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QUANTITATIVE EQUI-UNIFORM APPROXIMATION PROCESSES OF
INTEGRAL OPERATORS IN BANACH SPACES

Toshihiko Nishishiraho

Abstract. We give quantitative estimates of the rate of convergence of equi-
uniform approximation processes of integral operators in Banach spaces in
terms of the modulus of continuity of functions to be approximated and higher
order absolute moments of approximate kernels. Furthermore, applications are
presented for various equi-uniform summation processes, interpolation type
operators, convolution type operators, and several concrete examples of ap-
proximating operators are also provided.

1. INTRODUCTION

Let (E, ‖ · ‖) be a Banach space and let (X, d) be a metric space. Let B(X, E)
denote the Banach space of all E-valued bounded functions on X with the supremum
norm. BC(X, E) stands for the closed linear subspace of B(X, E) consisting of
all E-valued bounded continuous functions on X . Also, we denote by C(X, E)
the linear space consisting of all E-valued continuous functions on X . Let X0

be a subset of X . Let K = {Kα,λ : α ∈ D, λ ∈ Λ} be a family of operators
from BC(X, E) to B(X0, E), where D is a directed set and Λ is an index set.
Then K is called an equi-uniform approximation process on BC(X, E) if for all
F ∈ BC(X, E),

lim
α

‖Kα,λ(F )(x)− F (x)‖ = 0 uniformly in λ ∈ Λ, x ∈ X0.

We here consider a family K of integral operators on BC(X, E) defined as follows:
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Let Y be a separable topological space and let µ be a Borel measure on Y . Let
{ξα,λ : α ∈ D, λ ∈ Λ} be a family of continuous mappings from Y to X and let
A = {χα,λ(x; ·) : α ∈ D, λ ∈ Λ, x ∈ X} be a family of functions in L1(Y, µ),
which denotes the Banach space of all µ-integrable functions χ on Y with the norm

‖χ‖1 =
∫

Y
|χ(y)| dµ(y).

Then we define an integral operator by the form

(1) Kα,λ(F )(x) =
∫

Y
χα,λ(x; y)F (ξα,λ(y)) dµ(y) (F ∈ BC(X, E)),

which exists as a Bochner integral. In [12] we studied the convergence of equi-
uniform approximation processes of integral operators defined by (1).

The purpose of this paper is to give quantitative estimates of the rate of its con-
vergence in terms of the modulus of continuity of functions to be approximated and
higher order absolute moments of approximate kernels. Consequently, the results
obtained in this paper are refinements of the estimates of the degree of approximation
given in [13]. Furthermore, applications are presented for various summation pro-
cesses, interpolation type operators, convolution type operators, and several concrete
examples of approximating operators are also provided.

2. AUXILIARY RESULTS

Let (Z, ρ) be a metric space. Let F be a bounded mapping from X to Z. Then
we define

ω(F, δ) = ω(X, Z; F, δ) = sup{ρ(F (x), F (t)) : x, t ∈ X, d(x, t) ≤ δ} (δ ≥ 0),

which is called the modulus of continuity of F .

Lemma 2.1. If ω is a nonnegative, monotone increasing subadditive function
on [0,∞), then ω(ξδ) ≤ (1 + ξ)ω(δ) for all ξ, δ ≥ 0.

Proof. It follows from induction on n that ω(nδ) ≤ nω(δ) for all n ∈ N

and all δ ≥ 0. Therefore, if ξ ≥ 1, then denoting the largest positive integer not
exceeding ξ by m, we have ω(ξδ) ≤ ω((m + 1)δ) ≤ (m + 1)ω(δ) ≤ (ξ + 1)ω(δ).
If 0 ≤ ξ < 1, then ω(ξδ) ≤ ω(δ) ≤ (1 + ξ)ω(δ).

(X, d) is said to be quasi-convex if x, y ∈ X, d(x, y)≤ a+ b, a, b ≥ 0, (a, b) �=
(0, 0), then there exists a point z ∈ X such that d(x, z) ≤ a and d(z, y) ≤ b. Let
(T, τ) be a metric linear space. If τ(x, y) = τ(x + z, y + z) for all x, y, z ∈ T ,
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then τ is called a translation invariant metric function. A real-valued function ϕ on
a linear space V is said to be starshaped if ϕ(βx) ≤ βϕ(x) for all x ∈ V and all
β ∈ [0, 1].

Lemma 2.2. Let (T, τ) be a translation invariant metric linear space such
that τ(·, 0) is starshaped on T . If W is a convex subset of T , then (W, τ) is
quasi-convex.

Proof. Let x, y ∈ W, τ(x, y) ≤ a + b, a, b ≥ 0, (a, b) �= (0, 0). Then we take
z = (b/(a + b))x + (a/(a + b))y, which belongs to W . Now, we have

τ(x, z) = τ
(
x − b

a + b
x,

a

a + b
y
)

= τ
( a

a + b
(x − y), 0) ≤ a

a + b
τ(x− y, 0) ≤ a

and similarly, the inequality τ(z, y) ≤ b holds.

Lemma 2.3. If (X, d) is quasi-convex, then ω(F, ·) is subadditive on [0,∞).

Proof. Suppose that x, t ∈ X, d(x, t) ≤ δ1 + δ2, δ1, δ2 ≥ 0, (δ1, δ2) �= (0, 0)
and x �= t. We put ξ = d(x, t)/(δ1 + δ2). Then by the quasi-convexity of d,
there exists a point z ∈ X such that d(x, z) ≤ ξδ1 ≤ δ1 and d(z, t) ≤ ξδ2 ≤ δ2.
Therefore, we have

ρ(F (x), F (t)) ≤ ρ(F (x), F (z)) + ρ(F (z), F (t)) ≤ ω(F, δ1) + ω(F, δ2),

which always holds for x = t. Thus we have ω(F, δ1 + δ2) ≤ ω(F, δ1) + ω(F, δ2),
which holds also for δ1 = δ2 = 0.

Now, we consider the following condition: There exist constants C ≥ 1 and
K > 0 such that

(2) ω(F, ξδ) ≤ (C + Kξ)ω(F, δ)

for every bounded mapping F from X to Z and for every ξ, δ ≥ 0.
The following lemma gives sufficient condition such that (2) holds with C =

K = 1, which can be more convenient for later applications and generalizes [10,
Lemma 3]:

Lemma 2.4.

(a) If (X, d) is quasi-convex, then (2) holds with C = K = 1.

