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REGULARITY AND BLOW-UP CONSTANTS OF SOLUTIONS FOR
NONLINEAR DIFFERENTIAL EQUATION

Meng-Rong Li and Zing-Hung Lin

Abstract. In this paper we gain some results on the regularity and also the
blow-up rates and constants of solutions to the equation " — uw? = 0 under
some different situations. The blow-up rate and blow-up constant of «(2") are
(p—2n+2)and (+) (p—2n+2) '} (p—2i+2) (p— 2i + 1) E(0)"/?
respectively; blow-up rate and blow-up constant of «(>»*1) are (p — 2n + 1)
and (p—2n+2) T (p—2i+2)- (p—2i+1) E(0)’~" respectively, where
E(0) =/ (0)* — 2+u (0)"T,

T opHl

0. INTRODUCTION

In this paper, we deal with the estimate of blow-up rate and blow-up constant of
u(™ and the regularity of solutions for the nonlinear ordinary differential equation

(0.1) w —uP =0

where p > 1.

Our motivation on the problem is based on the studying properties of solutions
of the semi-linear wave equation Clu + f(u) = 0 [2, 3] with particular cases in zero
space dimension and the blow-up phenomena of the solution to equation (0.1) [4].

In this paper, if p = %, r € N, s € 2N + 1, (r,s) = 1 ( common factor ) we
say that p is odd (even respectively) if » is odd ( even, respectively ).

For p € Q and p > 1, the function «P is locally Lipschitz, therefore by stan-
dard theory for ordinary differential equation there exists exactly one local classical
solution to the equation (0.1) together with initial values u (0) = ug, ' (0) = u;.
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Notations and Fundamental Lemmata

For a given function « in this work we use the following abbreviations

2
p+1

_p—1

u (t)p+1 s Ju (t) = Oy (t) 4

ay (t) =u(t)*, By (t) = (t)* —

Definition. A function g : R — R has a blow-up rate » means that g exists
only in finite time, that is, there is a finite number 7" such that the following holds

li =0
A9 10
and there exists a non-zero 8 € R with
li T —t)"g(t) =
i ( ) g(t) =7,
in this case 3 is called the blow-up constant of g .

One can find the detail in [4] for the lemmas given as follows without rigorous
argumentations.

Lemma 1. Suppose that « is the solution of (0.1), then we have

(0'2) E (t)u = Ey (0) s
0.3) (p+3)d (t)2 = (p+ 1) B, (0) + dlt (1),
04) 7w =20 1 0F
and
2(ptl —1)? 2(pHl
(0.5) J, (t)2:J; (0)2_ @Eu (0) J, (0)% +%Eu (0) o (¢) ﬁ)

Lemma 2. Suppose that c; and ¢, are real constants and u € C2 (R) satisfies
the inequality
u + e’ Feu<0, u>0,

u(0) =0, «' (0) =0,

then w must be null, that is, « = 0.
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Lemma 3. If g(¢) and h (¢,r) are continuous with respect to their variables

g(t)
and the limit limt_,T/ h (t,r) dr exists, then
0

g9(t) 9(T)
tlirr% h(t,r)dr = / h(T,r)dr.
0 0

Lemma 4. If T is the life-span of v and u is the solution of the problem
(0.1) with E,, (0) < 0 and p > 1 then T is finite, that is, u is only a local solution
of (0.1). Further, for a, (0) > 0, we have the following estimates

-1

08 L= BOL0R < s 0 vizo

Ju(0)

-1
0.7) / dr P2 w0
k1 + E, (0) rke 2

Ju(t)

and Ju(0)
2 dr

0.8 T < T (ug, u1,p) = / .
(0.8) 1 (o, u1,p) p—1 b1+ By (0) 12

For a!, (0) < 0, there is a constant ¢ (ug, u1, p) such that

-1
Ju (1) = —p—\/k1 + By (0) Ju (8% ¥t >t (ug, u, p),
(0.9) 2

T (1) = 7%1\/k1 + Bl (0)Ju (0% Yt € [0, 0 (uo, u1, p)

and

Ju (0
p—1

)
dr _
vV k1+ E, (0) rk2 2

(t—to (ug, u1,p)) Vt>to (uo,u1,p),

(0.10) { 7+

Ju(to) d )
r p—
= to (uo, u1,p) .
/ ﬁl—i—Eu(O)r’@ 5 0(0 1p)
Ju (0)

