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AUXILIARY PROBLEM METHOD FOR MIXED
VARIATIONAL-LIKE INEQUALITIES

L. C. Zeng1, L. J. Lin2 and J. C. Yao3

Abstract. This paper deals with the convergence of the algorithm built on
the auxiliary problem principle for solving a class of pseudomonotone type
mixed variational-like inequalities. The convergence criteria of this method are
presented under a joint pseudo-Dunn property or a joint strong pseudomono-
tonicity assumption on the operators involved in the mixed variational-like
inequality problem. Moreover a posteriori error estimation for approximate
solutions is also given.

1. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let K be a nonempty closed convex subset of H. Let
T : K → H , η : K×K → H be two mappings and let f : K → R be a real-valued
function. We consider the mixed variational-like inequality problem which is to find
x∗ ∈ K such that

(1) 〈T (x∗), η(y, x∗)〉 + f(y) − f(x∗) ≥ 0, ∀y ∈ K.

Problem (1) was considered and studied by Ansari and Yao (Ref. 1) in 2001. They
applied the auxiliary problem method to find the approximate solutions of problem
(1) and proved the convergence of the approximate solutions to the exact solution of

Received October 6, 2004; Accepted August 23, 2005.
2000 Mathematics Subject Classification: 49J30.
Key words and phrases: Variational-like inequalities, Generalized monotonicity, Pseudomonotonicity,
Auxiliary problem method, Convergence criteria.
1This research was partially supported by the Teaching and Research Award Fund for Outstanding
Young Teachers in Higher Education Institutions of MOE, China and the Dawn Program Foundation
in Shanghai. 2This research was partially supported by a grant from the National Science Council
of the Republic of China. 3This research was partially supported by grant NSC 92-2115-M-110-001
from the National Science Council of Taiwan.

515



516 L. C. Zeng, L. J. Lin and J. C. Yao

problem (1) under the η-cocoercive assumption on T. On the other hand, a random
version of problem (1) was also considered by Ding (Ref. 2) in 1997. When
f(x) = 0 ∀x ∈ K, problem (1) is equivalent to finding x∗ ∈ K such that

(2) 〈T (x∗), η(y, x∗)〉 ≥ 0, ∀y ∈ K.

Problem (2) was considered and studied previously by many authors; see, e.g.,
Refs. 3-8. Furthermore when η(x, y) = x − y ∀x, y ∈ K and T has the pseu-
domonotonicity, problem (2) reduces to the following pseudomonotone variational
inequality problem considered by Yao (Refs. 9-10) and Farouq (Ref. 11) which is
to find x∗ ∈ K such that

〈T (x∗), y − x∗〉 ≥ 0, ∀y ∈ K.

In Yao (Refs. 9-10) some results on the existence of solutions to pseudomonotone
variational inequalities can be found. Utilizing the technique developed by Cohen
(Ref. 12), Farouq (Ref. 11) studied the convergence of the method based on the
auxiliary problem principle under a pseudo-Dunn property or a strong pseudomono-
tonicity assumption on the operator T. Moreover she also gave a posteriori error
estimation for the approximate solutions.

Motivated and inspired by Ansari and Yao (Ref. 1) and Farouq (Ref. 11), we
investigate the convergence of the algorithm built on the auxiliary problem princi-
ple for solving the mixed variational-like inequality problem (1). We establish the
convergence results on the approximate solutions to problem (1) involving general
operators satisfying the joint pseudo-Dunn property and the jointly strong pseu-
domonotonicity property, respectively. In addition, we also give a posteriori error
estimation for the approximate solutions to problem (1).

2. PRELIMINARIES

In this section, we give various definitions and basic results which will be used
in the sequel.

Definition 2.1. Let K be a nonempty subset of H. Let T : K → H , η :
K × K → H be two mappings and let f : K → R be a real-valued function.