(b) If X is a convex subset of a metric linear space with the translation invariant
metric function d and if d(·, 0) is starshaped, then (2) holds with C = K = 1.
In particular, if X is a convex subset of a normed linear space, then (2) holds
with C = K = 1.



444 Toshihiko Nishishiraho

Proof. Let ω(·) = ω(F, ·). Then Part (a) follows from Lemmas 2.1 and 2.3.
Also, Part (b) follows from Lemma 2.2 and Part (a).

Let V (X, E) denote the linear space of all E-valued functions on X . For any
scalar-valued function v on X and a ∈ E , we define (v ⊗ a)(x) = v(x)a for all
x ∈ X . 1X denotes the unit function defined by 1X(x) = 1 for all x ∈ X . Let
A(X, E) be a linear subspace of V (X, E) and let ϕ be a mapping from A(X, E)
to E . A positive linear functional ν on A(X, R) is called a majorant (or dominant)
functional of ϕ if ‖ϕ(F )‖ ≤ ν(v) whenever F ∈ A(X, E), v ∈ A(X, R) satisfy

(3) ‖F (t)‖ ≤ v(t) for all t ∈ X.

Let L be a mapping from A(X, E) to V (X0, E). A positive linear operator S

from A(X, R) to V (X0, R) is called a majorant (or dominant ) operator of L if (3)
implies that ‖L(F )(x)‖ ≤ S(v)(x) for all x ∈ X0.

From now on, in order to achieve our purpose we suppose that Z = E, ρ(x, t) =
‖x − t‖ (x, t ∈ Z) and that (2) holds.

Lemma 2.5. Let ϕ be a mapping from A(X, E) to E having a majorant func-
tional ν. Let p ≥ 1 and x ∈ X . Suppose that

{1X ⊗ a : a ∈ E} ⊆ A(X, E), {1X , d(x, ·), dp(x, ·)} ⊆ A(X, R).

Then for all F ∈ A(X, E) and all δ > 0,

(4) ‖ϕ(F − 1X ⊗ F (x))‖ ≤ (Cν(1X) + Kmν(x; p, δ))ω(F, δ),

where

mν(x; p, δ) = min{δ−pν(dp(x, ·)), δ−1ν(1X)1−1/pν(dp(x, ·))1/p}.

Proof. Let t ∈ X . If d(x, t) > δ, then by (2) we have

‖F (t) − F (x)‖ ≤ (C + Kδ−pdp(x, t))ω(F, δ),

which always holds for d(x, t) ≤ δ on account of C ≥ 1. Therefore, we have

(5) ‖ϕ(F − 1X ⊗ F (x))‖ ≤ (Cν(1X) + Kδ−pν(dp(x, ·)))ω(F, δ).

On the other hand, since

‖F (t) − F (x)‖ ≤ (C + Kδ−1d(x, t))ω(F, δ),

using Hölder’s inequality we get

‖ϕ(F − 1X ⊗ F (x))‖ ≤ (Cν(1X) + Kδ−1ν(dp(x, ·))1/pν(1X)1−1/p)ω(F, δ),
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which together with (5) establishes (4) for p > 1. If p = 1, then (5) is clearly
identical with (4).

Lemma 2.6. Let L be a mapping from A(X, E) to V (X0, E) having a majorant
operator S and let p ≥ 1. Suppose that

{1X ⊗a : a ∈ E} ⊆ A(X, E), {1X}∪{d(x, ·), dp(x, ·) : x ∈ X0} ⊆ A(X, R).

Then for all F ∈ A(X, E), x∈ X0 and all δ > 0,

‖L(F − 1X ⊗ F (x))(x)‖ ≤ (CS(1X)(x) + KmS(x; p, δ))ω(F, δ),

where

mS(x; p, δ) = min{δ−pS(dp(x, ·))(x), δ−1(S(1X)(x))1−1/p(S(dp(x, ·))(x))1/p}.

Proof. Let x ∈ X0 be fixed. Then we apply Lemma 2.5 to ϕ(·) = L(·)(x) and
ν(·) = S(·)(x).

Note that Lemma 2.6 generalizes [4, Theorem 2.1] and improves the estimate
by means of higher order absolute moments.

Lemma 2.7. Let {χ(x; ·) : x ∈ X} be a family of functions in L1(Y, µ), τ a
continuous mapping from Y to X and p ≥ 1. Assume that χ(x; ·)d p(x, τ(·)) ∈
L1(Y, µ) for each x ∈ X0. Then for all F ∈ BC(X, E), x ∈ X0 and all δ > 0,∥∥∥∫

Y
χ(x; y)(F (τ(y))− F (x)) dµ(y)

∥∥∥ ≤ (C‖χ(x; ·)‖1 + Kc(x; p, δ))ω(F, δ),

where

c(x; p, δ)=min
{
δ−p‖χ(x;·)dp(x,τ(·))‖1, δ−1‖χ(x; ·)‖1−1/p

1 ‖χ(x;·)dp(x, τ(·))‖1/p
1

}
.

Proof. Let x ∈ X0 be fixed. Let

A(X, E) := {F ∈ C(X, E) : χ(x; ·)‖F (τ(·))‖ ∈ L1(Y, µ)}

and
A(X, R) := {u ∈ C(X, R) : χ(x; ·)u(τ(·)) ∈ L1(Y, µ)}.

Then by the hypotheses, 1X and dp(x, ·) belong to A(X, R), and so Hölder’s in-
equality implies d(x, ·) ∈ A(X, R). Now, we define

ϕ(F ) =
∫

Y
χ(x; y)F (τ(y)) dµ(y) (F ∈ A(X, E))
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and
ν(u) =

∫
Y
|χ(x; y)|u(τ(y)) dµ(y) (u ∈ A(X, R)).

Then ν is a majorant functional of ϕ, and so applying Lemma 2.5 to F ∈ BC(X, E)
(⊂ A(X, E)) we obtain the desired result.

3. DEGREE OF EQUI-UNIFORM APPROXIMATION

Let p ≥ 1 be any fixed real number. We suppose that

χα,λ(x; ·)dp(x, ξα,λ(·)) ∈ L1(Y, µ)

for each α ∈ D, λ ∈ Λ and for each x ∈ X0 and define

µα,λ(x; p) = ‖χα,λ(x; ·)dp(x, ξα,λ(·))‖1,

which is called the pth absolute moment of χα,λ(x; ·). Furthermore, we asuume
that for each α ∈ D,

cα := sup{‖χα,λ(x; ·)‖1 : λ ∈ Λ, x ∈ X0} < ∞

and
0 < µα(p) := (sup{µα,λ(x; p) : λ ∈ Λ, x ∈ X0})1/p < ∞.

