |∆r
vxk| ≥ ε}| ≤

√
λn−1

λn
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for all n and so x ∈ Sλ (∆r
v, q) , but x /∈ [V, λ, f, p]1 (∆r

v, q) for X = C and pk = 1
for all k ∈ N. This contradicts to Sλ (∆r

v, q) = [V, λ, f, p](∆r
v, q) .

Theorem 3.6. The sequence spaces [V, λ, f, p]Z (∆r
v, q) , Sλ (∆r

v, q) and Sλ0

(∆r
v, q) are not solid for r ≥ 1.

Proof. Let X = C, pk = 1 for all k ∈ N, f(x) = x , q (x) = |x| , v = (1, 1, ...)
and λn = n for all n ∈ N. Then (xk) = (kr) ∈ [V, λ, f, p]∞ (∆r

v, q) but (αkxk) /∈
[V, λ, f, p]∞ (∆r

v, q) when αk = (−1)k for all k ∈ N. Hence [V, λ, f, p]∞ (∆r
v, q)

is not solid. The other cases can be proved on considering similar examples.
From the above theorem we may give the following corollary.

Corollary 3.7. The sequence spaces [V, λ, f, p]Z (∆r
v, q) are not perfect for

r ≥ 1.

Remark 2. If |vk| ≤ 1 for all k ∈ N, then [V, λ]0 (∆r
v, q) and [V, λ]∞ (∆r

v, q)
are solid for r = 0.

Theorem 3.8. The sequence spaces [V, λ, f, p]1 (∆r
v, q), [V, λ, f, p]∞ (∆r

v , q) ,

Sλ (∆r
v, q) and Sλ0 (∆r

v, q) are not symmetric for r ≥ 1.

Proof. Under the restrictions on X, p, f, q, v and λ as given in the proof of
Theorem 3.6, consider the sequence x = (kr) , then x ∈ [V, λ, f, p]∞ (∆r

v , q) . Let
(yk) be a rearrangement of (xk), which is defined as follows:

(yk) = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10,...} .

Then (yk) /∈ [V, λ, f, p]∞ (∆r
v, q) . For the space Sλ0 (∆r

v, q) , consider the sequence
x = (xk) defined by

xk =
{

1, if (2i − 1)2 ≤ k < (2i)2 , i = 1, 2, ...
4, otherwise.

Then (xk) ∈ S0(∆). Let (yk) be the same as above, then (yk) /∈ S0(∆).

Remark 3. The space [V, λ, f, p]0 (∆r
v, q) is not symmetric for r ≥ 2.

Theorem 3.9. The sequence spaces [V, λ, f, p]Z (∆r
v, q), Sλ (∆r

v, q) and Sλ0

(∆r
v, q) are not sequence algebras.

Proof. Under the restrictions on X, p, f, q, v and λ as given in the proof of
Theorem 3.6, consider the sequences x =

(
kr−2

)
and y =

(
kr−2

)
, then x, y ∈

[V, λ, f, p]Z (∆r
v, q) , but x.y /∈ [V, λ, f, p]Z (∆r

v , q) . The other cases can be proved
on considering similar examples.
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4. THE SPACES OF CESÀRO SUMMABLE GENERALIZED DIFFERENCE SEQUENCES

In this section we compute Köthe-Toeplitz duals of the spaces of Cesàro summable
and strongly Cesàro summable difference sequences of order r.

We define the general sequence space X (∆r
v) as follows:

X (∆r
v) = {x ∈ w : (∆r

vx) ∈ X} ,

where r ∈ N and X is any sequence space.
It can be shown that the following inclusions are strict.

(i) (C, 1)0 (∆r
v) ⊂ (C, 1) (∆r

v) ⊂ (C, 1)∞ (∆r
v) ,

(ii) (C, 1)0 (∆r
v) ⊂ (C, 1)0

(
∆r+1

v

)
, (C, 1) (∆r

v) ⊂ (C, 1)
(
∆r+1

v

)
and (C, 1)∞

(∆r
v) ⊂ (C, 1)∞

(
∆r+1

v

)
,

(iii) c0 (∆r
v) ⊂ (C, 1)0 (∆r

v) , c (∆r
v) ⊂ (C, 1) (∆r

v) and �∞ (∆r
v) ⊂ (C, 1)∞ (∆r

v) .

Theorem 4.1. (C, 1)0 (∆r
v), (C, 1) (∆r

v) and (C, 1)∞ (∆r
v) are Banach spaces

normed by

‖x‖∆ =
r∑

i=1

|vixi|+ sup
n

∣∣∣∣∣ 1n
n∑

k=1

∆m
v xk

∣∣∣∣∣ ,
and [C, 1]0 (∆r

v) , [C, 1]1 (∆r
v) and [C, 1]∞ (∆r

v) are Banach spaces normed by

‖x‖∆′ =
r∑

i=1

|vixi| + sup
n

(
1
n

n∑
k=1

|∆r
vxk|

)
,

where vk �= 0 for each k ∈ N.

Proof. Proof follows from Theorem 2.8.