(1) T is η-monotone if

〈T (x)− T (y), η(x, y)〉 ≥ 0, ∀x, y ∈ K;

(2) T is η-strongly monotone if there exists a constant α > 0 such that

〈T (x)− T (y), η(x, y)〉 ≥ α‖x − y‖2, ∀x, y ∈ K;
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(3) T has the η-Dunn property if there exists a constant A > 0 such that

〈T (x)− T (y), η(x, y)〉 ≥ (1/A)‖T (x)− T (y)‖2, ∀x, y ∈ K;

(4) T is jointly pseudomonotone with respect to η and f if for each x, y ∈ K,

〈T (x), η(y, x)〉+ f(y)− f(x) ≥ 0

⇒ 〈T (y), η(y, x)〉+ f(y)− f(x) ≥ 0;

(5) T is jointly strongly pseudomonotone with respect to η and f if there exists
a constant e > 0 such that for each x, y ∈ K,

〈T (x), η(y, x)〉+ f(y)− f(x) ≥ 0

⇒ 〈T (y), η(y, x)〉+ f(y) − f(x) ≥ e‖y − x‖2;

(6) T has the joint pseudo-Dunn property with respect to η and f if there exists
a constant E > 0 such that for each x, y ∈ K,

〈T (x), η(y, x)〉+ f(y)− f(x) ≥ 0

⇒ 〈T (y), η(y, x)〉+ f(y) − f(x) ≥ (1/E)‖T (y)− T (x)‖2;

(7) T is jointly quasimonotone with respect to η and f if for each x, y ∈ K,

〈T (x), η(y, x)〉+ f(y)− f(x) > 0

⇒ 〈T (y), η(y, x)〉+ f(y)− f(x) ≥ 0.

Remark 2.1. When η(x, y) = x−y and f(x) = 0 for all x, y ∈ K, Definition
2.1 reduces to Definition 2.1 in Farouq (Ref. 11).

Lemma 2.1. See Ref. 11. Let η : K × K → H satisfy the condition:
η(x, y) + η(y, x) = 0, ∀x, y ∈ K.

(i) If T : K → H is jointly pseudomonotone with respect to η and f, then for
any solutions x∗

1 and x∗
2 of problem (1),

(3) 〈T (x∗
2), η(x∗

2, x
∗
1)〉 + f(x∗

2) − f(x∗
1) = 0.

(ii) If T has the joint pseudo-Dunn property with respect to η and f, then the set

S = {T (x∗) : 〈T (x∗), η(x, x∗)〉+ f(x) − f(x∗) ≥ 0 ∀x ∈ K}

is a singleton.
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(iii) If T is jointly strongly pseudomonotone with respect to η and f and problem
(1) has a solution, then it is unique.

Proof. Let x∗
1 and x∗

2 in K be two solutions of problem (1). Then

(4) 〈T (x∗
1), η(x∗

2, x
∗
1)〉 + f(x∗

2) − f(x∗
1) ≥ 0,

(5) 〈T (x∗
2), η(x∗

1, x
∗
2)〉 + f(x∗

1) − f(x∗
2) ≥ 0.

(i) If T is jointly pseudomonotone with respect to η and f , then (4) implies

〈T (x∗
2), η(x∗

2, x
∗
1)〉 + f(x∗

2) − f(x∗
1) ≥ 0.

Note that η(x∗
1, x

∗
2) = −η(x∗

2, x
∗
1). Thus, from (5), we get (3).

(ii) If T has the joint pseudo-Dunn property with respect to η and f , then

0 = 〈T (x∗
2), η(x∗

2, x
∗
1)〉 + f(x∗

2) − f(x∗
1) ≥ (1/E)‖T (x∗

2) − T (x∗
1)‖2.

Therefore, T (x∗2) = T (x∗
1).

(iii) By using the same reasoning when T is jointly strongly pseudomonotone
with respect to η and f, we get x∗

2 = x∗
1. Therefore the solution of problem (1) is

unique.