For any α ∈ D, F ∈ BC(X, E) we define

γα = sup
{∣∣∣∫

Y
χα,λ(x; y) dµ(y)− 1

∣∣∣ : λ ∈ Λ, x ∈ X0

}
,

Eα(F ) = sup{‖Kα,λ(F )(x)− F (x)‖ : λ ∈ Λ, x ∈ X0}
and

‖F‖S = sup{‖F (x)‖ : x ∈ S} (S ⊆ X).

Obviously, K is an equi-uniform approximation process on BC(X, E) if and only
if limα Eα(F ) = 0 for every F ∈ BC(X, E).

If χα,λ(x; y) ≥ 0 (µ-a.e. y ∈ Y ) for all α ∈ D, λ ∈ Λ and all x ∈ X0, then A

is said to be positive. If ∫
Y

χα,λ(x; y) dµ(y) = 1

for all α ∈ D, λ ∈ Λ and all x ∈ X0, then A is said to be normal.
From now on, let {εα}α∈D be a net of positive real numbers.
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Theorem 3.1. For all F ∈ BC(X, E) and all α ∈ D,

(6) Eα(F ) ≤ ‖F‖X0γα + γα(p)ω(F, εαµα(p)),

where

γα(p)=sup{C‖χα,λ(x; ·)‖1+K min{ε−1
α ‖χα,λ(x; ·)‖1−1/p

1 , ε−p
α } : λ∈Λ, x ∈ X0}.

In particular, if A is positive and normal, then

Eα(F ) ≤ (C + K min{ε−1
α , ε−p

α })ω(F, εαµα(p)).

Proof. Let F ∈ BC(X, E) and x ∈ X0. Then for all α ∈ D, λ ∈ Λ we have

(7) ‖Kα,λ(F )(x)− F (x)‖ ≤
∣∣∣∫

Y
χα,λ(x; y) dµ(y)− 1

∣∣∣‖F (x)‖

+
∥∥∥ ∫

Y
χα,λ(x; y)(F (ξα,λ(y))− F (x)) dµ(y)

∥∥∥ = J
(1)
α,λ(x) + J

(2)
α,λ(x),

say. Obviously, we have J
(1)
α,λ(x) ≤ γα‖F‖X0 . Now, applying Lemma 2.7 to

χ(x; ·) = χα,λ(x; ·) and τ = ξα,λ, we obtain

J
(2)
α,λ(x) ≤ (C‖χα,λ(x; ·)‖1 + Kcα,λ(x; p, δ))ω(F, δ) (δ > 0),

where

cα,λ(x; p, δ) = min{δ−pµα,λ(x; p), δ−1‖χα,λ(x; ·)‖1−1/p
1 µα,λ(x; p)1/p}

≤ min{δ−pµα(p)p, δ−1‖χα,λ(x; ·)‖1−1/p
1 µα(p)}.

Putting δ = εαµα(p) in the above inequality and taking the supremum over all
λ ∈ Λ and all x ∈ X0, (7) establishes the desired estimate (6).

Let Φ be a nonnegative real-valued function on X0 × X and let s > 0. If

χα,λ(x; ·)Φs(x, ξα,λ(·)) ∈ L1(Y, µ) (α ∈ D, λ ∈ Λ, x ∈ X0),

then µα,λ(Φ; x; s) := ‖χα,λ(x; ·)Φs(x, ξα,λ(·))‖1 is called the sth absolute moment
of χα,λ(x; ·) with respect to Φ.

Suppose that there exist positive constants q and κ such that

(8) dq(x, t) ≤ κΦ(x, t) for all (x, t) ∈ X0 × X

and that

0 < µα(Φ; p/q) := (sup{µα,λ(Φ; x; p/q) : λ ∈ Λ, x ∈ X0})1/p < ∞
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is satisfied.

Theorem 3.2. For all F ∈ BC(X, E) and all α ∈ D,

(9) Eα(F ) ≤ ‖F‖X0γα + γα(p, q)ω(F, εαµα(Φ; p/q)),

where

γα(p, q)

= sup{C‖χα,λ(x;·)‖1+K min{κ1/qε−1
α ‖χα,λ(x;·)‖1−1/p

1 , κp/qε−p
α } :λ∈Λ, x∈X0}.

In particular, if A is positive and normal, then

Eα(F ) ≤ (C + K min{κ1/qε−1
α , κp/qε−p

α })ω(F, εαµα(Φ; p/q)).

Proof. By (8), we have

µα,λ(x; p) ≤ κp/qµα,λ(Φ; x; p/q) (α ∈ D, λ ∈ Λ, x ∈ X0),

which implies µα(p) ≤ κ1/qµα(Φ; p/q). Therefore, by putting κ−1/qεα instead of
εα, the desired estimate (9) follows from (6).

In the rest of this section, we restrict the integral operators Kα,λ defined by (1)
to the subclass of BC(X, E) as follows:

Let E0 be a subset of E and T = {T (x) : x ∈ X} a family of mappings from E0

to E such that for each f ∈ E0, the mapping x �→ T (x)(f) is strongly continuous
and bounded on X and let Lα,λ denote the restriction of Kα,λ to {T (·)(f) : f ∈ E0},
i.e.,

(10) Lα,λ(x)(f) =
∫

Y
χα,λ(x; y)T (ξα,λ(y))(f) dµ(y) (f ∈ E0).

Shaw [15] considered the special case of (10) in the setting of certain spaces of
operator-valued functions and obtained several representation formulas for strongly
continuous semigroups of bounded linear operators on Banach spaces.

The family L = {Lα,λ(x) : α ∈ D, λ ∈ Λ, x ∈ X} is called an equi-uniform
T-approximation process on E0 if for every f ∈ E0,

(11) lim
α

‖Lα,λ(x)(f)− T (x)(f)‖ = 0 uniformly in λ ∈ Λ, x ∈ X0.

Concerning the rate of convergence behavior of (11), we define

ω
T
(f, δ) = sup{‖T (x)(f)−T (t)(f)‖ : x, t ∈ X, d(x, t) ≤ δ} (f ∈ E0, δ ≥ 0),
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which is called the modulus of continuity of f associated with T, and

eα(f) = sup{‖Lα,λ(x)(f)− T (x)(f)‖ : λ ∈ Λ, x ∈ X0}.

