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QUANTITATIVE EQUI-UNIFORM APPROXIMATION PROCESSES OF
INTEGRAL OPERATORS IN BANACH SPACES

Toshihiko Nishishiraho

Abstract. We give quantitative estimates of the rate of convergence of equi-
uniform approximation processes of integral operators in Banach spaces in
terms of the modulus of continuity of functions to be approximated and higher
order absolute moments of approximate kernels. Furthermore, applications are
presented for various equi-uniform summation processes, interpolation type
operators, convolution type operators, and several concrete examples of ap-
proximating operators are also provided.

1. INTRODUCTION

Let (E, | -||) be a Banach space and let (X, d) be a metric space. Let B(X, E)
denote the Banach space of all £-valued bounded functions on X with the supremum
norm. BC(X, E) stands for the closed linear subspace of B(X, E) consisting of
all E-valued bounded continuous functions on X. Also, we denote by C(X, E)
the linear space consisting of all E-valued continuous functions on X. Let X
be a subset of X. Let 8 = {K, ) : a € D,\ € A} be a family of operators
from BC(X, E) to B(Xy, E), where D is a directed set and A is an index set.
Then £ is called an equi-uniform approximation process on BC(X, E) if for all
F € BC(X,E),

lim || Ko 2\ (F)(z) — F(2)|| =0 uniformly in A € A, z € X,.

We here consider a family £ of integral operators on BC(X, E) defined as follows:
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Let Y be a separable topological space and let i« be a Borel measure on Y. Let
{€ar : @ € D, X\ € A} be a family of continuous mappings from Y to X and let
2A = {xar(z;:) : @« € D,X\ € A,z € X} be a family of functions in L'(Y, ),
which denotes the Banach space of all u-integrable functions x on Y with the norm

Ixlh = /Y @) dpu(y)-

Then we define an integral operator by the form

(1) Kan(F)(x) = /Y Xor (@9 F(Ear@)) duly)  (F € BC(X, E)),

which exists as a Bochner integral. In [12] we studied the convergence of equi-
uniform approximation processes of integral operators defined by (1).

The purpose of this paper is to give quantitative estimates of the rate of its con-
vergence in terms of the modulus of continuity of functions to be approximated and
higher order absolute moments of approximate kernels. Consequently, the results
obtained in this paper are refinements of the estimates of the degree of approximation
given in [13]. Furthermore, applications are presented for various summation pro-
cesses, interpolation type operators, convolution type operators, and several concrete
examples of approximating operators are also provided.

2. AUXILIARY REsuLTS

Let (Z, p) be a metric space. Let F' be a bounded mapping from X to Z. Then
we define

W(F,8) = w(X, Z; F.8) = sup{p(F(x), F(1)) : 7,1 € X, d(z,8) <5} (5> 0),
which is called the modulus of continuity of F.

Lemma 2.1. If w is a nonnegative, monotone increasing subadditive function
n [0, c0), then w(&d) < (1 + &)w(9) for all £, > 0.

Proof. It follows from induction on n that w(nd) < nw(d) for all n € N
and all § > 0. Therefore, if £ > 1, then denoting the largest positive integer not
exceeding & by m, we have w(£d) < w((m+1)d) < (m + Dw(d) < (£ + 1)w(0).
If 0 <¢ <1, then w(&d) < w(d) < (14 &w(0). [ |

(X, d) is said to be quasi-convex if z,y € X, d(z,y) < a+b,a,b >0, (a,b) #
(0,0), then there exists a point z € X such that d(z, z) < a and d(z,y) < b. Let
(T, 7) be a metric linear space. If 7(z,y) = 7(x + 2,y + 2) for all z,y,z € T,
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then 7 is called a translation invariant metric function. A real-valued function ¢ on
a linear space V' is said to be starshaped if o(5z) < Be(x) for all z € V' and all
B €[0,1].

Lemma 2.2. Let (7, 7) be a translation invariant metric linear space such
that 7(-,0) is starshaped on 7. If W is a convex subset of 7', then (W, 7) is
quasi-convex.

Proof. Letz,y € W,7(z,y) <a+b,a,b>0,(a,b) # (0,0). Then we take
z=(b/(a+b))x+ (a/(a+ b))y, which belongs to W. Now, we have

b a a a
(o z) = r(o0 - —on ) = (S @ - )0 < r@ -y 0) <a

and similarly, the inequality 7(z,y) < b holds. ]
Lemma 2.3. If (X, d) is quasi-convex, then w(F, ) is subadditive on [0, co).

Proof. Suppose that z,t € X, d(z,t) < 61 + d2,01,92 > 0, (d1,d2) # (0,0)
and x # t. We put £ = d(x,t)/(01 + d2). Then by the quasi-convexity of d,
there exists a point z € X such that d(z, z) < £61 < 1 and d(z,t) < £02 < 0a.
Therefore, we have

p(F(x), F(t)) < p(F(2), F(2)) + p(F(2), F(1)) < w(F, 61) + w(F, 62),
which always holds for « = ¢. Thus we have w(F, d; + d2) < w(F, 1) + w(F, d2),

which holds also for §; = d, = 0. [

Now, we consider the following condition: There exist constants C' > 1 and
K > 0 such that

(2) w(F,&0) < (C+ K§w(F,9)

for every bounded mapping F' from X to Z and for every £, > 0.

