TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 3, pp. 713-722, March 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON GEOMETRIC AND TOPOLOGICAL PROPERTIES OF THE CLASSES OF HEREDITARILY ℓ_p BANACH SPACES

Parviz Azimi

Abstract. A class of hereditarily ℓ_p $(1 \le p < \infty)$ Banach sequence spaces is constructed and denoted by $X_{\alpha,p}$. Any constructed space is a dual space. We show that (i) the predual of any member X of the class of $X_{\alpha,1}$ contains asymptotically isometric copies of c_0 .(ii) Every infinite dimensional subspace of X contains asymptotically isometric complemented copies of ℓ_1 , and consequently, the dual X* of X contains subspaces isometrically isomorphic to $C[0,1]^*$. (iii) Every member of the class of $X_{\alpha,p}$ $(1 \le p < \infty)$ fails the Dunford-Pettis property. (iv) We observe that all $X_{\alpha,p}$ spaces are Banach spaces without unconditional basis but all constructed spaces contain a subspace which is weakly sequentially complete with an unconditional basis which is weakly null sequence but not in norm. (v) All spaces have asymptoticnorming and Kadec-Klee property. The predual of any $X_{\alpha,p}$ is an Asplund space.

1. INTRODUCTION

S. Chen and B.-L. Lin [4] proved that a Banach space contains an asymptotically isometric copy of ℓ_1 if its dual space contains an isometric copy of ℓ_{∞} , and if a Banach space contains an asymptotically isometric copy of ϵ_0 , then its dual space contains an asymptotically isometric copy of ℓ_1 .

J. Dilworth, M. Girardi and J. Hagler [7] have shown that a Banach space contains asymptotically isometric copies of ℓ_1 if and only if its dual space contains an isometric copy of L_1 . In [3] a class of hereditarily ℓ_1 Banach space failing the Schur property was studied. Hagler in an unpublished result showed that all of the spaces contain ℓ_1 hereditarily complemented, and their predual contains many subspaces

Received December 2, 2003; accepted July 27, 2004.

Communicated by Bor-Luh Lin.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B04; secondary 46B20.

Key words and phrases: Banach spaces, Asymptotically isometric copies of c_0 , Asymptotically isometric copies of ℓ_1 .

isomorphic to c_0 [8]. In this paper we study further properties of the spaces. In particular, we prove that the predual of any member X of this class contains asymptotically isometric copies of c_0 and consequently X contains asymptotically isometric copies of ℓ_1 .

The Banach spaces of this class was extended to the $X_{\alpha,p}$ spaces. Let X denote a specific $X_{\alpha,p}$ space, then X contains ℓ_p hereditarily complemented $(1 \le p < \infty)$ [2]. Every member X fails the Dunford-Pettis property. We also observe that all constructed spaces have asymptotic-norming and Kadec-Klee property. Since any $X_{\alpha,p}$ is a dual space, it follows that the Banach space Y the predual of any $X_{\alpha,p}$ is an Asplund space. The $X_{\alpha,p}$ spaces for p > 1 contain reflexive subspaces which are weakly sequentially complete with unconditional basis. Excellent sources of information on the asymptotic-norming property of Banach spaces are [9, 10, 12].

A Banach space X is said to be an Asplund space if every convex subset of X is Frechet differentiable at all points of a dense G_{δ} subset of its domain.

It is known that a Banach space X is an Asplund space if and only if X^* has the Radon-Nikodym property if and only if every separable subspace of X has a separable dual [1, 14, 15]. We observe that the predual of any $X_{\alpha,p}$ is an Asplund space.

The author would like to thank the referee for clarification of some arguments, and valuable remarks. Especially for helpful comments, and a number of corrections. Now we go through the construction of the spaces.

A block F is an interval (finite or infinite) of integers. For any block F, and $x = (t_1, t_2, \ldots)$ a finitely non-zero sequence of scalars, we let $\langle x, F \rangle = \sum_{j \in F} t_j$. A sequence of blocks F_1, F_2, \ldots is admissible if $\max F_i < \min F_{i+1}$ for each *i*. Finally, let $1 = \alpha_1 \ge \alpha_2 \ge \alpha_3 \ge \ldots$ be a sequence of real numbers with $\lim_{i\to\infty} \alpha_i = 0$ and $\sum_{i=1}^{\infty} \alpha_i = \infty$.