Now, since

ωT(f, δ) = ω(T (·)(f), δ), eα(f) = Eα(T (·)(f)) (f ∈ E0, δ ≥ 0, α ∈ D),

Theorems 3.1 and 3.2 establish the following results which estimate the rate of
convergence of the equi-uniform T-approximation process L on E0:

Corollary 3.3. For all f ∈ E0 and all α ∈ D,

eα(f) ≤ ‖T (·)(f)‖X0γα + γα(p)ωT(f, εαµα(p)).

In particular, if A is positive and normal, then

eα(f) ≤ (C + K min{ε−1
α , ε−p

α })ωT(f, εαµα(p)).

Corollary 3.4. For all f ∈ E0 and all α ∈ D,

eα(f) ≤ ‖T (·)(f)‖X0γα + γα(p, q)ω
T
(f, εαµ(Φ; p/q)).

In particular, if A is positive and normal, then

eα(f) ≤ (C + K min{κ1/qε−1
α , κp/qε−p

α })ω
T
(f, εαµα(Φ; p/q)).

4. EQUI-UNIFORM SUMMATION PROCESSES

Let A = {a(λ)
α,m : α ∈ D, m ∈ N0, λ ∈ Λ} be a family of scalars. A is said to

be regular if it satisfies the following conditions:

(A−1) For each m ∈ N0, limα a
(λ)
α,m = 0 uniformly in λ ∈ Λ.

(A−2) limα

∞∑
m=0

a
(λ)
α,m = 1 uniformly in λ ∈ Λ.

(A−3) For each α ∈ D, λ ∈ Λ, a
(λ)
α :=

∑∞
m=0 |a(λ)

α,m| < ∞, and there exists α0 ∈ D

such that sup{a(λ)
α : α ≥ α0, α ∈ D, λ ∈ Λ} < ∞.

A is said to be stochastic if

a(λ)
α,m ≥ 0 (α ∈ D, m ∈ N0, λ ∈ Λ) and

∞∑
m=0

a(λ)
α,m = 1 (α ∈ D, λ ∈ Λ).
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Obviously, if A is stochastic, then Conditions (A-2) and (A-3) are automatically
satisfied.

A sequence {fm}m∈N0 of elements in E is said to be A-summable to f if

(12) lim
α

‖
∞∑

m=0

a(λ)
α,mfm − f‖ = 0 uniformly in λ ∈ Λ,

where it is assumed that the series in (12) converges for each α ∈ D and λ ∈ Λ.
Concerning the relation between the regularity of A and A-summability, A is

regular if and only if every convergent sequence in E is A-summable to its limit
(cf. [1, 9]). Also, for several important examples of generic entories a

(λ)
α,m of A

with D = N0, see [9] (cf. [1, 5, 7, 14]).
Now, let {ξn}n∈N0 be a sequence of continuous mappings from Y to X and let

{χn(x; ·) : n ∈ N0, x ∈ X} be a family of functions in L1(Y, µ) such that

bα,λ(x) :=
∞∑

m=0

∫
Y
|a(λ)

α,mχm(x; y)| dµ(y) < ∞ (α ∈ D, λ ∈ Λ, x ∈ X).

We define

(13) Kn(F )(x) =
∫

Y

χn(x; y)F (ξn(y)) dµ(y) (F ∈ BC(X, E))

and

(14) Ln(x)(f) =
∫

Y

χn(x; y)T (ξn(y))(f) dµ(y) (f ∈ E0).

The sequence {Kn}n∈N0 is called an equi-uniform A-summation process on BC(X,
E) if the family K = {Kα,λ : α ∈ D, λ ∈ Λ} is an equi-uniform approximation
process on BC(X, E), where each Kα,λ is defined by

(15) Kα,λ(F )(x) =
∞∑

m=0

a(λ)
α,mKm(F )(x) (F ∈ BC(X, E)).

The family {Ln(x) : n ∈ N0, x ∈ X} is called an equi-uniform T-A-summation
process on E0 if the family L = {Lα,λ(x) : α ∈ D, λ ∈ Λ, x ∈ X} is an equi-
uniform T-approximation process on E0, where each Lα,λ(x) is defined by

(16) Lα,λ(x)(f) =
∞∑

m=0

a(λ)
α,mLm(x)(f) (f ∈ E0).

Let Kα,λ and Lα,λ be defined by (15) and (16), respectively. Let p ≥ 1 and
suppose that χn(x; ·)dp(x, ξn(·)) ∈ L1(Y, µ) for all n ∈ N0 and all x ∈ X0.



Quantitative Equi-Uniform Approximation Processes of Integral Operators in Banach Spaces 451

Theorem 4.1. Let {εα}α∈D be a net of positive real numbers. Then for all
F ∈ BC(X, E) and all α ∈ D,

(17) Eα(F ) ≤ ‖F‖X0τα + τα(p)ω(F, εανα(p)),

where

τα = sup
{∣∣ ∞∑

m=0

a(λ)
α,m

∫
Y

χm(x; y) dµ(y)− 1
∣∣ : λ ∈ Λ, x ∈ X0

}
,

τα(p) = sup{Cbα,λ(x) + K min{ε−p
α , ε−1

α bα,λ(x)1−1/p} : λ ∈ Λ, x ∈ X0}
and

να(p) =
(
sup

{ ∞∑
m=0

|a(λ)
α,m|‖χm(x; ·)dp(x, ξm(·))‖1 : λ ∈ Λ, x ∈ X0

})1/p
.

Proof. For all λ ∈ Λ and all x ∈ X0, we have

(18)

‖Kα,λ(F )(x)−F (x)‖≤
∞∑

m=0

|a(λ)
α,m|

∥∥∥∫
Y

χm(x; y)(F (ξm(y))−F (x)) dµ(y)
∥∥∥

+
∣∣∣ ∞∑
m=0

a(λ)
α,m

∫
Y

χm(x; y) dµ(y)− 1
∣∣∣‖F (x)‖ = I

(1)
α,λ(x) + I

(2)
α,λ(x),

say. Obviously, we have I
(2)
α,λ(x) ≤ τα‖F‖X0. Taking χ(x; ·) = χm(x; ·) and

τ = ξm in Lemma 2.7, we get

(19) I
(1)
α,λ(x) ≤

(
Cbα,λ(x) + K

∞∑
m=0

|a(λ)
α,m|cm(x; p, δ)

)
ω(F, δ) (δ > 0),

where

cm(x; p, δ)

= min{δ−p‖χm(x;·)dp(x, ξm(·))‖1, δ
−1‖χm(x; ·)‖1−1/p

1 ‖χm(x;·)dp(x, ξm(·))‖1/p
1 }.