The following lemma gives sufficient condition such that (2) holds with C' =
K =1, which can be more convenient for later applications and generalizes [10,
Lemma 3]:

Lemma 2.4.
(a) If (X,d) is quasi-convex, then (2) holds with C' = K = 1.

(b) If X is a convex subset of a metric linear space with the translation invariant
metric function d and if d(-, 0) is starshaped, then (2) holds with C' = K = 1.
In particular, if X is a convex subset of a normed linear space, then (2) holds
with C' = K = 1.
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Proof. Let w(-) = w(F,-). Then Part (a) follows from Lemmas 2.1 and 2.3.
Also, Part (b) follows from Lemma 2.2 and Part (a). ]

Let V(X, E) denote the linear space of all E-valued functions on X. For any
scalar-valued function v on X and a € E, we define (v ® a)(x) = v(x)a for all
x € X. lx denotes the unit function defined by 1x(z) = 1 for all x € X. Let
A(X, F) be a linear subspace of V (X, F) and let ¢ be a mapping from A(X, E)
to E. A positive linear functional » on A(X,R) is called a majorant (or dominant)
functional of ¢ if ||o(F)| < v(v) whenever F € A(X, E),v € A(X,R) satisfy

(3) IF@®)|| <v(t)  forallte X,

Let L be a mapping from A(X, E) to V (X, E). A positive linear operator S
from A(X,R) to V(Xy, R) is called a majorant (or dominant ) operator of L if (3)
implies that || L(F)(z)|| < S(v)(x) for all z € Xo.

From now on, in order to achieve our purpose we suppose that Z = E, p(z,t) =
|z —t|| (x,t € Z) and that (2) holds.

Lemma 2.5. Let ¢ be a mapping from A(X, E) to E having a majorant func-
tional v. Let p > 1 and x € X. Suppose that

{lIx®a:a€ EF} C AX,E), {lx,d(z,),d’(z,)} C A(X,R).
Then for all F' € A(X, E) and all § > 0,
(4) lp(F = 1x ®@ F(2))|| < (Cv(lx) + Kmy (z;p, §))w(F, 0),
where

my (z; p,0) = min{d Pv(d’(x,)), 5_1y(1X)1_1/p1/(dp(x, -))1/p}.

Proof. Lett e X. If d(z,t) > J, then by (2) we have
1F() — F(z)|| < (C+ K& PdP(z,t))w(F, 0),
which always holds for d(x,t) < é on account of C' > 1. Therefore, we have
(5) lo(F —1x ® F(z))|| < (Cv(1x) + Ko Pv(dP(z,-)))w(F,6).
On the other hand, since
IF(t) = F(2)ll < (C + K6~ d(x, 1) )w(F, §),
using Holder’s inequality we get

lo(F = 1x ® Fa)]| < (Cr(lx) + K&~ w(d? (2, ) Pr(1x) ' P)w(F, 8),
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which together with (5) establishes (4) for p > 1. If p = 1, then (5) is clearly
identical with (4). ]

Lemma 2.6. Let L be a mapping from A(X, E)to V(X, E') having a majorant
operator S and let p > 1. Suppose that

{1x®a:a€ E} C AX,E), {1x}u{d(z,),d(z,-):z€ Xy} C A(X,R).
Then for all F € A(X,FE),z € Xp andall 6 > 0,
IL(F = 1x @ F(z)) ()| < (CS(1x)(z) + Kms(z; p, §))w(F, ),
where
ms(z;p, ) = min{dPS(d(x, ) (x), 6 (S (1x) () V(S (dP(x, ) ()7}
Proof. Letx € X, be fixed. Then we apply Lemma 2.5 to ¢(-) = L(-)(z) and
v(-) = S()(a). .

Note that Lemma 2.6 generalizes [4, Theorem 2.1] and improves the estimate
by means of higher order absolute moments.

Lemma 2.7. Let {x(x;-) : € X} be a family of functions in L(Y, 1), 7 a
continuous mapping from Y to X and p > 1. Assume that x(x;-)dP(z,7(-)) €
LY(Y, ) for each = € X. Then for all F € BC(X, E),z € X, and all § > 0,

| [ xte ) Prw) - @) dutw)| < (©lxes )l + Kelasp, )l F.6),
where
e(a;p. 6)=min{5 P x(a)d(z,r0) 1, 5 )y~ Pllx(es)d (, 70)) 7}
Proof. Let z € X be fixed. Let
A(X, ) = {F € C(X, B) s x(@i ) |F(r()]| € L' (Y, )

and
AX,R) :={ue C(X,R): x(x; )u(r()) € Ll(Y7 w)}.

Then by the hypotheses, 1x and d?(x,-) belong to A(X,R), and so Holder’s in-
equality implies d(x,-) € A(X,R). Now, we define

o(F) = /Y @) Frw) du(y)  (F € A(X, E))



446 Toshihiko Nishishiraho

and

v(u) =/Y\X(w;y)\u(7(y))du(y) (u € A(X,R)).