Let us define the operator D : X (∆r
v) → X (∆r

v) by Dx = (0, 0, ..., 0, xm+1,
xm+2, ...), where x = (x1, x2, x3...). It is trivial that D is a linear operator on
X (∆r

v) . Furthermore, the set

D [X (∆r
v)] = DX (∆r

v) = {x = (xk) : x ∈ X (∆r
v) , x1 = x2 = ... = xm = 0}

is a subspace of X (∆r
v) . The operator ∆r

v : DX (∆r
v) → X defined by ∆r

vx =
y = (∆r

vxk) is bijective (one to one and onto).
Let X stand for (C, 1)0, (C, 1), (C, 1)∞ , [C, 1]0 , [C, 1]1 and [C, 1]∞ and

r ∈ N. Now we will compute Köthe-Toeplitz duals of the sequence spaces X (∆r
v) .

For this we need the following lemma.
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Lemma 4.2.
(i) x ∈ D (C, 1)∞ (∆r

v) implies supk k−r |vkxk| < ∞ for all r ∈ N,

(ii) There exist positive constants K 1 and K2 such that K1k
r ≤ (r+k

k

) ≤ K2k
r,

k = 1, 2, ...,

(iii)
k∑

j=0

(
r+j−1

j

)
=
(
k+r

r

)
=
(
r+k
k

)
.

Proof. Omitted.

Lemma 4.3. Let r be a positive integer. Then

(D (C, 1)∞ (∆r
v))

α = U1, where U1 =

{
a ∈ w :

∞∑
k=1

kr
∣∣v−1

k ak

∣∣ < ∞
}

.

Proof. This can be proved by the same technique of Lemma 2.7 of Et and
Colak [6].

Remark 4. Let r be a positive integer. Then (D(C, 1)∞(∆r
v))

α = ((C, 1)∞
(∆r

v))α.

Theorem 4.4. Let r be a positive integer. Then

(i) ((C, 1)0 (∆r
v))

α = ((C, 1) (∆r
v))

α = U1,

(ii) ((C, 1)0 (∆r
v))

αα = ((C, 1) (∆r
v))

αα = ((C, 1)∞ (∆r
v))

αα = U2.

where U2 =
{
a ∈ w : supk≥1 k−r |akvk| < ∞} .

Proof. (i) Since ((C, 1)∞ (∆r
v))

α = U1 and (C, 1)0 (∆r
v) ⊂ (C, 1) (∆r

v) ⊂
(C, 1)∞ (∆r

v) , we have U1⊂((C, 1)∞ (∆r
v))

α⊂((C, 1) (∆r
v))

α⊂((C, 1)o (∆r
v))

α .

Conversely, let a /∈ U1. By Lemma 4.2 (ii), we can choose a sequence (k (i))
of integers, 0 = k (0) < k (1) < . . . , such that

k(i+1)−1∑
k=k(i)

∣∣v−1
k ak

∣∣ (r+k
k

) ≥ i + 1 (i = 0, 1, . . .) .

Define a sequence x = (xk) as follows:

xk = v−1
k


 i−1∑

�=0

1
� + 1

k(�+1)−1∑
j=k(�)

(
r+k−j−1

k−j

)
+

1
i + 1

k∑
j=k(i)

(
r+k−j−1

k−j

) ,

(k (i) ≤ k ≤ k (i + 1) − 1; i = 0, 1, . . .) .
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Then x ∈ (C, 1)0 (∆r
v) . On the other hand we have

k(i+1)−1∑
k=k(i)

|akxk| ≥
k(i+1)−1∑
k=k(i)

∣∣v−1
k ak

∣∣ 1
i + 1

k∑
j=0

(
r+j−1

j

)

=
1

i + 1

k(i+1)−1∑
k=k(i)

∣∣v−1
k ak

∣∣ (r+k
k

) ≥ 1 (i = 0, 1, . . .) .

Thus a /∈ ((C, 1)0 (∆r
v))

α , and hence ((C, 1)0 (∆r
v))

α ⊂ U1. This completes the
proof.

(ii) Omitted.

Theorem 4.5. Let r be a positive integer. Then

(i) ([C, 1]0 (∆r
v))

α = ([C, 1]1 (∆r
v))

α = ([C, 1]∞ (∆r
v))

α = U1,

(ii) ([C, 1]0 (∆r
v))

αα = ([C, 1]1 (∆r
v))

αα = ([C, 1]∞ (∆r
v))

αα = U2.

The proof is similar to that of Theorem 4.4.

Corollary 4.6. The sequence spaces (C, 1)0 (∆r
v) , (C, 1) (∆r

v) , (C, 1)∞ (∆r
v) ,

[C, 1]0 (∆r
v), [C, 1]1 (∆r

v) and [C, 1]∞ (∆r
v) are not perfect.

Theorem 4.7. Let r be a positive integer. Then �∞ (∆r
v) ∩ S (∆r

v) ⊂
(C, 1) (∆r

v) .

Proof. Omitted.
The converse of Therem 4.7 does not hold, for example the sequence x =

(0,−1,−1,−2,−2,−3,−3, ...) belongs to (C, 1) (∆v) and does not belong to S (∆v)
for v = (1, 1, 1, ...).