Now, if p > 1, then by Hölder’s inequality we have

∞∑
m=0

|a(λ)
α,m|‖χm(x; ·)‖1−1/p

1 ‖χm(x; ·)dp(x; ξm(·))‖1/p
1

≤
( ∞∑

m=0

|a(λ)
α,m|‖χm(x; ·)‖1

)1−1/p( ∞∑
m=0

|a(λ)
α,m|‖χm(x; ·)dp(x, ξm(·))‖1

)1/p
,
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which clearly holds for p = 1. Therefore, we have
∞∑

m=0

|a(λ)
α,m|cm(x; p, δ) ≤ min{δ−pνα(p)p, δ−1bα,λ(x)1−1/pνα(p)},

which together with (19) implies

I
(1)
α,λ(x) ≤ (Cbα,λ(x) + K min{δ−pνα(p)p, δ−1bα,λ(x)1−1/pνα(p)})ω(F, δ).

Putting δ = εανα(p) in the above inequality and taking the supremum over all
λ ∈ Λ and all x ∈ X0 in (18), we obtain the desired estimate (17).

Corollary 4.2. Let {εα}α∈D, τα, τα(p) and να(p) be as in Theorem 4.1. Then
for all f ∈ E0 and all α ∈ D,

eα(f) ≤ ‖T (·)(f)‖X0τα + τα(p)ωT(f, εανα(p)).

5. INTERPOLATION TYPE OPERATORS

Let Y be a finite set. Then the integral operators given by (1) and (10) reduce
to the interpolation type operators

(20) Kα,λ(F )(x) =
∑
y∈Y

χα,λ(x; y)F (ξα,λ(y)) (F ∈ BC(X, E))

and

(21) Lα,λ(x)(f) =
∑
y∈Y

χα,λ(x; y)T (ξα,λ(y))(f) (f ∈ E0),

respectively. Here we restrict ourselves to the following situation:
Let 1 ≤ s ≤ ∞ be fixed and let X be a convex subset of the r-dimensional

Euclidean space Rr with the metric

d(x, t) = ds(x, t) :=




( r∑
i=1

|xi − ti|s
)1/s (1 ≤ s < ∞)

max{|xi − ti| : 1 ≤ i ≤ r} (s = ∞),

where x = (x1, x2, . . . , xr), t = (t1, t2, . . . , tr) ∈ R
r. Therefore, by Lemma 2.4

(b), (2) holds with C = K = 1. For i = 1, 2, . . . , r, pi denotes the ith coordinate
function on R

r defined by pi(x) = xi for all x = (x1, x2, . . . , xr) ∈ R
r. Then we

have

dq
s(x, t) ≤ c(q, r, s)

r∑
i=1

|pi(x) − pi(t)|q (x, t ∈ R
r, q > 0),
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where

c(q, r, s) =




rq/s (1 ≤ s < ∞, s �= q)
1 (1 ≤ s < ∞, s = q)
1 (s = ∞).

Therefore, (8) holds with

κ = c(q, r, s), Φ(x, t) =
r∑

i=1

|pi(x) − pi(t)|q,

and so taking p = q in Theorems 3.2 and Corollary 3.4, we have the following
results which can be more convenient for later applications to the concrete examples
of interpolation type operators.

Theorem 5.1. Suppose that A is positive and normal. Let q ≥ 1 and let
{εα}α∈D be a net of positive real numbers. Then the following statements hold:

(a) For all F ∈ BC(X, E) and all α ∈ D,

Eα(F ) ≤ (1 + min{c(q, r, s)1/qε−1
α , c(q, r, s)ε−q

α })ω(F, εαζα(q)),

where

ζα(q)=
(
sup

{ r∑
i=1

(∑
y∈Y

χα,λ(x; y)|pi(x)−pi(ξα,λ(y))|q
)

:λ∈Λ, x ∈ X0

})1/q
.

(b) For all f ∈ E0 and all α ∈ D,

eα(f) ≤ (1 + min{c(q, r, s)1/qε−1
α , c(q, r, s)ε−q

α })ωT(f, εαζα(q)).

Let X = [0,∞)r be the region of the first hyperquadrant and let

mα,i : Λ → N, aα,i : Λ → [0,∞) (α ∈ D, i = 1, 2, . . . , r)

and

Iα,λ := {k = (k1, k2, . . . , kr) ∈ N
r
0 : 0 ≤ ki ≤ mα,i(λ), i = 1, 2, . . . , r}.

We define

χα,λ(x; k) =
r∏

i=1

(
mα,i(λ)

ki

)
xki

i (1− xi)mα,i(λ)−ki (x ∈ X, k ∈ Iα,λ)
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and
ξα,λ(k) = (aα,1(λ)k1, aα,2(λ)k2, . . . , aα,r(λ)kr) (k ∈ Iα,λ).

Then the interpolation type operators (20) and (21) generalize the r-dimensional
Bernstein operators, which are defined as follows (cf. [8, 12]):

Let Ir = [0, 1]r be the unit r-cube and let {νn,i}n∈N, i = 1, 2, . . . , r, be strictly
monotone increasing sequences of positive integers. Then we define

Bn(F )(x) =
νn,1∑
k1=0

νn,2∑
k2=0

· · ·
νn,r∑
kr=0

F
( k1

νn,1
,

k2

νn,2
, . . . ,

kr

νn,r

)

×
r∏

j=1

(
νn,j

kj

)
x

kj

j (1 − xj)νn,j−kj (F ∈ C(Ir, E), x ∈ Ir)

and

Cn(x)(f) =
νn,1∑
k1=0

νn,2∑
k2=0

· · ·
νn,r∑
kr=0

T
( k1

νn,1
,

k2

νn,2
, . . . ,

kr

νn,r

)
(f)

×
r∏

j=1

(
νn,j

kj

)
x

kj

j (1 − xj)νn,j−kj (f ∈ E0, x ∈ Ir).

Now, let X0 be a closed subset of Ir . Then we have

zα := ζα(2) =
(
sup

{ r∑
i=1

zα,i(λ, x) : λ ∈ Λ, x ∈ X0

})1/2
,

where

zα,i(λ, x) = (aα,i(λ)mα,i(λ)− 1)2p2
i (x) + a2

α,i(λ)mα,i(λ)pi(x)(1− pi(x)).