Then v is a majorant functional of ¢, and so applying Lemma 2.5t0 F' € BC(X, E)
(C A(X, E)) we obtain the desired result. |

3. DEGREE OF EQUI-UNIFORM APPROXIMATION
Let p > 1 be any fixed real number. We suppose that

Xa(@; )P (2, Ean(-)) € LMY, 1)

for each o € D, A € A and for each = € X, and define

tax(®;p) = [[Xax (@5 )@ (2, Ean () |l1,

which is called the pth absolute moment of x, x(z;-). Furthermore, we asuume
that for each o € D,

Co = sup{||xax(z;)[1: A e A,z € X} < o0
and
0 < pa(p) := (sup{par(z;p) : A € A,z € Xo})VP < 0.
For any o € D, F € BC(X, E) we define

va:sup{(/ X (73y) du(y) — 1 :AGA,weXo},
Y

Ey(F) = sup{||KoA(F)(z) — F(x)|| : A € A,x € Xo}

and
[Flls = sup{[[F'(x)[| : 2 € S} (5 € X).
Obviously, £ is an equi-uniform approximation process on BC(X, E) if and only
if limy, E(F) =0 for every F € BC(X, E).
If Xax(z3y) >0 (pu-ae.yeY)foralla e D, e Aandall x € Xy, then A
is said to be positive. If

/ Yo (w1 9) du(y) = 1
Y

forall« € D, A € A and all x € X, then 2 is said to be normal.
From now on, let {e,}nep be a net of positive real numbers.
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Theorem 3.1. For all F € BC(X,E) and all a € D,

(6) Eo(F) < [|IFl[x070 + Ya(p)w(F, €atia(p)),
where
Ya(p) =sup{Cllxa (a; I+ minfeg [Pxa (i )L 77 e} s A d,w € Xo}.
In particular, if 2( is positive and normal, then
E,(F) < (C+ Kmin{e; ', e,P})w(F, eapia(p)).

a ) o

Proof. Let FF € BC(X, FE) and z € X. Then for all « € D, A € A we have

M Kas(P)a) = F@I < | [ o) duto) = 1[|P(a)]

| [ Nonwsn) (o) = F@) dutw)| = I3 @) + I3 @),

say. Obviously, we have Jﬁﬂ(m) < 7ol Fl|lx,- Now, applying Lemma 2.7 to
X(x;+) = Xax(x;-) and 7 = &, , we obtain

T2 (@) < (Cllxan (@)l + Kcan(@;p,6)w(F.8) (5> 0),
where
Car(@;p, 6) = min{6 P par(@;p), 6 xan(@; )1 Pran(z; p) P}

< min{6 P pa(p)?, 6 xan(@ ) Pralp)}-

Putting 0 = esua(p) in the above inequality and taking the supremum over all
A e Aand all z € X, (7) establishes the desired estimate (6). ]

Let ¢ be a nonnegative real-valued function on Xy x X and let s > 0. If
XaA(@; )P (2, 6a0() € LY, p) (e € D, A€ A,z € Xy),

then o 2 (D; ;) := || Xax(@; )P (x, €an(+))||1 is called the sth absolute moment
of xa.(z;-) with respect to &.
Suppose that there exist positive constants ¢ and « such that

(8) di(z,t) < kP(x,t) for all (z,t) € Xg x X
and that

0 < pa(P;p/q) == (sup{ptarx(®;z;p/q): A€ A,z € Xo})l/p < 00
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is satisfied.

Theorem 3.2. For all F € BC(X,E) and all « € D,
(9) Eo(F) < [|Fllxo Y + Ya (P, )0 (F; €apia(P; p/ 1)),
where

Ya(p, @)
= sup{C||xar (@) |1+ K min{x%e Yxar(@) |17, kP19 1 NEA, z € X}

In particular, if 2 is positive and normal, then

Eo(F) < (C + K min{s"%.", k"/%e,P})w(F, eaia(P; p/q)).

Proof. By (8), we have
fan(23p) < 6P 90\ (D5 23p/q) (@€ DN E A m € Xy),

which implies o (p) < &Y (®;p/q). Therefore, by putting <~ /%, instead of
€, the desired estimate (9) follows from (6). [ |

In the rest of this section, we restrict the integral operators K, » defined by (1)
to the subclass of BC(X, E) as follows:

Let Ey be a subsetof E'and T = {T'(z) : = € X} a family of mappings from Ej
to E such that for each f € Ey, the mapping = — T'(x)(f) is strongly continuous
and bounded on X and let L, » denote the restriction of K, x to {T'(-)(f) : f € Ep},
ie.,

(10) La,x(w)(f)=/Yxa,x(w;y)T(fa,A(y))(f) du(y)  (f € Eo).

Shaw [15] considered the special case of (10) in the setting of certain spaces of
operator-valued functions and obtained several representation formulas for strongly
continuous semigroups of bounded linear operators on Banach spaces.