Also we have

T < T3 (uo, u1,p)
k

k
2 / dr / dr
= +
p—1 9 k1 + By (0) rk2 ; k1 + E, (0) rk2

(0)

(0.11)
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p—1

2 2p+ 2 2 —1 \2t2

where k1 := ——, kg := and k= ———— .
L= o™ T <p—|—1Eu(0)>

Furthermore, if E, (0) =0 and a, (0) > 0, then

Ju (t) = Qy (0)_ 4= T U (0)_T_ Qy, (0) tv
(0.12) .
p+3 p—1, p—1
) =0 OFF (0,0 - 2 01)
for each ¢t > 0, and
. 4 ay(0)
. < = .
(0 13) T = T3 (u07 U1,p) p— 1 a’/u (0)

Lemma 5. If T s the life-span of v and u is the solution of the problem
(0.1) with £, (0) > 0, then T is finite; that is,  is only a local solution of (0.1).
If one of the following is valid

(i) a, (0)* > 4a, (0) E, (0) or
(ii) @, (0)* = 4a, (0) B, (0) and u; > 0 or
(iii) @/, (0)* = 4a, (0) B, (0), u; < 0 and p is odd.

Further, in case of (i), we have the estimate

Ju(0)

2 dr
0.14 T < Ty (ug,u1,p) = / )
014 i (o, w,p) = 5 k1 + By (0) k2
and
(0.15) a’ (0) > 0.
In the case of (ii), we have also

2 yi dr
0.16 T < T (ug, u1,p) = /
(010) 5 (uo,u1,) p=1J) ki + B, (0)r%

In case of (zi7), we get

2 T d
(0.17) T <7 (uo, ) =~ [ ’
0
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Lemma 6. Suppose that u is the solution of the problem (0.1) with one of the
following property

(i) By, (0) > 0, d, (0)* < 4a, (0) E, (0) or
(i) d, (0)* = 4a, (0) E, (0), u; < 0 and p is odd.
Then T}, given by

—u(Tp)

0.18) Ty (o, 1, p) = /

—ug

dr
VEO) 2 J(p+ 1)

where —u (Ty) = ((p + 1) E, (0) /2)Y®*V is the critical point of u, and uo must
be non-positive.

Remark. Under condition (i)uo must be negative and p must be even.
If w is the solution of the problem (0.1) with £, (0) = 0 and a!/, (0) = 0, then
u must be null.

Lemma 8. Suppose that  is the solution of the problem (0.1) with £/, (0) > 0
and one of the following holds

(i) a, (0)* < 4ay, (0) E, (0).

(ii) @, (0)* = 4ay, (0) B, (0) and u; < 0, p is even.

Then w possesses a critical point T (ug, u1, p) given by (0.18), provided condition
(ii) holds or condition (i) together with a’, (0) > 0 holds; and under (i), there
exists z < oo such that

a(z)=0.

For a’ (0) < 0, we have the null point (zero) z; of a,

4ay (0)
(P2 —1)Eu(0)

z1 (up, u1, p) = ~——x— Pl / dr
1 0, W1, )
2 2 — —1 2, p+1
V2 / \/ (p ) k3

and
T <T7 (up, u1,p) := 21 (uo, ur, p) + T5 (uo, u1,p).

p—1

4

where ks = <I%Eu (O))

Furthermore, we also have

(0.19) lim ay (t) (z1 — t) "2 = E, (0),

t—21
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limy ., (z1 — )" d' (t) = —2E (0),
(0.20) o
limy_,,, all (t) = 2E, (0),

u
and a,, (t) blows up at 77 (ug, u1,p) ; that is, lim;—7: 1/a, (t) = 0.

For a, (0) > 0, we have the null point z5 of a,

2o (ug, ut, p) =

and
T < T§ (uo, w1, p) := 22 (ug, u1, p) + Tg (uo, u1, ).

Furthermore, we also have

(0.21) Jimn ay () (22 (uo, ur,p) = ) = B, (0),
(0.22) Jlim (22 — )" ay, (1) = 2B, (0),

lim a), (t) = 2E, (0),

t—2o
and ay (t) blows up at T (uo, u1,p) ; that is, limy 7 ug,uy p) 1/au (t) = 0.
Further, under the condition (ii) , we have the null point z 3 (ug, u1, p) of a,

23 (ug, u1,p) = 2T¢ (uo, u1, p),
T S Ték (’U;Q,’U;l,p) = Zz3 (u07u17p) + T; (’U;Q,’U;l,]?)

and a,, (t) blows up at T (uo, u1, p). Furthermore we have

(0.23) Jimau (2) (23 (uo, w1, p) = 1) = Bu (0),
(0.24) lim (23 (ug,ur,p) — 1) " al, () = —2E, (0),

t—23(uo,u1,p)
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(0.25) tli)r% al (t) = 2E, (0).