Therefore, applying Theorem 5.1 with q = 2 we obtain the following estimates:

(22) Eα(F )≤(1+min{
√

c(r, s)ε−1
α , c(r, s)ε−2

α })ω(F, εαzα) (F ∈BC(X, E));

(23) eα(f) ≤ (1 + min{
√

c(r, s)ε−1
α , c(r, s)ε−2

α })ωT(f, εαzα) (f ∈ E0).

Here

c(r, s) =

{
r2/s (1 ≤ s < ∞, s �= 2)
1 (s = 2,∞).

In particular, if mα,i(λ)aα,i(λ) = 1 for all α ∈ D, λ ∈ Λ and for i = 1, 2,

. . . , r, then (22) and (23) hold with

zα =
(
sup

{ r∑
i=1

1
mα,i(λ)

(pi(x)− p2
i (x)) : λ ∈ Λ, x ∈ X0

})1/2
.
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Therefore, for the Bernstein operators, we have

(24) ‖Bn(F ) − F‖X0 ≤ (1 + min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ω(F, εnθn)

and

(25) ‖Cn(·)(f)−T (·)(f)‖X0 ≤ (1+min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ωT(f, εnθn),

where {εn}n∈N is a sequence of positive integers and

θn :=
(
max

{ r∑
i=1

1
νn,i

(pi(x)− p2
i (x)) : x ∈ X0

})1/2
.

In paritucular, (24) and (25) yield the following estimates:

(26) ‖Bn(F ) − F‖Ir ≤ θn(r, s)ω
(
F, εn

√√√√ r∑
i=1

1
νn,i

)
;

(27) ‖Cn(·)(f)− T (·)(f)‖Ir ≤ θn(r, s)ωT

(
f, εn

√√√√ r∑
i=1

1
νn,i

)
.

Here

θn(r, s) := 1 + min
{√

c(r, s)
2εn

,
c(r, s)
4ε2n

}
.

Let {Ti(t) : t ∈ [0, 1], i = 1, 2, . . . , r} be a family of strongly continuous
mappings from E0 to itself such that for every t, u ∈ [0, 1], tTi(u) commutes with
(1− t)I , where I is the identity operator on E and Ti(v)n = Ti(nv) whenever v ∈
[0, 1], n ∈ N0 and nv ∈ [0, 1]. If T (x) =

∏r
i=1 Ti(xi) for all x = (x1, x2, . . . , xr) ∈

Ir, then

Cn(x)(f) =
r∏

i=1

(
(1−xi)I+xiTi

( 1
νn,i

))νn,i

(f) =
r∏

i=1

(
I+xi

(
Ti

( 1
νn,i

)−I
))νn,i

(f).

Therefore, the inequality (27) estimates the rate of convergence in [11, Theorem 5]
for r = 1, which improves the estimate in [3, Proposition 1.2.9] and furthermore, it
generalizes and improves the convergence rate in [4, Theorem 1.1]. Also, we note
that in view of Lemma 2.6, other results of [4] can be generalized and improved by
the same argument as the above manner.

Suppose that A is stochastic, and let {�n}n∈N0 be a sequence of positive integers.
We define

Kα,λ(F )(x) =
∞∑

n=0

a(λ)
α,nB�n (F )(x) (F ∈ C(Ir, E), x ∈ Ir)
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and

Lα,λ(x)(f) =
∞∑

n=0

a(λ)
α,nC�n(x)(f) (f ∈ E0, x ∈ Ir).

Then we have the following estimates:

(28)
Eα(F ) ≤ (1 + min{√c(r, s)ε−1

α , c(r, s)ε−2
α })ω(F, εαηα);

eα(f) ≤ (1 + min{√c(r, s)ε−1
α , c(r, s)ε−2

α })ωT(f, εαηα).

Here

ηα :=
(
sup

{ ∞∑
n=0

a(λ)
α,nθ2

�n
: λ ∈ Λ

})1/2
.

Indeed, we have

ν2
α(2) ≤ sup

{ ∞∑
n=0

a(λ)
α,n

(
c(r, s)

r∑
i=1

pi(x)− p2
i (x)

ν�n,i

)
: λ ∈ Λ, x ∈ X0

}
= c(r, s)η2

α,

and so, by putting c(r, s)−1/2εα instead of εα, (28) follows from Lemma 2.4 (b)
and Theorem 4.1.

The statements analogous to the above results hold for the following settings:
Let X0 be a closed subset of ∆r, where

∆r := {x = (x1, x2, . . . , xr) ∈ R
r : xi ≥ 0, i = 1, 2, . . . , r,

r∑
i=1

xi ≤ 1}

is the standard r-simplex;

Iα,λ := {k = (k1, k2, . . . , kr) ∈ N
r
0 : k1 + k2 + · · ·+ kr ≤ mα(λ)};

χα,λ(x; k) :=
(

mα(λ)
k

) r∏
i=1

xki
i

(
1−

r∑
j=1

xj

)mα(λ)−Σr
j=1kj (x ∈ X, k ∈ Iα,λ),

where mα : Λ → N, and(
mα(λ)

k

)
:=

mα(λ)!
k1!k2! · · ·kr!(mα(λ)− k1 − k2 − · · · − kr)!

;

ξα,λ(k) := (aα,1(λ)k1, aα,2(λ)k2, . . . , aα,r(λ)kr) (k ∈ Iα,λ).

Next, let X = [−1, 1]r and let X0 be a closed subset of X . Let Qn(t) =
cos(n arccos t) be the Chebyshev polynomial of degree n, and let tn,j , j = 1, 2, . . . , n,
be zeros of Qn(t), i.e.,

tn,j = cos
(2j − 1

2n
π
)
, (j = 1, 2, . . . , n).
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Let
mα,i : Λ → N, aα,i : Λ → [−1, 1] (α ∈ D, i = 1, 2, . . . , r)

and let

Nα,λ := {k = (k1, k2, . . . , kr) ∈ N
r : 1 ≤ ki ≤ mα,i(λ), i = 1, 2, . . . , r}.

We define

χα,λ(x; k) =
r∏

i=1

χmα,i(λ)(xi; ki) (x ∈ X, k ∈ Nα,λ),

where

χmα,i(λ)(xi; ki) = (1− xitmα,i(λ),ki
)
{ Qmα,i(λ)(xi)

mα,i(λ)(xi − tmα,i(λ),ki
)

}2

and

ξα,λ(k) = (aα,1(λ)tmα,1(λ),k1
, . . . , aα,r(λ)tmα,r(λ),kr

) (k ∈ Nα,λ).