Whenever η(x, y)+η(y, x) = 0, ∀x, y ∈ K, we illustrate the following relation-
ships between the η-monotonicity assumption and jointly generalized monotonicity
assumptions:

η − strong monotonicity ⇒ η − monotonicity ⇐ η − Dunn property

⇓ ⇓ ⇓
joint strong pseudomonotonicity⇒ joint pseudomonotonicity⇐ joint pseudo−Dunn property

⇓
joint quasimonotonicity

Lemma 2.2. See Ref. 11. If T : K → H is jointly strongly pseudomonotone
with constant e and Lipschitz continuous with constant L, then it has the joint
pseudo-Dunn property with constant L 2/e.

Proof. Suppose that

〈T (x), η(y, x)〉+ f(y) − f(x) ≥ 0, ∀x, y ∈ K.
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Then it follows from the joint strong pseudomonotonicity and Lipschitz continuity
of T that

(e/L2)‖T (y)− T (x)‖2 ≤ (e/L2)L2‖y − x‖2 = e‖y − x‖2

≤ 〈T (y), η(y, x)〉+ f(y) − f(x).

Definition 2.2. See Ref. 1. A mapping η : K × K → H is called Lipschitz
continuous if there exists a constant λ>0 such that ‖η(x, y)‖≤λ‖x−y‖ ∀x, y∈K.

Definition 2.3. See Ref. 1. A differentiable function h : K → R on a convex
subset K is called

(i) η-convex if

h(y) − h(x) ≥ 〈h′(x), η(y, x)〉, ∀x, y ∈ K,

where h′(x) is the Frechet derivative of h at x;

(ii) η-strongly convex if there exists a constant µ > 0 such that

h(y)− h(x) − 〈h′(x), η(y, x)〉 ≥ (µ/2)‖x− y‖2, ∀x, y ∈ K.

Proposition 2.1. See Ref. 1. Let h be a differentiable η-strongly convex
functional with constant µ on a convex subset K of H and let η : K × K → H
be a mapping such that η(x, y) + η(y, x) = 0, ∀x, y ∈ K. Then h ′ is η-strongly
monotone with constant µ, i.e.,

〈h′(x)− h′(y), η(x, y)〉 ≥ µ‖x − y‖2 ∀x, y ∈ K.

Proof. Since h is a differentiable η-strongly convex functional with constant
µ, we have

h(y)− h(x)− 〈h′(x), η(y, x)〉 ≥ (µ/2)‖x− y‖2,

h(x)− h(y) − 〈h′(y), η(x, y)〉 ≥ (µ/2)‖y − x‖2.

Note that η(x, y)+ η(y, x) = 0, ∀x, y ∈ K. Thus adding these two inequalities, we
derive the conclusion.

A real-valued function F : K → R is called sequentially continuous at x0 if
F (xk) → F (x0) for all sequences xk → x0. F is called sequentially continuous on
K if it is sequentially continuous at each of its points.

Lemma 2.3. See Ref. 1. Let η(·, y) : K → H and h′ be sequentially
continuous from the weak topology to the weak topology and from the weak topology
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to the strong topology, respectively, where y is any fixed point in K. Then the
function g : K → R, defined as g(x) = 〈h ′(x), η(y, x)〉 for each fixed y ∈ K, is
weakly sequentially continuous on K.

For each D ⊆ H, we denote by co(D) the convex hull of D. A point-to-
set mapping G : H → 2H is called a KKM mapping if for every finite subset
{x1, x2, ..., xk} of H,

co({x1, x2, ..., xk}) ⊆
k⋃

i=1

G(xi).

Lemma 2.4. See Ref. 13. Let K be an arbitrary nonempty subset in a
Hausdorff topological vector space E and let G : K → 2 E be a KKM mapping.
If G(x) is closed for all x ∈ K and is compact for at least one x ∈ K, then⋂

x∈K G(x) 
= ∅.

3. ITERATIVE ALGORITHM AND CONVERGENCE ANALYSIS

We introduce the following basic algorithm framework for problem (1).