The family £ = {Lo(z) : « € D, X\ € A,z € X} is called an equi-uniform
T-approximation process on Ey if for every f € Ey,

(11) lim || Lo x(z)(f) — T(x)(f)|| =0 uniformly in A € A,z € X,.
Concerning the rate of convergence behavior of (11), we define

we(f,0) = sup{[|T(2) (/)TN : 2, t € X, d(w,8) <6} (f € Eo,6 > 0),
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which is called the modulus of continuity of f associated with ¥, and
ea(f) = sup{[[Lax(@)(f) = T(z)())Il : A € A,z € Xo}.
Now, since
welf,0) = w(T()():0), ealf) = Ea(T()(f)  (f € Ep,6 2 0,a€ D),

Theorems 3.1 and 3.2 establish the following results which estimate the rate of
convergence of the equi-uniform -approximation process £ on FEy:

Corollary 3.3. For all f € Eg and all « € D,

ea(f) < ITCNx0Ya + YaP)wg(f; €atialp))-

In particular, if 2( is positive and normal, then

ea(f) < (C+ K min{e, ", ;P wa(f, €apta(p))-

Corollary 3.4. Forall f € Egandall « € D,

ea(f) S NTCx0Va + Yalp: Qwe(f; can(P; p/q))-

In particular, if 2( is positive and normal, then

ca(f) < (C+ K min{s%e;", /%€, o (f, capta(®: p/4))-

4. EQUI-UNIFORM SUMMATION PROCESSES

Let A = {afﬁ?n ca € D,m € Ny, A\ € A} be a family of scalars. A is said to
be regular if it satisfies the following conditions:

(A—1) For each m € Ny, lim, a(ofzn =0 uniformly in A € A.
(A-2) lim, Y, a(oj\}n = uniformly in A € A.
m=0

(A—3) Foreacha € D, )\ € A, i) = Yoo \a(ofzn\ < o0, and there exists ap € D
such that sup{a(ak) ra> oy, €D, NE A} <.

A is said to be stochastic if

al), >0 (aeDmeNg, ed) and > al), =1 (aeDAEA).
m=0
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Obviously, if A is stochastic, then Conditions (A-2) and (A-3) are automatically
satisfied.
A sequence { fi, }men, Of elements in E is said to be .A-summable to f if

(12) lim | Y al)).fm — £l =0 uniformly in A € 4,
m=0

where it is assumed that the series in (12) converges for each o € D and A\ € A.
Concerning the relation between the regularity of A and .A-summability, A is
regular if and only if every convergent sequence in E is A-summable to its limit
(cf. [1, 9]). Also, for several important examples of generic entories a(ﬂn of A
with D = Ny, see [9] (cf. [1, 5, 7, 14]).
Now, let {&, }nen, be a sequence of continuous mappings from Y to X and let
{xn(x;-) : n € Ng,x € X} be a family of functions in L!(Y, 1) such that

bar@) =3 [ lan(@lduw) <o (€ DAE Az X).
m=0 Y
We define
(13)  Kn(F)(z) = /Yxn(w;y)F(fn(y)) du(y)  (F € BC(X, E))
and
(14) Ly (2)(f) = /Y Xn (23 y)T(En(y))(f) duly)  (f € Eo)-
The sequence { K, },.en, is called an equi-uniform .4-summation process on BC'(X,

E) if the family & = {K, ) : @« € D, X € A} is an equi-uniform approximation
process on BC(X, E), where each K,  is defined by

15)  Kaa(Ba)= 3 alhKn(F)(x) (P € BO(X, E)).
m=0

The family {L,(z) : n € No,z € X} is called an equi-uniform Z-.A-summation
process on Ey if the family £ = {L,\(z) : « € D, XA € A,z € X} is an equi-
uniform -approximation process on Ey, where each L, »(z) is defined by

(16) Laa(@)(f) = Y alonLm(@)(f)  (f € Eo).
m=0

Let K, and L, x be defined by (15) and (16), respectively. Let p > 1 and
suppose that x,, (z; -)dP(z, &,(+)) € LYY, p) for all n € Ng and all z € X,.
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Theorem 4.1. Let {e,}aep be a net of positive real numbers. Then for all
FeBC(X,E)andall « € D,

(17) Eo(F) < [|Fllxo7a + Ta(p)w (F; €ava(p)),

where

—sup{|Za /mey)du —1| )\eAxGXO}

Ta(p) = sup{Cbav,\( ) + K min{e_?, alb Alz )l_l/p} cAe A xe X}

and
1/p
Va(p) = (Sup{z a1t (5 VAP (2, ()1 s A € Az € X0}> .
Proof. For all A € A and all x € X, we have

IR PN 63| o) 6t ) )|
(19
+1Za /xmwwdu )1 IF) = 1) + 1),

say. Obviously, we have Iifi(x) < TollFllx,- Taking x(x;:) = xm(x;-) and
T =&, in Lemma 2.7, we get

(19) 1@ < (Chanle +sza hlem(@ip, ) )w(F.0) (5> 0),

where

cm (25, 0)
= min {8 | xm (2947 (2, €m0 |1, 5 0 (@5 )Pl (239 (2, EmO) 1177}

Now, if p > 1, then by Holder’s inequality we have
Z |al 1xm (5 )13~ Plxm (5 )P (2 € (D) 1177
1/
(Z\a Ml ez ) 1) (Z (a0l (25 )8 (@, (D) 1)
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which clearly holds for p = 1. Therefore, we have

Z \a D lem (x5 p, 0) < min{d P, (p)?, 5_lba7,\(x)1_1/pya(p)},

which together with (19) implies
I (@) < (Cba(@) + K min{6 Pua(p)?, 6 bap(2)' g (p)}w(F. 8).