We now define a norm which uses the α_i 's and admissible sequence of blocks in its definition. Let $1 \le p < \infty$ and $x = (t_1, t_2, \ldots)$ be finitely non-zero sequence of reals. Define

$$||x|| = \max\left[\sum_{i=1}^{n} \alpha_i |\langle x, F_i \rangle|^p\right]^{\frac{1}{p}}$$

where the max is taken over all n, and admissible sequences F_1, F_2, \ldots . The Banach space $X_{\alpha,p}$ is the completion of the finitely non-zero sequences of scalars in this norm.

2. DEFINITIONS AND NOTATION

Definitions and notation are standard, but we give some of these here.

The dual space of X is denoted by X^* . A subspace Y of X is complemented in X if there is a projection $P: X \to X$ such that P(X) = Y and $||P|| < \infty$. On Geometric and Topological Properties of the Classes of Hereditarily & Banach Spaces 715

Let ℓ_1 be the space of absolutely summable sequences and L_1 the space of Lebesgue-integrable functions on [0, 1]. c_0 is the space of all null sequences x = (t_1, t_2, \ldots) with $||x|| = \max_n |t_n|$.

A Banach space X is called hereditarily ℓ_1 if every infinite dimensional subspace of X contains a subspace isomorphic to ℓ_1 .

Definition 2.1. Let X be a Banach space. We say that X contains asymptotically isometric copies of ℓ_1 if for some sequence $\lambda_0 < \lambda_1 < \dots$ with $\lim_n \lambda_n = 1$, there is sequence (x_n) in X such that for all m and scalars $(t_n : 0 \le n \le m)$

$$\sum_{n=0}^{m} \lambda_n |t_n| \le \|\sum_{n=0}^{m} t_n x_n\| \le \sum_{n=0}^{m} |t_n|$$

X contains asymptotically isometric copy of a_0 if

$$\max_{i} \lambda_{i} |t_{i}| \le \|\sum_{n=0}^{m} t_{n} x_{n}\| \le \max_{i} |t_{i}|$$

Definition 2.2. A Banach space X is said to have the Dunford-Pettis property (DPP) if for every weakly null sequences (x_n) in X and (x_n^*) in X^* , then $\lim_{n} x_n^* \left(x_n \right) = 0.$

Definition 2.3. An infinite-dimensional Banach space X is said to be prime if every infinite-dimensional complemented subspace of X is isomorphic to X.

It is known that c_0 , ℓ_p , $1 \le p < \infty$ and ℓ_∞ are prime.

3. The Results

The key to the analysis of the space X is via the following result(lemma 4 of [3]).

Lemma 3.1. Let the sequence (α_i) be as above, let N > 0 be an integer and let $\varepsilon > 0$. Then there exist a $\delta > 0$ such that, if b_1, b_2, \ldots, b_n are ≥ 0 , $b_i < \delta$ for all *i*, and $\sum_{i=1}^{n} \alpha_i b_i = 1$, then $\sum_{i=1}^{n} \alpha_{i+N} b_i \ge 1 - \varepsilon$. The following summarize the main result of [2]. Let (e_i) denote the sequence

of usual unit vectors in $X_{\alpha,p}$, $e_i(j) = \delta_{ij}$.

Theorem 3.2. Let $X_{\alpha,p}$ denote a specific space of the class, we have the following:

(1) $X_{\alpha,p}$ is hereditarily complementably ℓ_p .