Algorithm 3.1. See Ref. 1. Let {ρn}∞n=0 be a sequence of positive parameters
and let x0 be any initial guess in K. For each given iterate xn, consider the auxiliary
problem that consists of finding xn+1 such that

(6) 〈ρnT (xn)+h′(xn+1)−h′(xn), η(y, xn+1)〉+ρn(f(y)−f(xn+1)) ≥ 0, ∀y∈K

where h′(x) is the Frechet derivative of a functional h : K → R at x.

Theorem 3.1. Suppose that problem (1) has a solution. Let f : K → R be
a lower semicontinuous and convex functional and let T : K → H has the joint
pseudo-Dunn property with respect to η and f with constant E. Assume that there
hold the following conditions:

(i) η : K × K → H is Lipschitz continuous with constant λ such that
(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K,

(c) η(·, ·) is affine in the first variable,
(d) for each fixed y ∈ K, η(y, ·) : K → H is sequentially continuous form

the weak topology to the weak topology;
(ii) h : K → R is η-strongly convex with constant µ and, its derivative h ′ is both

Lipschitz continuous with constant B and sequentially continuous from the
weak topology to the strong topology;
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(iii) for each fixed n ≥ 0 and z ∈ K, the set

{x ∈ K : 〈ρnT (z) + h′(x) − h′(z), η(y, x)〉+ ρn[f(y) − f(x)] ≥ 0}

is bounded for at least one y ∈ K.

Then there exists a unique solution xn+1∈K to (6) for each given iterate xn. If

(7) ρn+1 ≤ ρn and α < ρn < 2µ/λ(E + β) ∀n ≥ 0 for some α, β > 0,

then {xn} is bounded, {‖xn+1 − xn‖} converges to zero, and {T (xn)} converges
strongly to T (x∗). In addition, if T is sequentially continuous from the weak topol-
ogy to the strong topology, then {xn} converges weakly to a solution of problem
(1).

Proof. Existence of Solutions of Problem (6). For the sake of simplicity, we
write (6) as follows: Find x̄ ∈ K such that

〈ρnT (xn) + h′(x̄) − h′(xn), η(y, x̄)〉 + ρn[f(y)− f(x̄)] ≥ 0, ∀y ∈ K.

For each fixed n ≥ 0 and each y ∈ K, we define

G(y) = {x ∈ K : 〈ρnT (xn) + h′(x)− h′(xn), η(y, x)〉+ ρn[f(y) − f(x)] ≥ 0}.

Note that since y ∈ G(y), G(y) is nonempty for each y ∈ K. Now we claim that G
is a KKM mapping. Indeed suppose that there exists a finite subset {y1, y2, ..., yk}
of K and αi ≥ 0 ∀i = 1, 2, ..., k with

∑k
i=1 αi = 1 such that x̂ =

∑k
i=1 αiyi /∈

G(yi) ∀i = 1, 2, ..., k. Then by virtue of assumptions (a), (c) in (i), we have

0 = 〈ρnT (xn) + h′(x̂) − h′(xn), η(x̂, x̂)〉 + ρn[f(x̂)− f(x̂)]

≤
k∑

i=1

αi[〈ρnT (xn) + h′(x̂) − h′(xn), η(yi, x̂)〉+ ρn(f(yi)− f(x̂))] < 0

which is a contradiction. Hence G is a KKM mapping.
In view of conditions (i) (d), (ii), and Lemma 2.3, we can readily see that G(y)

is a weakly closed subset of K for each y ∈ K. Moreover, from condition (iii) we
know that G(y) is weakly compact for at least one point y ∈ K. Hence, by Lemma
2.4, we have

⋂
y∈K G(y) 
= ∅, which clearly implies that there exists at least one

solution to (6).
Uniqueness of Solutions of Problem (6). Let x1, x2 be two solutions of (6).