In Section I, we consider the regularity of solution « of equation (1) for p € N
and gain the expansion of «(™) in terms of u(*), k < n; in section 11, we consider
the regularity of solution u as p € Q — N. In the last section, we study the blow-up
rates and blow-up constants of «(™) as ¢ approach to life-span 7* and null point
(zero) z under some situations.

1. REGULARITY OF SoLuTION TO THE EQuATION (0.1) witH p € N

In this section we study the regularity of the solution « of the nonlinear equation
(0.1) as p € N. First, we see that the well-defined function «? is locally Lipschitz,
hence we have the local existence and uniqueness of solution to the equation

u’ = uP,
(1.1) {
u (0) = ug, u' (0) = u;.

Therefore, we rewrite a, (t) = a(t), J,(t) = J(t) and E, (t) = E (t) for
convenience. Using (0.2) we have

(1.2) o (8) = E(0) +

1.1 Regularity of Solution to the Equation (1.1) with p € N
Now we consider problem (1.1) with p € N, we have the following results:

Theorem 1. If w is the solution of the problem (1.1) with the life-span 7" * and
p € N, then u € C?1(0,7%) for any ¢ € N and

[228]

(1.3 W) = 3 By O,
=0

Cno

7]
u(2n+1) — Z E, ;C, Z"U,C" i—lu/
(1.4) =0

Cno
p+1

_ E O, ZAuC’n i—1u/
=0
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for positive integer n, where [%} denotes the Gaussian integer number of %,

Cpi=Mm—1i)(p+1)—2n+1,
Oni=E,iCy i, Epo=1

and
E,n=0 —2 (C — 1) +1
n0 (n—1)0 1 (n—1)0
=F C |:—2 (C 1) + 1]
(n—1)0%“(n-1)0 1 (n—1)0 )

Enn-1) = On-1)(n-2) (Ctn-1)(n-2) = 1) £ (0)
= E-1)(n-2)Cin-1)(n-2) (Cln-1)(n—2) — 1) E(0),

Ent = On-1)(6-1) (Cln-1y(s-1) = 1) B (0)

2
O¢p— —— (Clppyp — 1 1
+ (n—1)k |:p+ 1 ( (n—1)k ) + :|

= E4-1)(6-1)Cln-1)(6-1) (Cn1)(5—1) — 1) E (0)

2
p+1

+ E-)kCin-1)k [ (Con1ye — 1) + 1] ;

for positive integer k and 0 < k < n.

Proof. Let v,, be the n-th derivative of v ; that is v, := u("), then vy = u”,
vo = u, v1 =, va = u’, v = («)°. To prove (1.3) we use mathematical

induction. When n = 1, we have

4
p+1

vy = E By ur i = Bigu® = of,
i=0

CQQZ(O—O)(p—f—l)—QXO—i-l:l, Clozp
and )
FE190 = EpoC —(Cpp — 1 1| =1.
10 00 00[p+1( 0o — 1) +

[CHQ
p+1 Chr i

Suppose va, = > ;0 } E,i-vy" ", neN. Then
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M}

=
E Cp i—1
=0

and

[

Qun}
vmiz= 3 BuiCoi (o T oat (Coi = 1R o).
=0

By (1.2) we obtain

(78]
p+1 5 o
i=0 p
7]
p+1
+ Z Onz(CnZ 1) E(O)’UC" i—2
i=0
(78]
p+1 9 . |
=2, Onic [m(Cm—l)Jrl] v "
=0
[74] )
+ Oni (Cpni—1)-E(0)v, (n+1)(i+1)
i=0
2 C(n+1)0
=Ouo- |7 (G =D + 1 vy

+ 0 (Cog — 1) B(O) 25
+Om - [L (Cn1 — 1)+ 1] vOC("“) !