Parviz Azimi

- (2) The sequence (e_i) is a normalized boundedly complete bases for $X_{\alpha,p}$. Thus, $X_{\alpha,p}$ is a dual space.
- (3) The predual of $X_{\alpha,p}$ contains complemented subspaces isomorphic to ℓ_q where $\frac{1}{p} + \frac{1}{q} = 1$.
- (4) $X_{\alpha,p}$ spaces have some other properties similar to [3], which we state some of them here.
 - (a) Each complemented non weakly sequentially complete subspace of $X_{\alpha,p}$ contains a complemented isomorph of $X_{\alpha,p}$.
 - (b) $X_{\alpha,p}$ and $X_{\beta,p}$ are isomorphic if and only if they are equal as sets.
 - (c) The sequence (x_n) with $x_n = e_{2n-1} e_{2n}$ is weakly null sequence in $X_{\alpha,p}$ but not in norm.
 - Since $X_{\alpha,p}$ contains ℓ_p hereditarily complementably, thus, (d) $X_{\alpha,p}$ spaces are not prime.
 - Since for p > 1, $X_{\alpha,p}$ does not contain ℓ_1 and is not reflexive,
 - (e) $X_{\alpha,p}$ is a Banach space without unconditional basis.

Remark 3.3. Let (f_i) in X^* be the biorthogonal sequence to the usual basis (e_i) in X, and let Y be the subspace of X^* generated by the sequence (f_i) . Theorem 3.2(2) and well known result [13](proposition 1.b.4 page 9) show that $X = Y^*$. For p = 1, Hagler proved that Y contains many subspaces isomorphic to c_0 . For p > 1, Theorem 3.2(3) shows that Y contains complemented subspaces isomorphic to ℓ_q where $\frac{1}{p} + \frac{1}{q} = 1$.

There are a number of possible future directions that one might take in studying further the structure of the space Y. We list two of them:

- (1) For p = 1, is Y hereditarily c_0 ?
- (2) For p > 1, is Y hereditarily complementably ℓ_q ?

Theorem 3.4. The predual of $X_{\alpha,1}$ contains asymptotically isometric copies of c_0 .

Proof. Let V be an infinite dimensional subspace of $X_{\alpha,1}$. The proof of Theorem 1.(1) in [3] shows that we may assume the following:

There exist sequences (v_i) in V, (n_i) of integers, and $\delta_i > 0$ satisfying

- 1. $||v_i|| = 1$ for all *i*.
- 2. Put $N_i = n_1 + n_2 + \ldots + n_{i-1}$ for i > 1 and $N_1 = 0$. Then δ_i satisfies Lemma 3.1 for $\varepsilon_i < \varepsilon_{i-1} < \ldots < 1$ and $N = N_i$.
- 3. For each block F and i, $|\langle v_i, F \rangle| \leq \delta_i$.
- 4. For each *i*, there is a sequence of admissible blocks $F_1^i, F_2^i, \ldots, F_{n_i}^i$ with

On Geometric and Topological Properties of the Classes of Hereditarily ${{\it f}}_{{\it p}}$ Banach Spaces 717

- (a) $\max F_{n_i}^i < \min F_1^{i+1}$ for each i(b) $\sum_{j=1}^{n_i} \alpha_j |\langle v_i, F_j^i \rangle| = 1.$
- (c) $\langle v_k, F_j^i \rangle = 0$ if $k \neq i$.

A trivial modification $(1 - \varepsilon_i, i = 1, 2, ...$ instead of 1/2) in proof of theorem 1.(1) in [3] shows that

$$\begin{aligned} \|\sum_{i=1}^{n} t_{i} v_{i}\| &\geq \sum_{i=1}^{n} \sum_{j=1}^{n_{i}} \alpha_{j+N_{i}} |\langle \sum_{k=1}^{n} t_{k} v_{k}, F_{j}^{i} \rangle| \\ &= \sum_{i=1}^{n} |t_{i}| \sum_{j=1}^{n_{i}} \alpha_{j+N_{i}} |\langle v_{i}, F_{j}^{i} \rangle| \\ &\geq \sum_{i=1}^{n} (1-\varepsilon_{i}) |t_{i}| \end{aligned}$$

for any n, and scalars $t_1, t_2, \ldots t_n$. Let $\phi_i \in X^*_{\alpha,1}$ be defined by

$$\phi_i(x) = \sum_{j=1}^{n_i} \varepsilon_j^i \alpha_{j+N_i} \langle x, F_j^i \rangle$$