Then

(8) 〈ρnT (xn) + h′(x1) − h′(xn), η(y, x1)〉+ ρn[f(y)− f(x1)] ≥ 0,
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(9) 〈ρnT (xn) + h′(x2) − h′(xn), η(y, x2)〉+ ρn[f(y)− f(x2)] ≥ 0.

for all y ∈ K. Taking y = x2 in (8) and y = x1 in (9), and adding these inequalities,
we get

ρn〈T (xn), η(x2, x1)〉 + 〈h′(x1) − h′(xn), η(x2, x1)〉 + ρn[f(x2)− f(x1)]

+ ρn〈T (xn), η(x1, x2)〉 + 〈h′(x2) − h′(xn), η(x1, x2)〉 + ρn[f(x1)− f(x2)] ≥ 0.

By using condition (i) (a), we have 〈h′(x1) − h′(x2), η(x1, x2)〉 ≤ 0. From the
η-strong convexity of h and Proposition 2.1, we get µ‖x1−x2‖2 ≤ 0 and therefore,
x1 = x2 since µ > 0. Hence the solution of (6) is unique.

Let x∗ be any fixed solution of problem (1). Since xn+1 is the unique solution
to (6), we get

(10)
〈h′(xn+1)− h′(xn), η(y, xn+1)〉 + ρn〈T (xn), η(y, xn+1)〉

+ρn[f(y)− f(xn+1)] ≥ 0, ∀y ∈ K.

We consider the function Λ defined by

Λ(x, ρ) = Φ(x) + Ω(x, ρ),

where

(11)
Φ(x) = h(x∗)− h(x) − 〈h′(x), η(x∗, x)〉 and Ω(x, ρ)

= ρ[〈T (x∗), η(x, x∗)〉+ f(x)− f(x∗)].

From the η-strong convexity of h, we obtain

(12) Φ(xn) ≥ (µ/2)‖xn − x∗‖2 ≥ 0.

Since Ω(xn, ρn) is nonnegative, we have

(13) Λ(xn, ρn) ≥ (µ/2)‖xn − x∗‖2 ≥ 0.

Let us study the variation of Λ for one stage of Algorithm 3.1,

Γn+1
n = Λ(xn+1, ρn+1) − Λ(xn, ρn).

Then we have
Γn+1

n = s1 + s2 + s3

where
s1 = h(xn) − h(xn+1) − 〈h′(xn), η(xn, xn+1)〉,
s2 = 〈h′(xn)− h′(xn+1), η(x∗, xn+1)〉,
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and
s3 = ρn+1〈T (x∗), η(xn+1, x

∗)〉 − ρn〈T (x∗), η(xn, x∗)〉
+ρn+1(f(xn+1) − f(x∗) − ρn(f(xn) − f(x∗).

By using the η-strong convexity of h, we have s1 ≤ −(µ/2)‖xn+1−xn‖2. Utilizing
(10) with y = x∗ yields

s2 ≤ ρn〈T (xn), η(x∗, xn+1)〉+ ρn(f(x∗) − f(xn+1))

= ρn〈T (xn), η(x∗.xn)〉 + ρn〈T (xn), η(xn, xn+1)〉
+ρn(f(x∗) − f(xn+1)).

By using (1) with y = xn and the joint pseudo-Dunn assumption on T, we get

〈T (xn), η(xn, x
∗)〉+ f(xn) − f(x∗) ≥ (1/E)‖T (xn) − T (x∗)‖2.

Thus

s2 ≤ −(ρn/E)‖T (xn)− T (x∗)‖2 + ρn〈T (xn), η(xn, xn+1)〉
+ρn(f(xn) − f(xn+1)).

Since ρn+1 ≤ ρn ∀n ≥ 0, we obtain

s2 + s3 ≤ −(ρn/E)‖T (xn) − T (x∗)‖2 + ρn〈T (xn) − T (x∗), η(xn, xn+1)〉.