C(n+1)2
+On1 . (Cnl — 1) . E(O) ,UO

2 o
0w [ ] o

p+1
C
o O, rew] (CR[% - 1) B0y, [P
pt+1 p+1

Hence

785
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Cn+1)0
P+l

Cn %
Uont2 = Z Emt1) Uo( o
i=0
(1.4).

which completes the induction procedures and we obtain (1.3). Using (1.3), we get
1.2. The Properties of u(™

[ ]
index p = 2.

Drawing the graphs of the «(™ is not easy, so in this section we choose a spacial
for the equation

(1.5)

We consider only on the properties of the solution  to the case that £ (0) = 0

5.
The solution of equation (1.5) can be solved explicitly

w(t) = —>

2
(V6 —1)
and this affords the graphs of «, «/, «”, v®and v bel
grapnhs ot u, w', w', u*>’and u elow.
200 . | i
| | | |
71504 III |I )
" L |
100 ] f L
_:"I LY
5l - - d ll.l\"\. \x
e e g .
o — o il = S e i
a 1 2 E = 4
530} - 1
'
100 Ciraphs of a in solid, &' indash, " in dofs.
Y 20 fT ; HII' \ 1
sl ! [ 1
F \ 1
10E i %
"
50- F Ay //
" _,_,-"-
o —— i
o 1.5 258
gilE
100

.75
e
Giraphs of " in solid, " in dash, 0 in dots

8
Fig. 1.5.
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With the help of graphing with maple we find that the n-th derivative «(™ is
smooth and that the blow-up rate of «(™ is increasing in n. Here we do not give
rigorous proof, we will illustrate this in section IlI.

2. REGULARITY OF SOLUTION TO THE EQUATION (0.1) witTH p € Q — N

According to the preceding section we obtain the solution v € C? (0, T') of (0.1)
with p € N for any ¢ € N. In this section we consider the equation of (0.1) with

peQ—N.

Except the null points (zeros) of «, «(? are also differentiable for any ¢ € N.
We have

Theorem 2. If w is the solution of the problem (0.1) withp e Q = N, p > 1
and the followings do not hold

(i) a' (0)* < 4a (0) E(0), E(0) >0,
(ii) o' (0)* =4a (0)E(0), E(0)>0 and u; <0, p is even,
then w € C7(0,T) for any g € N. Further, we have

n—1
(2.1) u® = 3" B, O
=0

and

n—1
w@ntl)  — ZE” Ch Z"LLC" =Ly
=0
(2.2) =0
= ZO” alr iy
=0

Proof. Same as the procedures given in the proof of Theorem 1, to prove (2.1)
and (2.2) by mathematical induction. If ¢, is the null (zero) point of u, then

limt_,to ’Ll,c" i (to)_l =0

for i > Mflﬁ = %i% since that C,, ; < 0, for i > =2, By lemma 8 we know
that u possesses the null point (zero) only in the case (:iy) or (ii). Hence, we obtain

the assertions by Theorem 1.
Similarly, by the same arguments above, we have also a result as following:

Theorem 3. If w is the solution of the problem (0.1) withp e Q = N, p > 1
and one of the followings holds
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(i) a' (0)* < 4a (0)E(0), E(0) >0
(i4) a' (0)* = 4a (0) E (0), E (0) > Oandu; < 0, p is even.

Then u € CPH2 (0, T), where [p] mean that Gaussian integer number of p.
Further, we have

n—1
; p
(2.3) u® = Zg E, ufn i, forn< [5} +1
=

and

n—1
A
=0
n—1
(2.4) =30, W T, forn < [g} 1
=0

Proof. Same as the proof of Theorem 1, we obtain also the identities (2.3) and
(2.4).

By lemma 8, we know that u possesses the null point (zero) in the case (i)
or (ii). (Figure 2.1) If ¢, is the null point of w then lim; ., u™ i (t) = 0 for
Cy i < 0. Hence, in the case of (i) or (ii), we should find the range of n with
Cni>0asi=n~—1,and then u(2") exists only in such situation.

Here

Crhi=@p@+1)(n—1i)—2n+1.

Let
Conty = (p+1) (= (n—1)) =20 +1 >0,

then we get n < & + 1. Since n is an integer, we have n < [5] + 1.
Now u(2") exists for n < [2] + 1 in the case (i) or (ii); thus we obtain that
u e CPH2(0.7).

Example 2.1. To draw the graphs of «(™ for p € Q — N is not easy, so we
choose a special index p = <.