where $\varepsilon_{j}^{i} = sgn\left(\langle v_{i}, F_{j}^{i} \rangle\right)$ for each j and i. Properties (1-4) for the v_i s imply that

$$\phi_i(v_i) = \sum_{j=1}^{n_i} \varepsilon_j^i \alpha_{j+N_i} \langle v_i, F_j^i \rangle$$

$$= \sum_{j=1}^{n_i} \alpha_{j+N_i} |\langle v_i, F_j^i \rangle|$$

$$\geq (1 - \varepsilon_i) \sum_{j=1}^{n_i} \alpha_j |\langle v_i, F_j^i \rangle|$$

$$= 1 - \varepsilon_i$$

for each i and $\phi_i(v_j) = 0$ for $i \neq j$.

Let n, and scalars t_1, \ldots, t_n be given. Since $||v_i|| = 1$ for all i and

$$\left|\sum_{i=1}^{n} t_{i}\phi_{i}\left(v_{j}\right)\right| \geq \left(1-\varepsilon_{j}\right)\left|t_{j}\right|.$$

This implies that

$$\left\|\sum_{i=1}^{n} t_{i}\phi_{i}\right\| \geq \max_{j} \left(1-\varepsilon_{j}\right) |t_{j}|.$$

Now by definition of ϕ_i , for each $x \in X$, $\sum_i |\phi_i(x)| \le ||x||$. So if ||x|| = 1,

$$|\sum_{i=1}^{n} t_{i}\phi_{i}(x)| \leq \sum_{i=1}^{n} |t_{i}||\phi_{i}(x)|$$
$$\leq (\max_{i} |t_{i}|) \left(\sum_{i=1}^{n} |\phi_{i}(x)|\right)$$
$$\leq \max_{i} |t_{i}|.$$

Taking sup over all ||x|| = 1 shows that

$$\left\|\sum_{i=1}^{n} t_i \phi_i\right\| \le \max_i |t_i|.$$

Let $X = Y^*$ then clearly each $\phi_i \in Y$ (remark 3.3) and therefore X contains asymptotically isometric copies of c_0 .

Theorem 3.4 and theorem 5 of [4] have the following consequence.

Theorem 3.5. The Banach space $X_{\alpha,1}$ contains asymptotically isometric copies of ℓ_1 .

The following Theorem is an immediate consequence of theorem 2 of [7] and corollary 3.5.

Theorem 3.6.

- (i) The dual $X_{\alpha,1}^*$ of $X_{\alpha,1}$ contains subspaces isometrically isomorphic to $C[0,1]^*$,
- (*ii*) $C(\Delta)$ is isometric to a quotient space of $X_{\alpha,1}$ where Δ is the Cantor set and
- (*iii*) L_1 is linearly isometric to a subspace of $X_{\alpha,1}^*$.

Definition 3.7. A norming set for a Banach space X is defined to be a subset ϕ of the unit ball of X^* such that, for each $x \in X$,

$$||x|| = \sup \left\{ \varphi \left(x \right) : \varphi \in \phi \right\}.$$

The next definition make use of a convergence criteria for a bounded sequence (x_i) in a Banach space.

718

On Geometric and Topological Properties of the Classes of Hereditarily & Banach Spaces 719

Definition 3.8. A Banach space X have the asymptotic-norming property (ANP) if it has an equivalent norm for which there is a norming set ϕ which has the property that the sequence (x_n) converges strongly if $||x_n|| = 1$ for each n and (x_n) is asymptotically normed by ϕ , meaning that, for each positive ε , there exist $\varphi \in \phi$ and N such that

$$\varphi(x_n) > 1 - \varepsilon$$
 if $n > N$

The following theorem which is from [12] is essential in this study.

Theorem 3.9.

- (i) If X^* is separable and also is a dual of a Banach space X, then X^* has ANP.
- (*ii*) There is a separable Banach space that has ANP and is not isomorphic to any subspace of a separable dual.
- (iii) If a Banach space X has ANP, then X has RNP.

It is not known whether RNP implies ANP, even for Banach spaces that are dual.

Definition 3.10. A Banach space is said to have Kadec-Klee property if (x_n) converges strongly to x whenever (x_n) converges weakly to x and $||x|| = ||x_n||$ for each n.