Therefore,

Γn+1
n ≤ −(µ/2)‖xn+1 − xn‖2 − (ρn/E)‖T (xn)− T (x∗)‖2

+λρn‖T (xn) − T (x∗)‖‖xn+1 − xn‖.

Thus by using the inequality

ρn‖T (xn)−T (x∗)‖‖xn+1−xn‖ ≤ (ρ2
n/2ω)‖T (xn)−T (x∗)‖2+(ω/2)‖xn+1−xn‖2,

where ω is a positive number chosen so that ω < µ/λ, we get

Γn+1
n ≤ −(µ/2 − λω/2)‖xn+1 − xn‖2 − ρn(1/E − λρn/2ω)‖T (xn) − T (x∗)‖2.

For α < ρn < 2ω/λ(E + β) where α > 0 and β > 0, we have

Γn+1
n ≤ −(µ/2 − λω/2)‖xn+1 − xn‖2 − (αβ/E(E + β))‖T (xn) − T (x∗)‖2,

and for ω < µ/λ, Γn+1
n is negative unless xn+1 = xn and T (xn) = T (x∗). Then,

according to (10), xn is a solution to problem (1).
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Note that the sequence {Λ(xn, ρn)} is strictly decreasing. But since it is positive,
it must converge and the difference between two consecutive terms tends to zero, that
is, Γn+1

n → 0 as n → ∞. Therefore, ‖xn+1 − xn‖ and ‖T (xn)− T (x∗)‖ converge
to zero. Moreover, since the sequence {Λ(xn, ρn)} converges, it is bounded, and
so does {xn} according to (13).

Let x̄ be a weak cluster point of the sequence {xn}, and let {xni} be a sub-
sequence converging weakly to x̄. By using (10), since h′ is Lipschitz continuous
with constant B and ρn > α, it is known that for each fixed x ∈ K,

(14)

〈T (xn), η(x, xn+1)〉 + f(x) − f(xn+1)

≥ −(1/ρn)〈h′(xn+1) − h′(xn), η(x, xn+1)〉
≥ −(λB/α)‖xn+1 − xn‖‖x − xn+1‖.

Note that the functional f : K → R is convex and lower semicontinuous. Thus, it
is weakly lower semicontinuous on K. This implies that −f : K → R is weakly
upper semicontinuous on K. On the other hand, note also that T is sequentially
continuous form the weak topology to the strong topology. Thus, we conclude
that ‖T (xni) − T (x̄)‖ → 0 as i → ∞. Since ‖xni+1 − xni‖ → 0 as i → ∞
and ‖T (xni) − T (x∗)‖ → 0 as i → ∞, it follows that T (x̄) = T (x∗), w −
limi→∞ η(x, xni+1) = η(x, x̄). Hence

lim sup
i→∞

|〈T (xni), η(x, xni+1)〉−〈T (x̄), η(x, x̄)〉|

≤ lim sup
i→∞

|〈T (xni)−T (x̄), η(x, xni+1)〉|+lim sup
i→∞

|〈T (x̄), η(x, xni+1)−η(x, x̄)〉|

≤ lim sup
i→∞

‖T (xni)−T (x̄)‖‖η(x, xni+1)‖+lim sup
i→∞

|〈T (x̄), η(x, xni+1)−η(x, x̄)〉|

= 0.

This shows that

lim
i→∞

〈T (xni), η(x, xni+1)〉 = 〈T (x̄), η(x, x̄)〉.

Now taking the superior limit for the subsequence {ni} in inequality (14) yields

(15) 〈T (x̄), η(x, x̄)〉 + f(x) − f(x̄) ≥ 0.

From (15), it follows that x̄ is a solution of problem (1).
Finally, we claim that {xn} converges weakly to a solution of problem (1).