Putting 6 = e,vq(p) in the above inequality and taking the supremum over all
A€ Aand all x € X in (18), we obtain the desired estimate (17). |

Corollary 4.2. Let {€4}aeD, Tas Ta(p) @nd v, (p) be as in Theorem 4.1. Then
forall f € Egandall a € D,

calf) < ITC) N xoTa + Ta(P)wg(fs cava(p))-

5. INTERPOLATION TYPE OPERATORS

Let Y be a finite set. Then the integral operators given by (1) and (10) reduce
to the interpolation type operators

(20) =3 Xan(@y)F(an(y)  (F € BC(X,E))
yey
and
(21) =3 Xax@ YT (EanW)(f)  (f € Eo),
yey

respectively. Here we restrict ourselves to the following situation:
Let 1 < s < oo be fixed and let X be a convex subset of the r-dimensional
Euclidean space R” with the metric

- s\1/s
it 1<s<
d(z,t) = ds(z,t) == (;\x | ) ( 5§ < 00)
max{|x; —t;| : 1 <i<r} (s = o0),

where z = (z1,29,...,2,),t = (t1,t2,...,t,) € R". Therefore, by Lemma 2.4
(b), (2) holds with C = K = 1. For i = 1,2,...,r, p; denotes the ith coordinate
function on R" defined by p;(z) = «; for all x = (z1,z9,...,2,) € R". Then we
have

di(x,t) < c(g,r,8) > |pi(x) —p®)|Y  (z,t€R", g >0),
i=1
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where
ra/s (1<s<oo,s#q)
c(g,rys) =41 (1<s<oo,s=q)
1 (s = 00).

Therefore, (8) holds with

k= clg,r, 9), Z\pz pi(t)[",

and so taking p = ¢ in Theorems 3.2 and Corollary 3.4, we have the following
results which can be more convenient for later applications to the concrete examples
of interpolation type operators.

Theorem 5.1. Suppose that 2 is positive and normal. Let ¢ > 1 and let
{€a}aep be a net of positive real numbers. Then the following statements hold:

(a) Forall F € BC(X,E)and all « € D,
Eu(F) < (14 min{c(qg,r, s)l/qegl, c(q,ry8)eg 1) w(F, ealalq)),

where

ale)= (300{ 32 (3 Kol It miar ) e A o))

i=1 yey
(b) Forall f e Eyandall a €D,
ca(f) < (L +minfe(q, r, )96, e(g,7, 5)eq Pwe(f, calala))-
Let X = [0,00)" be the region of the first hyperquadrant and let
Mai: A =N, aq;:A4—[0,00) (eeD,i=1,2,...,7)
and
Iy = {k= (k1 ko, ..., k) €N :0 < k; <mgi(N),i=1,2,...,r}

We define

Xax(T; k) H <mw ) ’(1 — xi)ma’i(k)_k" (xe X, kely))
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and
Sar(k) = (a,1(A)k1, aa 2Nk, . aar(Nkr) (k€ Inn).
Then the interpolation type operators (20) and (21) generalize the r-dimensional
Bernstein operators, which are defined as follows (cf. [8, 12]):
Let I, = [0, 1]" be the unit r-cube and let {v,, ; }nen, i =1,2,..., 7, be strictly
monotone increasing sequences of positive integers. Then we define

Un,1 Vn,2 Vn,r

P3P IR S
=0ko= Vn,ljl/n,QV"’Vn,T’
x 1_[1 (V;;j>$§j(1 —aj)mit (Fe O, E), vel,)
i
and

Vn,1 Vn,2 Vn,r kl k2 kr

(=3 3 T o )
k1=0 ko= kr=0 '

X H(an> (1 — )i ki (f € Ey, z€1,).

Now, let X, be a closed subset of I, . Then we have
1/2

za = C(a(2) = <sup{zr: Zai(Ax): hedxe X0}> ,
i=1

where

2ai(A @) = (a0,i(Nmai(A) = 1) (@) + ag ;(Nmai(AN)pi(2) (1 - pi(x)).