The following result of Stegall shows that Y the predual of any $X_{\alpha,p}$ is an Asplund space [15].

Theorem 3.11. If X^* has the Radon-Nikodym property then X is an Asplund space.

Theorems 3.9, 3.11 and theorem 3.1 of [12] imply that,

Theorem 3.12. Let X be a member of the class of $X_{\alpha,p}$ spaces then X has the following properties.

- 1. *X* has asymptotic-norming property.
- 2. X has Kadec-Klee property.
- 3. Banach space Y the predual of X is an Asplund space.

Remark 3.13. A subspace W of the dual of a Banach space has the w^* -Kadec-Klee property (w^* -KK property) if (w_i) in W converges strongly to w whenever $w \in W$, $||w|| = ||w_i||$ for each i, and w is the w^* -limit of (w_i). Since X is the separable dual of a Banach space Y it follows from results of Davis and Johnson [5] that Y can be given an equivalent norm for which X then has w^* -KK property.

Before we go through the proof of theorem 3.15 we prove the following lemma.

Lemma 3.14. Let (x_n) be a sequence of vectors in a Banach space X, such that for every increasing sequence, (n_k) of integers,

$$\lim_{k \to \infty} \frac{\|x_{n_1} + x_{n_2} + \ldots + x_k\|}{k} = 0$$

then $x_n \rightarrow 0$ weakly.

Proof. If this is not true, then there exit $f \in X^*$ with $||f|| = 1, \delta > 0$ and a sequence (n_i) of integers such that $f(x_{n_i}) \ge \delta$. This implies that $\sum_{i=1}^k f(x_{n_i}) \ge k\delta$. Therefore,

$$\frac{\left\|\sum_{i=1}^{k} x_{n_{i}}\right\|}{k} \ge \frac{\sum_{i=1}^{n} f(x_{n_{i}})}{k} \ge \delta$$

which is a contradiction.

Lemma 3.15. The Banach spaces $X_{\alpha,p}$ $(1 \le p < \infty)$ fail the DPP.

Proof. Let $u_i = e_{2i} - e_{2i-1}$ and $f_i : X_{\alpha,p} \to R$ such that for any $x = (t_1, t_2, \ldots) \in X_{\alpha,p}$, we have $f_i(x) = t_i$ for integers *i*. Then for $g_n = f_{2n} - f_{2n-1}$, we have $g_n(u_n) = 2$. To complete the proof we need to show that $u_n \to 0$ weakly, and $g_n \to 0$ weakly. The first one follows from Lemma 3.14. We claim that $g_n \to 0$ weakly. If not there are $F \in X_{\alpha,p}^{**}$ with ||F|| = 1, $\delta > 0$ and a subsequence (g_{n_k}) such that $F(g_{n_k}) > \delta$ for all integers k. So for integer N, we have $\sum_{k=1}^{N} F(g_{n_k}) > N\delta$ and hence

$$\frac{\|\sum_{k=1}^{N} g_{n_k}\|}{N} > \delta$$

This implies that for any integer N, there exist $x = (t_1, t_2, ...) \in X_{\alpha,p}$ such that

$$\frac{1}{N}\sum_{k=1}^{N}g_{n_{k}}\left(x\right)>\delta.$$

Then $\lim_{n\to\infty} t_n = 0$ for integers N and corresponding $x = (t_1, t_2, ...)$, since $\sum_{i=1}^{\infty} \alpha_i = \infty$. Therefore,

$$\begin{aligned} \left|\frac{1}{N}\sum_{k=1}^{N}g_{n_{k}}\left(x\right)\right| &= \frac{1}{N}\left|\sum_{k=1}^{N}\left(t_{2n_{k}}-t_{2n_{k}-1}\right)\right| \\ &\leq \frac{1}{N}\sum_{k=1}^{N}\left|t_{2n_{k}}\right| + \frac{1}{N}\sum_{k=1}^{N}\left|t_{2n_{k}-1}\right| \to 0 \end{aligned}$$

as $N \to \infty$ which is a contradiction.