The proof of the following theorem is a routine work, therefore we give it
without proof.

Theorem 4.8. Let u = (uk) and v = (vk) be any fixed sequences of nonzero
complex numbers, then

(i) If supk kr
∣∣v−1

k uk

∣∣ < ∞ , then (C, 1)∞ (∆r
v) ⊂ (C, 1)∞ (∆r

u) and [C, 1]∞ (∆r
v) ⊂

[C, 1]∞ (∆r
u)

(ii) If kr
∣∣v−1

k uk

∣∣→ L (k → ∞) , then (C, 1) (∆r
v) ⊂ (C, 1) (∆r

u) and [C, 1] (∆r
v) ⊂

[C, 1] (∆r
u)

(iii) If kr
∣∣v−1

k uk

∣∣→ 0 (k → ∞) , then (C, 1)0 (∆r
v) ⊂ (C, 1)0 (∆r

u) and [C, 1]0 (∆r
v) ⊂

[C, 1]0 (∆r
u)
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If we take u = (1, 1, 1, ...) and v = (1, 1, 1, ...) in the last theorem, then we
have the following results.

Corollary 4.9.

(i) If supk kr
∣∣v−1

k

∣∣ < ∞ , then (C, 1)∞ (∆r
v) ⊂ (C, 1)∞ (∆r) and [C, 1]∞ (∆r

v)
⊂ [C, 1]∞ (∆r) ,

(ii) If kr
∣∣v−1

k

∣∣→ L (k → ∞) , then (C, 1) (∆r
v) ⊂ (C, 1) (∆r) and [C, 1] (∆r

v) ⊂
[C, 1] (∆r) ,

(iii) If kr
∣∣v−1

k

∣∣→ 0 (k → ∞) , then (C, 1)0 (∆r
v) ⊂ (C, 1)0 (∆r) and [C, 1]0 (∆r

v)
⊂ [C, 1]0 (∆r) .

Corollary 4.10.

(i) If supk kr |vk| < ∞ , then (C, 1)∞ (∆r) ⊂ (C, 1)∞ (∆r
v) and [C, 1]∞ (∆r) ⊂

[C, 1]∞ (∆r
v) ,

(ii) If kr |vk| → L (k → ∞) , then (C, 1) (∆r) ⊂ (C, 1) (∆r
v) and [C, 1] (∆r) ⊂

[C, 1] (∆r
v) ,

(iii) If kr |vk| → 0 (k → ∞) , then (C, 1)0 (∆r) ⊂ (C, 1)0 (∆r
v) and [C, 1]0 (∆r)

⊂ [C, 1]0 (∆r
v) .

5. PARTICULAR CASES

Firstly, we note that X (∆r) and X (∆r
v) overlap but one neither one contains

the other, where X is any sequence space. For example if we choose x = (kr) and
v = (k), then x ∈ [C, 1]∞ (∆r) , but x /∈ [C, 1]∞ (∆r

v) , conversely if we choose
x =

(
kr+1

)
and v =

(
k−1

)
, then x /∈ [C, 1]∞ (∆r) , but x ∈ [C, 1]∞ (∆r

v) .

Definition 3. Let X be any sequence space and v = (vk) be any sequence of
nonzero complex numbers. We say that the sequence space X (∆r) is v−invariant
if X (∆r

v) = X (∆r) .
Now there is an open problem for researchers. It may be investigated the con-

ditions of the sequence v = (vk) for which the equalities [V, λ, f, p]Z (∆r
v, q) =

[V, λ, f, p]Z (∆r, q) and Sλ (∆r
v , q) = Sλ (∆r, q) hold.

If one considers the sequence spaces

(i) [V, λ, f, p]Z (∆r, q) and Sλ (∆r, q) instead of [V, λ, f, p]Z (∆r
v, q) and Sλ

(∆r
v, q) ,

(ii) [V, λ, f, p]Z (∆r
v) and Sλ (∆r

v) instead of [V, λ, f, p]Z (∆r
v, q) and Sλ (∆r

v , q) ,
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(iii) [V, f, p]Z (∆r
v, q) and S (∆r

v , q) instead of [V, λ, f, p]Z (∆r
v, q) and Sλ (∆r

v , q) ,

most of the results which have been proved in the previous sections will be true for
these spaces as well.
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(1991), 41-52.
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Spaces of Cesàro Difference Sequences of Order r 879

18. E. Malkowsky and E. Savas, Some λ-sequence spaces defined by a modulus, Arch.
Math. (Brno), 36 (2000), 219-228.

19. Mursaleen, λ-statistical convergence, Math. Slovaca, 50 (2000), 111-115.

20. W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded,
Canad. J. Math., 25 (1973), 973-978.

21. T. Salát, On statistically convergent sequences of real numbers, Math. Slovaca, 30
(1980), 139-150.

22. A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics
Studies 85. Mathematical Notes, North-Holland Publishing Company, Amsterdam,
1984.

Mikail Et
Department of Mathematics,
Firat University,
TR-23119 Elaz1ğ,
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