Therefore, applying Theorem 5.1 with ¢ = 2 we obtain the following estimates:

(22) Eo(F)<(14+min{y/c(r,s)e;t, c(r, 8)e;*Nw(F, eaza) (FE€BC(X, E));

(23)  eq(f) < (1 +min{y/c(r, s)e, ", })wg(f €aZa) (f € Ep).
Here
2/s < 2
e(r, 5) = r (I1<s<oo,s#2)
1 (s =2,00).
In particular, if m,;(A)aqi(A) =1 forall @« € DX\ € A and for i = 1,2,
., 7, then (22) and (23) hold with

r

2o = <Sup{; m(pz(x) —pXx)):NeAdzxe XO})I/Q.
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Therefore, for the Bernstein operators, we have

(24) | Bn(F) — Flx, < (1+ min{\/c(r, s)egl, e(r, s)ef})w(F, €n0n)

and

(25) 1Cu()(F) =T (Nllxo < (L+min{y/e(r, s)e ", e, 8)6,*Hwe(f, endn),

where {e€, }nen IS @ sequence of positive integers and

Oy, == <max{zr: ! -(pi(w) — pH(x)) iz € XO})I/Q.
i=1

_ I/TL,Z

In paritucular, (24) and (25) yield the following estimates:

(26) I1Ba(F) = Fll, < 00, o (Fyeny |30 = );
i=1 ™
(27) 1CnC)F) = T, < bl ) (Freny | 1),
i=1 ™
Here

c(rys) e(r,s)
2e¢, = 4e? }

Let {T;(t) : t € [0,1],i = 1,2,...,r} be a family of strongly continuous
mappings from Ej to itself such that for every ¢,u € [0, 1], ¢7;(u) commutes with
(1 —1t)I, where I is the identity operator on E and T;(v)"™ = T;(nv) whenever v €
[0,1],n e Noand nv € [0,1]. f T'(z) =[[;_, Ti(z;) forallz = (z1,22,...,2,) €
I, then

On(r,s) =1+ min{

)0 =TI (1 (m ) -0) ™ (),

Vni

Cul@) () =[] (w1 ami(

i=1 m,t i=1

Therefore, the inequality (27) estimates the rate of convergence in [11, Theorem 5]
for » = 1, which improves the estimate in [3, Proposition 1.2.9] and furthermore, it
generalizes and improves the convergence rate in [4, Theorem 1.1]. Also, we note
that in view of Lemma 2.6, other results of [4] can be generalized and improved by
the same argument as the above manner.

Suppose that A is stochastic, and let {#,, },,cn, be a sequence of positive integers.
We define

Za ) By, (F (F e C(I., E), z €1,)
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and

Za ).Co, (x (f € Eo, z €1,).

Then we have the followmg estimates:
Eo(F) < (1+min{\/c(r, s)ez ", e(r, 8)e;*}w(F, €atla);
ca(f) < (L+min{y/c(r, s)e;", e(r, s)eg " Hwe ([, €atla)-

Na 1= (sup{Za 6?@" A€ A}) 2

(28)

Here

Indeed, we have

Q)SSUP{ia(of\, ( c(r, s) sz ) Ae A, xeXo}:c(r,s)ni,
n=0

and so, by putting ¢(r, s)~'/2¢, instead of ¢, (28) follows from Lemma 2.4 (b)
and Theorem 4.1.

The statements analogous to the above results hold for the following settings:
Let X, be a closed subset of A,., where

.
Avi={z=(21,22,..,0,) ER 12; > 0,i=1,2,....7,> z; <1}

is the standard r-simplex;

Ioy =Lk =(ki,ka,.... k) ENg: k1 + ko + -+ kr <ma(N)};

Xa,\(x k < )Hm Z )ma(k) i=1kj (x eX, ke Ia7>\),

7=1
where m,, : A — N, and
ma(A)) _ ma(A)! :
k T kl!kg!---kr!(ma()\)—kl—kg—---—kT)V

fm)\(k) = (aml()\)kl, amg()\)kg, e amr()\)kr) (k S Ia)\)-

Next, let X = [—1,1]" and let X, be a closed subset of X. Let Q,(t) =
cos(n arccos t) be the Chebyshev polynomial of degree n, and lett, ;, 5 = 1,2, ..
be zeros of Q,,(t), i.e.,

.M,

2 — 1 ,
tn,j :cos< o 7r>, (j=1,2,...,n).
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Let
Mai: A= N, ay;:A4—[-1,1] (eeD,i=1,2,...,r)
and let
Na)\ = {k = (kl,kg, .. .,kr) eN: 1<K < mw‘()\),i =1,2,. ..,7“}.
We define
Xax(T; k) mem(k x4 ki) (x € X,k € Non),
where
Q) (T2) 2
m, i xhkz == 1 - xltmaz i - }
Xomas 055 ) = { N ) G = )
and

fa,k(k) - (aoc,l()‘)tmml()\),kp . -aaoc,r()‘)tma,r(k),kr) (k € Noc)\)-

Then the interpolation type operators (20) and (21) generalize the r-dimensinal
Hermite-Fejér operators, which are defined as follows:

We define

Un,1 Vn,2 Un,r
Z Z Z 1 ks Vn,2,k27"'7tVn,r,k'r)
k1=1ko=1 kr=1

r ey 9

x (1_xjtyn].,kj){ Doy (25) } (Fec(xB), zeX)
j=1 ’ I/n’j (xj - t’/n,jvkj)
and
Gn(x)(f) Z an k15 Vn,2,k27"'7tVn,r,kr)(f)

X ﬁ(l — (I,'jtyn,j,kj){ QV"J({I’.J) }2 (f S EO, T € X)

Unj (%5 = tu, ; k)