Remark 3.16. It is known that if X^* has the DPP, then so does X. This implies that $X^*_{\alpha,p}$ also fails the DPP.

It is known that if an infinite-dimensional Banach space has no normalized weakly null sequence then it contains infinite unconditional basic sequence, in fact it contains a subspace isomorphic to ℓ_1 . In [2], we proved that $X_{\alpha,p}$ is a class of hereditarily complementably ℓ_p Banach spaces. Here is some other properties of these spaces.

Theorem 3.17.

- (i) Let $u_i = e_{2i} e_{2i-1}$ $(i \in N)$ and Y be the closed subspace of an specific $X_{\alpha,p}$ generated by u_i , i.e., $Y = [u_i]$. Then the sequence (u_i) is an unconditional basis of Y.
- (ii) Y is weakly sequentially complete and $u_i \rightarrow 0$ weakly, but in norm.

Proof. Part(i) is a consequence of the fact that for any sequence (t_i) , and any j, we have $\|\sum_{i\neq j} t_i u_i\| \le \|\sum_i t_i u_i\|$, See [13] (Proposition 1.c.6 page 18).

For part(ii), since (u_i) is unconditional basis for $[u_i]$ and since $[u_i]$ does not contain a copy of c_0 , it follows from [6] (Theorem 2, page 74) that $[u_i]$ is weakly sequentially complete.

Theorem 3.2 shows that $u_i \to 0$ weakly but not in norm. In fact $||u_i|| = (1 + \alpha_2)^{\frac{1}{p}}$.

Remark 3.18. A result of James [11] asserts that a Banach space with an unconditional basis is either reflexive or has a subspace isomorphic to c_0 or ℓ_1 . This implies that the Banach spaces $Y = [u_i]$ for p > 1 is reflexive.

References

1. E. Asplund, Frechet differentiability of convex functions, *Acta Math.*, **122** (1968), 31-47.

Parviz Azimi

- P. Azimi, A new class of Banach sequence spaces, Bull of Iranian Math Society, 28 (2002) 57-68.
- 3. P. Azimi, J. Hagler, Examples of hereditarily ℓ₁ Banach spaces failing the Schur property, *Pacific J. of Math.*, **122** (1986), 287-297.
- 4. S. Chen, B.-L. Lin, Dual action of asymptotically isometric copies of $\ell_p (1 \le p < \infty)$ and c_0 , *Collect. Math.*, **48** (1997) 449-458.
- W. J. Davis, W. B. Johnson, A Renorming of Nonreflexive Banach Spaces, Proc. Amer. Math. Soc., 37 (1973), 486-487.
- 6. M. M. Day, Normed Linear Spaces, Springer Verlag, Berlin.
- 7. J. Dilworth, M. Giradi, J. Hagler, Dual Banach Spaces which contains an isometric copy of L₁, *Bull. of the Polish Academy of Science*, **48(1)**, (2000) 1-12.
- 8. J. Hagler, *Hereditarily complementably* ℓ_1 *Banach spaces failing the Schur property*. Personel communication 1992.
- Z. Hu and B. L. Lin, On the asymptotic-norming property of Banach spaces, Function spaces (Edwardswille, IL, 1990), 195-210, Lecture Notes in Pure and APPI. Math., Dekker, New York, 1992, 136.
- 10. Z. Hu and B. L. Lin, Smoothness and the asymptotic-norming properties of Banach spaces, *Bull. Austral. Math. Soc.*, **45** (1992), 285-296.
- 11. R.C.James, Bases and reflexivity of Banach spaces, Ann. of Math., 52 (1964), 542-550.
- R. C. James and A. Ho, The asymptotic-norming and Radon-Nikodym properties for Banach spaces, *Arkiv for Matematik*, **19** (1981) 53-70.
- 13. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces, Vol I Sequence Spaces*, Springer Verlag, Berlin.
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, *Duke Math. J.*, 42 (1975) 735-750.
- 15. C. Stegall, The duality between Asplund spaces and spaces with the Radon-Nikodym property, *Isreal J. Math.*, **29** (1978) 408-412.

Parviz Azimi Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran E-mail: azimi@hamoon.usb.ac.ir