Then the interpolation type operators (20) and (21) generalize the r-dimensinal
Hermite-Fejér operators, which are defined as follows:

We define

Hn(F )(x) =
νn,1∑
k1=1

νn,2∑
k2=1

· · ·
νn,r∑
kr=1

F (tνn,1 ,k1, tνn,2,k2 , . . . , tνn,r ,kr)

×
r∏

j=1

(1 − xjtνn,j ,kj )
{ Qνn,j (xj)

νn,j(xj − tνn,j ,kj)

}2
(F ∈ C(X, E), x ∈ X)

and

Gn(x)(f) =
νn,1∑
k1=1

νn,2∑
k2=1

· · ·
νn,r∑
kr=1

T (tνn,1,k1 , tνn,2,k2, . . . , tνn,r ,kr)(f)

×
r∏

j=1

(1− xjtνn,j ,kj )
{ Qνn,j (xj)

νn,j(xj − tνn,j ,kj)

}2
(f ∈ E0, x ∈ X).

Now, we have

yα := ζα(2) =
(
sup

{ r∑
i=1

yα,i(λ, x) : λ ∈ Λ, x ∈ X0

})1/2
,
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where

yα,i(λ, x) =
Q2

mα,i(λ)(xi)

mα,i(λ)
− 2xi(aα,i(λ)− 1)

mα,i(λ)∑
ki=1

tmα,i(λ),ki
χmα,i(λ)(xi; ki)

+ (a2
α,i(λ)− 1)

mα,i(λ)∑
ki=1

tmα,i(λ),ki

2χmα,i(λ)(xi; ki).

Therefore, applying Theorem 5.1 with q = 2 we get the following estimates:

(29) Eα(F ) ≤ (1 + min{
√

c(r, s)ε−1
α , c(r, s)ε−2

α })ω(F, εαyα);

(30) eα(f) ≤ (1 + min{
√

c(r, s)ε−1
α , c(r, s)ε−2

α })ωT(f, εαyα).

In particular, if aα,i(λ) = 1 for all α ∈ D, λ ∈ Λ and for i = 1, 2, . . . , r, then (29)
and (30) hold with

yα =
(
sup

{ r∑
i=1

(Qmα,i(λ) ◦ pi)2(x)
mα,i(λ)

: λ ∈ Λ, x ∈ X0

})1/2
.

Therefore, for the Hermite-Fejér operators, (29) and (30) yield

‖Hn(F ) − F‖X0 ≤ (1 + min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ω(F, εnτn)

and

‖Gn(·)(f)− T (·)(f)‖X0 ≤ (1 + min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ωT(f, εnτn),

respectively, where

τn =
(
max

{ r∑
i=1

(Qνn,i ◦ pi)2(x)
νn,i

: x ∈ X0

})1/2
.

In particular, the following estimates hold:

‖Hn(F ) − F‖X ≤ (1 + min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ω
(
F, εn

√√√√ r∑
i=1

1
νn,i

)
;

‖Gn(·)(f)−T (·)(f)‖X≤(1+min{
√

c(r, s)ε−1
n , c(r, s)ε−2

n })ωT

(
f, εn

√√√√ r∑
i=1

1
νn,i

)
.
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Suppose again that A is stochastic, and we define

Kα,λ(F )(x) =
∞∑

n=0

a(λ)
α,nH�n(F )(x) (F ∈ C(X, E), x ∈ X)

and

Lα,λ(x)(f) =
∞∑

n=0

a(λ)
α,nG�n(x)(f) (f ∈ E0, x ∈ X).

Then we have the following estimates:

(31)
Eα(F ) ≤ (1 + min{√c(r, s)ε−1

α , c(r, s)ε−2
α })ω(F, εαδα);

eα(f) ≤ (1 + min{√c(r, s)ε−1
α , c(r, s)ε−2

α })ωT(f, εαδα).

Here

δα =
(
sup

{ ∞∑
n=0

a(λ)
α,nτ2

�n
: λ ∈ Λ

})1/2
.

Indeed, we have

ν2
α(2) ≤ sup

{ ∞∑
n=0

a(λ)
α,n

(
c(r, s)

r∑
i=1

(Qν�n,i
◦ pi)2(x)

ν�n,i

)
: λ ∈ Λ, x ∈ X0

}
= c(r, s)δ2

α,

and so, by putting c(r, s)−1/2εα instead of εα, (31) follows from Lemma 2.4 (b)
and Theorem 4.1.

6. CONVOLUTION TYPE OPERATORS

In this section, we treat the equi-uniform A-summation processes of convolution
type operators defined by (13) and (14) with (15) and (16), where X = Y is a
convex subset of Rr with the metric d = ds, 1 ≤ s ≤ ∞, defined in Section 5 and
ξn(y) = y for all n ∈ N0 and all y ∈ X . Here we suppose that A is stochastic.

Let c > 0 and let {gn}n∈N0 be a sequence of nonnegative even continuous
functions on [−c, c] such that

∫ c
−c gn(t) dt = 1 for all n ∈ N0. Let

X =
r∏

i=1

[ai, bi], 0 < bi − ai ≤ c, i = 1, 2, . . . , r

and

X0 =
r∏

i=1

[ai + δi, bi − δi], 0 < δi <
1
2
(bi − ai), i = 1, 2, . . . , r.
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We define

χn(x; y) =
r∏

i=1

(gn ◦ pi)(x− y) (x, y ∈ X, n ∈ N0).

Let {εα}α∈D be a net of positive real numbers.

Theorem 6.1.

(a) For all F ∈ C(X, E) and all α ∈ D,

Eα(F ) ≤ ‖F‖X0ζ
2
α

r∑
i=1

1
δ2
i

+ (1+min{
√

rc(r, s)ε−1
α , rc(r, s)ε−2

α })ω(F, εαζα),

where

ζα =
(
sup

{ ∞∑
m=0

a(λ)
α,m

∫ c

−c
t2gm(t) dt : λ ∈ Λ

})1/2
.

(b) For all f ∈ E0 and all α ∈ D,

eα(f) ≤ ‖T (·)(f)‖X0ζ
2
α

∑r
i=1

1
δ2
i

+ (1 + min{√rc(r, s)ε−1
α , rc(r, s)ε−2

α })ωT(f, εαζα).