Yo := Ca(2) = (sup{zr: Yai(\, )t A E Az € XO})I/Q,

=1
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where
Qs (@) mai(M)
i (A = ——— = 22(aa,(A) — 1 tng s i X, i is ki
Ya,i(A, ) iV zi(aa,i(A) — 1) kZI i (V) ki X s (V) (35 Fi)
ma,i(k)
+ (a2, ) = 1) D 00k X () (@3 Ki).
kel

Therefore, applying Theorem 5.1 with ¢ = 2 we get the following estimates:

(29) Eoc(F) < (1 + min{ V C(?“, 3)6517 C(?“, 3)652})“)(}77 eocyoc)§

(30) ca(f) < (L+min{y/e(r, s)eg" e(r, s)eg*Hwe(f, €aya)-

In particular, if ay;(A\) =1foralla e D, e Aandfori=1,2,...,r, then (29)
and (30) hold with

= ({3 5 e o))

1=

1/2

Therefore, for the Hermite-Fejér operators, (29) and (30) yield

|Hn(F) — Fllx, < (14 min{y/c(r, s)egl, e(r, s)ef})w(F, €nTn)

and

1Gn()(f) — T(')(f)HXo < (14 min{y/c(r, 3)67;17 e(r, 3)67;2})“)‘3(.]67 €nTn),

respectively, where

Tp = (max{zr: M ye X0}>1/2_

U s
i=1 t

In particular, the following estimates hold:

-
1
|Hn(F) — Fllx < (1 +min{y/c(r, s)e L, er, s)e2})w Fen 3 )

1%
i=1 N,

<3

—_

IGH()(F) =T ) (H)llx < (A+min{y/e(r, s)e;, elr, 5)e,*wg f €n o
=1
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Suppose again that A is stochastic, and we define
Za VHy (F)(z) (FeC(X,E),zecX)

and
Za Nerme: (f € By, z € X).
Then we have the followmg estimates:
Eo(F) < (1+min{ /c(r, s)e3?, c(r, 8)ex 2 Hw(F, €ada);
ea(f) < (14 min{y/c(r, )5, e(r, 5)e*}we(/, €ada)-

(31)

Here
00 = <sup{2a Tg PYS A})1/2

Indeed, we have

) < SUp{Za < Zr: (QVzn,;o Pi) (@)

i=1 bn i

hed, ze Xo} = c(r, 8)02,

and so, by putting ¢(r, s) "'/, instead of ¢, (31) follows from Lemma 2.4 (b)
and Theorem 4.1.

6. ConvoLuTIOoN TYPE OPERATORS

In this section, we treat the equi-uniform .4-summation processes of convolution
type operators defined by (13) and (14) with (15) and (16), where X = Y is a
convex subset of R” with the metric d = d,, 1 < s < oo, defined in Section 5 and
&n(y) =y forall n € Ny and all y € X. Here we suppose that A is stochastic.

Let ¢ > 0 and let {g,}nen, be a sequence of nonnegative even continuous
functions on [—c, ¢] such that f gn(t)dt =1 for all n € Ny. Let

r
X:H[a’ivbi]v 0<bj—a; <c¢c, 1=1,2,...,r

and

r

1
XO:H[ai+5ivbi_5i]v 0<d; < §(bz‘—az‘), 1=1,2,...,7.
=1



460 Toshihiko Nishishiraho

We define

,
Xn(@:y) = [[(gnop)(z—y) (v,y€ X, neNy).
i=1
Let {en }acp be a net of positive real numbers.

Theorem 6.1.
(a) Forall Fe C(X,E)andall « € D,

BolF) < [Pl Y o+ (Lemind 7l el s)eg (P o).

=1 ?

Co = (sup{Za / m(t)dt : )\6/1})1/2

(b) Forall f e Eyandall « € D,
ea(f) < ITC))IxoCa Dis 5%
+ (14 min{+/rc(r, s)e;t, re(r, 3)652})w§(f, €aCa)-

where

Proof. By [11, Lemma 4], we have

/ Xn(z;y)dy < 1 (ne Ny, z e X),
X

0§1—/){Xn(x;y)§</ t2gn dt)Z el (n € Ny, z € Xp)

21Z

and
/ Xa(3y)d3(z, y) dy < 7“/ gu(t)dt  (n €N, z € X).
X

—C

Therefore, we obtain b, \(z) < 1,

Ta:sup{ia(a’\}nO—/Xxm(x;y)dy) )\EAxGXO}<§aZ =
m=0

21Z

and

= sup{z ag, / X (5 9)d2 (2, y) dy - N € A,z € Xo} < re(r, s)C2.
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Thus, by selecting p = 2 and by putting (rc(r, s))~ /%, instead of ,, the desired
result follows from Theorem 4.1 and Lemma 2.4 (b). ]

Let ¢ be a nonnegative, continuous even function on [—c, ¢| such that ¢ is
decreasing on [0, ¢] and

e(0)=1, 0<p) <1 (0<t<ec).

We define

gn(t) = pn"(t) (|t| <c), where p, = </

—C

Then we have

r

Xn(@sy) = pp [[(e"opi)@—y)  (z.y€X),
i=1

which reduce to the Korovkin kernels in case » = 1 (cf. [6]).