We consider on the properties of the solution u to the case that £ (0) > 0 for
the equation

W = u%
(2.5) { ’
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u au+d

1.28 28 175
CGraph of g, 57 = 2, p() = <1, w0} = 1

789

L=

an+

u 1 5==g
1 25+l
1a+d
T Geeid
Sa+d
2Be+a
E i i i i
o 128 28 a7
Graph of i, 4" = ', p(0) = -1, g0} = -]
i 9B
1 FEaaT]
TmaT]
T Hesll
G+
2 Gath
; ; 0 i
-8 28 o 15
Graph of w, 0" = o=, w0} = 0, w05 = -1
Fig. 2.1.
107 Jr
7.51

Fig. 2.2. Graphs of u in solid, v’ in dash, " in dots.
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Because the solution of equation (2.5) can not be solved explicitly, we solve
this ode numerically and obtain the graphs of u, «/, v”, u®® «* and «(®) below
by Maple.

BOOT | f

¥ |
i f I
anot ) ; /
f
[
i #
00T r ll-.,-'
200+ _‘-"‘ ."'f.
a R
] d.5 1 1.5

Fig. 2.3. Graphs of «(®) in solid, »*) in dash, «(>) in dots.

By Theorem 3, we know that v € C* (0, 7). With the help of graph with maple, we
find the ¢ty ~ 1.4 of the null point of « (Figure 2.2) and the »(®) is close in infinite as ¢
approach to 1.4 (Figure 2.3) . Hence we know that «(®) (¢) does not exist for ¢ = t, by the
graph. The blow-up rate of «(") is increasing in n. 1t will be illustrate in the next section .

3. THE BLOW-UP RATE AND BLOW-UP CONSTANT

Finding out the blow-up rate and blow-up constant of (™) of the equation (0.1) given
as follows is our main result, we have the following results:

Theorem 4. If v is the solution of the problem (0.1) with one of the following
properties that

(1) E(0)<O0or

(4) E(0)=0, o’ (0)>0o0r

(iii) E(0) >0, a’ (0)> > 4a (0) E(0) 0

(iv) E(0)>0, a (0)° =4a(0)E(0), u; >0 or

() E(0)>0, @ (0)> =4a(0) E(0), u; <0 and p is odd.
Then the blow-up rate of u™) is -5 + 2n, and the blow-up constant of u ") is |E,,

p%l—i-Qn
<7V2p‘_’°1+”> that is, for n € N, m € {1,2,3,4,5,6}
thr%l* uC (T3, — )7 "

(3.1)

p—1

21 +2n
= (1) Cno E.o (72(134_1)) = Ko,
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The blow-up rate of «®"*1 js =27 +2n + 1, and the blow-up constant of unth) s
2o 42n+1
o [ \/2(P+1) \ P!
EnOCnO I%( p(—l )>

lim w@ D) (T3, — )71 72"

; thatis, forn e N, m € {1, 2,3,4, 5,6}

t—»Tw’:

(3.2) 2 4on41
n V2(P+1) \?

= (£)7° EnoCno .l (%) 1= Kon1
where

Cho = (p—l)n+1,

21"+ (p—1)i )
1
Eno = I}, | +(p-1it+1].

Proof. Under condition (i), £ (0) < 0, &’ (0) > 0 by (0.7) and (0.8), we obtain that

J(t)
1 d —1
(3.3) / ” . _ vt > 0.
T1 —t k1+E(0)7“k2 2

Using lemma 3 and (3.3) we have

in other words,

(3.4) lne—ry a (t) (77 — )77 = ((p - 12) \/H> B
and then
(3.5) limgrg w (0) (T =77 = ((p—lﬁ> -

Here Cp, i =p+(n—1—1i)(p+1)—2(n—1), hence we have C,, ; > C,, j asi < j.

By (2.1) and (3.5), we obtain

limy 7y e (17 — t)"QTl XCno

2

= (£1)7"° By <m> 727 %Cno |
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Since I% x Cpo = I% +2nand ky = I% so we get (3.1) for m = 1.