Indeed, it is sufficient to prove that {xn} has the unique weak cluster point. Let x̄
and x̂ be two weak cluster points of {xn}. Then, both weak cluster points can be
used as x∗to define the Lyapunov function Λ. This yields two possible Lyapunov
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functions, denoted Λ̄ and Λ̂, respectively. It was proved that Λ(xn, ρn) has a limit
that may depend on the solution x∗ used to define Λ. Let the corresponding limits
be denoted by l̄ and l̂, respectively. Consider the subsequences {ni} and {mj} such
that {xni} and {xmj} converge weakly to x̄ and x̂, respectively. Then by using (3)
and the fact that T (x̄) = T (x̂), we get

Λ̂(xni , ρni) = Λ̄(xni , ρni) + R(xni)

where

R(xni) = h(x̂) − h(x̄)− 〈h′(xni), η(x̂, x̄)〉+ ρni [〈T (x̂), η(x̄, x̂)〉 + f(x̄) − f(x̂)].

Note that
lim
i→∞

Λ̄(xni , ρni) = l̄ and lim
i→∞

Λ̂(xni , ρni) = l̂.

Since limn→∞ ρn exists, x̂ and x̄ both are solutions to problem (1), and h′ is
sequentially continuous from the weak topology to the strong topology, we deduce
that

l̂ − l̄ = lim
i→∞

(Λ̂(xni , ρni) − Λ̄(xni , ρni)) = lim
i→∞

R(xni)

= lim
i→∞

{h(x̂)−h(x̄)−〈h′(xni), η(x̂, x̄)〉+ρni[〈T (x̂), η(x̄, x̂)〉+f(x̄)−f(x̂)]}
≥ h(x̂) − h(x̄) − 〈h′(x̄), η(x̂, x̄)〉.

Hence it follows from the η-strong convexity of h that

l̂ ≥ l̄ + (µ/2)‖x̂− x̄‖2.

By interchanging the role of x̄ and x̂ and of the subsequences {xni} and {xmj},
the same calculations yield

l̄ ≥ l̂ + (µ/2)‖x̂− x̄‖2.

Then, 0 ≤ (µ/2)‖x̂ − x̄‖2 ≤ l̂ − l̄ and 0 ≤ (µ/2)‖x̂ − x̄‖2 ≤ l̄ − l̂. This implies
that x̄ = x̂.

Remark 3.1. Compared with Theorem 3.1 in Ansari and Yao (Ref. 1), our
Theorem 3.1 improves and generalizes their Theorem 3.1 in the following aspects:
(i) Since the η-cocoercive condition on T is the η-Dunn property, the η-cocoercive
condition on T is replaced by our weaker assumption that T has the joint pseudo-
Dunn property with respect to η and f. (ii) Our Theorem 3.1 removes the restriction:
h(y) − h(x)〈h′(x), η(y, x)〉 ≤ γ‖y − x‖2 ∀x, y ∈ K for some γ > 0. (iii) Our
Theorem 3.1 removes the boundedness assumption on K. In addition, our Theorem
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3.1 extends Theorem 4.1 in Farouq (Ref. 11) to the case of the mixed variational-like
inequality problem (1).

Corollary 3.1. Suppose that problem (1) has a solution x ∗. Let f : K → R be a
lower semicontinuous and convex functional and let T : K → H be jointly strongly
pseudomontone with constant e (x∗ is then unique) and Lipschitz continuous with
constant L. Assume that there hold the following conditions:

(i) η : K × K → H is Lipschitz continuous with constant λ such that

(a) η(x, y)+ η(y, x) = 0, ∀x, y ∈ K,

(b) η(x, y) = η(x, z) + η(z, y), ∀x, y, z ∈ K,

(s) η(·, ·) is affine in the first variable,
(d) for each fixed y ∈ K, η(y, ·) : K → H is sequentially continuous form

the weak topology to the weak topology;
(ii) h : K → R is η-strongly convex with constant µ and its derivative h ′ is

sequentially continuous from the weak topology to the strong topology;
(iii) for each fixed n ≥ 0 and z ∈ K, {x ∈ K : 〈ρnT (z)+h′(x)−h′(z), η(y, x)〉+

ρn[f(y)− f(x)] ≥ 0} is bounded for at least one y ∈ K.