Corollary 6.2. Suppose that

. 1—=0(1)
1 _— =
(32) t—IHLIO 44 1

for some p > 0 and ¢ > 0. Then the following statements hold:

(a) Forall F e C(X,E)andall « € D,

T 1 .
Eo(F) < CollF|lxn2 > 52 H(1+min{y/re(r, s)Co, re(r, s)Coph)w(F, na),
i=1 ¢

where
C@:sup{(n—i—l)wp/_ t2g,(t) dt : neNo}
and . I i
a=<sup{Z:0 :1”2/17 )\eA})

(b) Forall f e Epandall a€ D,
ea(f) < CllTOYDxond Xima 3
+ (1 +min{y/rc(r, 5)Cy, re(r, s)Co})wz( f; Na)-
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Indeed, from the proof of [2, Theorem 1] (cf. [2, Lemma 2]), we see that C,,
is finite. Therefore, we have (, < /C,n, for all « € D. Thus, by selecting

€a = 0;1/2, the desired result follows from Theorem 6.1.
For several important examples of ¢ satisfying Condition (32), see [2] and [12].
Next, we consider the convolution type operators for the whole space R". Let
{hn, }neNO be a sequence of nonnegative Lebesgue integrable functions on R such
that [, hn(t)dt =1 for all n € Ng. Let X =R" and we define

r

Xn(x;y):H(hnopi)(x—y) (z,y € X, n € Np).
i=1

Theorem 6.3. Let ¢ > 1.

(a) Forall F e BC(X,E) and all « € D,
Eo(F) < (14 min{(re(q,r, )%, re(q, r, s)e;})w(F, eabla(q)),

where
_ (\) ) 1/a
0a(q) (Sup{ EO a“"m/R [t|9hm () dt - X € A}) < oo0.

(b) Forall f e Egandall « € D,

ea(f) < (1+min{(r(c(q, r,5))%, ", re(g,r, 9)e; wa( £, €aba(q)).
Proof. We have

/ Xn(®;y)dy=1  (n€Ny, xzeX),
X

and so 7, = 0 and b, \(z) = 1. Also, we have

S o) /

X

Xm (23 y)d*(z,y) dy <c(q,r,s) Z Qg Z/ (zi—yi)|wryil? dyi

= reta.rs) Y- ol [ Mot de
m=0 R

and so v4(q) <rc(q,r, s)0%(q). Thus,by taking p=q and by putting (rc(g,r,s)) /%,
instead of ¢, the desired result follows from Lemma 2.4 (b) and Theorem 4.1. =
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Let {k,}nen, be a sequence of nonnegatve, even 2x-periodic, Lebesgue inte-
grable functions on R having Fourier series expansions

<. y . 1 [™ y
~ -\ gt A —iJt
()~ 3RO )= g | ke ar
with %,(0) = 1, and we define
ki) (<)
ha(t) =4 27" =7
0 (It > ).

Corollary 6.4.
(a) Forall F € BC(X,E)and all « € D,
re(r,s) _, wre(r,s)
9 €y 5 €q

Eo(F) < (1 + min{w })w(R €alla),

where

Neo = <sup{ i a(a’\}n(l — k;n(l)) Y= A}) 1/2.

m=0
(b) Forall f e Egandall a €D,

re(r,s) _y wire(r,s) _o

ea(f) < <1+min{7r 5 €a 5 €0 })wg(f, €alla)-

Indeed, by the inequality (2/7)t <sint (0 <t < m/2), we have

™ ™ 2 ™
/ Pl () dt < WQ/ k(1) sin? | dt = %/ (1—cos km(t) dt  (m € No).
Thus, we have 0,(2) < (7/v/2)n., and so putting (7/+/2) e, instead of ¢, the
desired result follows from Theorem 6.3.

Note that by the same argument as the above proof, Theorem 6.1 is applied for
c=mand g, = (1/27)ky,, since (, < (7/V2)1Nq.

Let (A\n(y)) (n,5=1,2,...) be a lower triangular infinite matrix of real num-
bers and we define

ko(t) =1, kn(t)=1+2) Mn(j)cosjt  (ne€N, teR).
Jj=1
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Then applying Abel’s transformation twice to the function %,,(¢), we have

n—1

kn() =Y (G + DE ) A’ A (5) + (n+ DAn(n) Fa(t),  An(0) = 1,
=0

where F,,(t) is the mth Fejér kernel and
A2)\n(]) - )‘n(]) - 2)‘71(.7 + 1) + )‘n(] + 2)'

Therefore, if A, (n) > 0 and {A\.(j)}jen, IS convex, ie., A2X,(j) > 0 for all
j € Ny, then k,(t) is a nonnegative, even trigonometric polynomial of degree at
most n and so Corollary 6.4 (a) and (b) hold with

o = (sup{i a1 A1) 2 e a}) .
m=0

For several examples of \,(j) which produce important positive summability ker-
nels, see [12].

Moreover, there is a wide variety of examples of nonperiodic functions i, (t)
for which Theorem 6.3 can be applied, from a probabilistic point of view. These
can be induced by various probability density functions (see [12]).
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