By (0.6), we find that

. p—1
o0 RGeS
and
2\/5 . % _4 —%—1 . . 4 U p43
I (e 75 ~0)7) i o’ (1) (7 =) 7T
Together (3.4) and (2.2) we obtain that
241 \/— 2 e tl

(3.7) lim o () (TF — )71 = +/k; (7)

Jim o (1) (T — 1) P
and

lim ’U,(2n+1) (T* _ t)p%lcm)—f—l

t—T; 1

n—1 ,
= thr;l* En LCrL LUCW i—1 U,I . (Tl* _ t)p—lcn()—f—l
o 1=0

2
i E - =7 1
= hm TLOCnOU/CWO 1 . U,I . (Tl* _ t) pflcm-f—
t—=TY

2 _ 2
= lm EuoCpouC0™t - (TF — )7 1m0~ oo/ (T — )71
t—Ty

2 ﬁcnﬂ‘f‘l
= lim (£)9"° EnoCroVki [ ——m= ;
gy (£ BnoCg kl(@—wa) ’

thus (3.2) for m = 1 is proved.
For E(0) < 0, ¢’/ (0) < 0, by (0.10) we have
J(t)
dr p—1

3.8 = Yt > tp.
(3.8) (Ty —t)\/k1+ E(0) rk= 2 0

Using lemma 3, (3.8) and (2.1), therefore we gain the estimate (3.1) for m = 2, and
by (0.9) we get the estimate (3.2) for m = 2. (see appendix A.2)

Under (ii), £(0) =0, a’ (0) > 0, inducing (0.12), we have

4

(3.9) a(t) = a(0)FT (1%1@' (0) (T — t)> oo

In view of (3.9) and (2.1), we get the estimate (3.1) for m = 3.
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Using (0.12), we also obtain

and

-1 _p—i_
b a(0)" T '

lim a ()T 'd (1) = —
. a (¢) a’(t) 2

By (3.9) and (2.2), the estimate (3.2) for m = 3 is completely proved.
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Under (iii) or (iv) or (v), the proofs of estimates (3.1) and (3.2) for m = 4,5,6 are

similar to the above arguments, we omit the argumentations.

Theorem 5. Suppose that « is the solution of the problem (0.1) with £ (0) > 0 and

one of the following properties holds

(i) @’ (0)* < 4a (0) E (0) and o’ (0) < 0.

(i) a’ (0)* < 4a (0) E (0) and a’ (0) > 0.

(iii) @’ (0)* = 4a (0) E (0) and u; < 0, p is even. Then we have

(3.10) lim wC™ (1) (2 — )70 = ()0 By B (0)
and

@11 Jlim wC (1) (2 — 1) = By Oy B (0) T

for n € N, m € {1, 2,3}, where z,, is the null point (zero) of « and

Cn(n—l) =p—2n+2,

En(n—l) = 1T

K2

Proof. Under (i) using (0.19) and (0.20) we get

1

=

(3.12) lime,,, u(t)(z1 — )" =£E(0)
and
(3.13) limys, @/ (t) (21 — £) " = FE(0)2 .
By (2.1) and (3.12) we obtain that
limy ., u®™) (21 — t)" -0
n—1
= limy ., Z Ep uC i (2 — t)_c"("*”
=0

. —C
= limy_,, En(n_l)ucn("’l) (21 - t) nin=1)

Cn(n—l)

= (£1) " By E(0)” 7

i p—2i+2)(p—2i+1)E0)"".

Cn(n—l)

2
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Therefore, (3.10) for m = 1 is proved.

From (2.2), (3.12) and (3.13), we obtain

) , - 1
limy_, ., w2t (z1 — 1) Cnn-n+
n—1
. — —-C 1
= hHlt_,Z1 E E,,”-C’,,Liucm lu' (21 — t) n(n-1)F
1=0

. Crn_1y—1,7 —Chn-1t1
:hmt—>21 E’n(n—l)cn(n—l)u nn=h Ty (Zl _t) nnmh

) |

= E'rL('rL—l)Cn(n—l)E (0

Thus, (3.11) for m = 1 is obtained.
Under the (ii) or (iii), the proofs of estimations (3.10) and (3.11) for m = 2,3 are
similar to the above arguments, we do not bother them again.

Appendix Proof of Theorem 4

A.l Lemma
J(t)
1 dr p—1
. L = b= >
Lemma Al. If / Ry 5 for each t > 0, then
0
i 1 J(@) p—1
1My 7+ = .
T e T — ¢ 2
Proof. Letr = (T* —t) s, then using lemma 3, we conclude
J(t)
(T*—1)
. ds
limy 7~
| Verroa o
limy_, = %
1 1 J@®
fkl t—T Tﬁ T _1

(=)

A.2. Lemma
Lemma A2. If u is the solution of the problem (0.1) with £ (0) < 0 and a’ (0) < 0,
then (3.1) and (3.2) hold for m = 2.

Proof. By lemma Al.
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