Then there exists a unique solution xn+1∈K to (6) for each given iterate xn. If

(16) α < ρn < 2eµ/(L2λ2 + β), ∀n ≥ 0, for some α, β > 0,

then {xn} converges strongly to x∗. Moreover, if h′ is Lipschitz continuous with
constant B, then we have the posteriori error estimation:

(17) ‖xn+1 − x∗‖ ≤ (Bλ/eρn + Lλ/e)‖xn+1 − xn‖.

Proof. We consider the variation of the function Φ in (11) for one stage of
Algorithm 3.1,

∆n+1
n = Φ(xn+1) − Φ(xn).

By using the same notation and similar calculations to those in the proof of Theorem
3.1, we get

∆n+1
n = s1 + s2,

with s1 ≤ −(µ/2)‖xn+1 − xn‖2 and

s2 ≤ ρn〈T (xn), η(x∗, xn+1)〉 + ρn(f(x∗)− f(xn+1))

= ρn〈T (xn) − T (xn+1), η(x∗, xn+1)〉+ ρn〈T (xn+1), η(x∗, xn+1)〉
+ρn(f(x∗) − f(xn+1)).
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By using (1) with y = xn+1 and the joint strong pseudomonotonicity of T, we get

(18) 〈T (xn+1), η(xn+1, x
∗)〉 + f(xn+1) − f(x∗) ≥ e‖xn+1 − x∗‖2.

Thus, we have

s2 ≤ −eρn‖xn+1 − x∗‖2 + ρn〈T (xn) − T (xn+1), η(x∗, xn+1)〉.

Therefore,

∆n+1
n ≤ −(µ/2)‖xn+1 − xn‖2 − eρn‖xn+1 − x∗‖2

+λρn‖T (xn) − T (xn+1)‖‖x∗ − xn+1‖
≤−(µ/2)‖xn+1−xn‖2 − eρn‖xn+1−x∗‖2+ρnLλ‖xn+1−xn‖‖xn+1−x∗‖.

By using the inequality

ρnLλ‖xn+1−xn‖‖xn+1−x∗‖ ≤ (ω/2)‖xn+1−xn‖2+(ρ2
nL2λ2/2ω)‖xn+1−x∗‖2,

with ω = µ, it follows from condition (16) that

(19) ∆n+1
n ≤ ρ2

n(−e/ρn + L2λ2/2µ)‖xn+1 − x∗‖2 ≤ (−α2β/2µ)‖xn+1 − x∗‖2.

Under this condition, ∆n+1
n is negative unless xn+1 = x∗. The sequence Φ(xn)

is strictly decreasing. But since it is positive, it must converge and the difference
between two consecutive terms tends to zero, that is, ∆n+1

n → 0 as n → ∞.
Therefore, it follows from (19) that {xn} converges strongly to x∗.

Now, by using (10) with y = x∗ and (18), we infer that

〈h′(xn+1) − h′(xn), η(x∗, xn+1)〉+ ρn〈T (xn) − T (xn+1), η(x∗, xn+1)〉
≥ ρn[〈T (xn+1), η(xn+1, x

∗)〉 + f(xn+1) − f(x∗)]

≥ eρn‖xn+1 − x∗‖2.

Then by using the Schwarz inequality and the Lipschitz assumptions on h ′ and T,

we get

Bλ‖xn+1−xn‖‖xn+1−x∗‖+ρnLλ‖xn+1−xn‖‖xn+1−x∗‖ ≥ eρn‖xn+1−x∗‖2.

We obtain inequality (17) after division by ‖xn+1 − x∗‖ which is assumed to be
nonzero; otherwise, the result is trivial.

Remark 3.2. Corollary 3.1 extends Farouq’s Corollary 5.1 in Ref. 11 to the
case of the mixed variational-like inequality problem (1).
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