Proof. By [11, Lemma 4], we have∫
X

χn(x; y)dy ≤ 1 (n ∈ N0, x ∈ X),

0 ≤ 1 −
∫

X
χn(x; y) ≤

(∫ c

−c
t2gn(t) dt

) r∑
i=1

1
δ2
i

(n ∈ N0, x ∈ X0)

and ∫
X

χn(x; y)d2
2(x, y) dy ≤ r

∫ c

−c
t2gn(t) dt (n ∈ N0, x ∈ X).

Therefore, we obtain bα,λ(x) ≤ 1,

τα = sup
{ ∞∑

m=0

a(λ)
α,m

(
1 −

∫
X

χm(x; y) dy
)

: λ ∈ Λ, x ∈ X0

}
≤ ζ2

α

r∑
i=1

1
δ2
i

and

ν2
α(2) = sup

{ ∞∑
m=0

a(λ)
α,m

∫
X

χm(x; y)d2
s(x, y) dy : λ ∈ Λ, x ∈ X0

}
≤ rc(r, s)ζ2

α.
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Thus, by selecting p = 2 and by putting (rc(r, s))−1/2εα instead of εα, the desired
result follows from Theorem 4.1 and Lemma 2.4 (b).

Let ϕ be a nonnegative, continuous even function on [−c, c] such that ϕ is
decreasing on [0, c] and

ϕ(0) = 1, 0 ≤ ϕ(t) < 1 (0 < t ≤ c).

We define

gn(t) = ρnϕn(t) (|t| ≤ c), where ρn =
(∫ c

−c
ϕn(t) dt

)−1
(n ∈ N0).

Then we have

χn(x; y) = ρr
n

r∏
i=1

(ϕn ◦ pi)(x− y) (x, y ∈ X),

which reduce to the Korovkin kernels in case r = 1 (cf. [6]).

Corollary 6.2. Suppose that

(32) lim
t→+0

1 − ϕ(t)
tp

= q

for some p > 0 and q > 0. Then the following statements hold:

(a) For all F ∈ C(X, E) and all α ∈ D,

Eα(F ) ≤ Cϕ‖F‖X0η
2
α

r∑
i=1

1
δ2
i

+(1+min{
√

rc(r, s)Cϕ, rc(r, s)Cϕ})ω(F, ηα),

where
Cϕ = sup

{
(n + 1)2/p

∫ c

−c
t2gn(t) dt : n ∈ N0

}
and

ηα =
(
sup

{ ∞∑
m=0

a
(λ)
α,m

(m + 1)2/p
: λ ∈ Λ

})1/2
.

(b) For all f ∈ E0 and all α ∈ D,

eα(f) ≤ Cϕ‖T (·)(f)‖X0η
2
α

∑r
i=1

1
δ2
i

+ (1 + min{√rc(r, s)Cϕ, rc(r, s)Cϕ})ωT(f, ηα).
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Indeed, from the proof of [2, Theorem 1] (cf. [2, Lemma 2]), we see that Cϕ

is finite. Therefore, we have ζα ≤ √
Cϕηα for all α ∈ D. Thus, by selecting

εα = C
−1/2
ϕ , the desired result follows from Theorem 6.1.

For several important examples of ϕ satisfying Condition (32), see [2] and [12].
Next, we consider the convolution type operators for the whole space R

r. Let
{hn}n∈N0 be a sequence of nonnegative Lebesgue integrable functions on R such
that

∫
R

hn(t)dt = 1 for all n ∈ N0. Let X = Rr and we define

χn(x; y) =
r∏

i=1

(hn ◦ pi)(x − y) (x, y ∈ X, n ∈ N0).

Theorem 6.3. Let q ≥ 1.

(a) For all F ∈ BC(X, E) and all α ∈ D,

Eα(F ) ≤ (1 + min{(rc(q, r, s))1/qε−1
α , rc(q, r, s)ε−q

α })ω(F, εαθα(q)),

where

θα(q) =
(
sup

{ ∞∑
m=0

a(λ)
α,m

∫
R

|t|qhm(t) dt : λ ∈ Λ
})1/q

< ∞.

(b) For all f ∈ E0 and all α ∈ D,

eα(f) ≤ (1 + min{(r(c(q, r, s))1/qε−1
α , rc(q, r, s)ε−q

α })ωT(f, εαθα(q)).

Proof. We have∫
X

χn(x; y) dy = 1 (n ∈ N0, x ∈ X),

and so τα = 0 and bα,λ(x) = 1. Also, we have

∞∑
m=0

a(λ)
α,m

∫
X

χm(x; y)dq(x, y) dy≤c(q, r, s)
∞∑

m=0

a(λ)
α,m

r∑
i=1

∫
R

hm(xi−yi)|xi−yi|q dyi

= rc(q, r, s)
∞∑

m=0

a(λ)
α,m

∫
R

|t|qhm(t) dt,

and so νq
α(q)≤rc(q, r, s)θq

α(q). Thus,by taking p=q and by putting (rc(q,r,s))−1/qεα

instead of εα, the desired result follows from Lemma 2.4 (b) and Theorem 4.1.
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Let {kn}n∈N0 be a sequence of nonnegatve, even 2π-periodic, Lebesgue inte-
grable functions on R having Fourier series expansions

kn(t) ∼
∞∑

j=−∞
k̂n(j)eijt, k̂n(j) :=

1
2π

∫ π

−π
kn(t)e−ijt dt

with k̂n(0) = 1, and we define

hn(t) =




1
2π

kn(t) (|t| ≤ π)

0 (|t| > π).

Corollary 6.4.

(a) For all F ∈ BC(X, E) and all α ∈ D,

Eα(F ) ≤
(
1 + min

{
π

√
rc(r, s)

2
ε−1
α ,

π2rc(r, s)
2

ε−2
α

})
ω(F, εαηα),

where

ηα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(1 − k̂m(1)) : λ ∈ Λ

})1/2
.

(b) For all f ∈ E0 and all α ∈ D,

eα(f) ≤
(
1 + min

{
π

√
rc(r, s)

2
ε−1
α ,

π2rc(r, s)
2

ε−2
α

})
ωT(f, εαηα).

Indeed, by the inequality (2/π)t ≤ sin t (0 ≤ t ≤ π/2), we have∫ π

−π
t2km(t) dt ≤ π2

∫ π

−π
km(t) sin2 t

2
dt =

π2

2

∫ π

−π
(1−cos t)km(t) dt (m ∈ N0).

Thus, we have θα(2) ≤ (π/
√

2)ηα, and so putting (π/
√

2)−1εα instead of εα the
desired result follows from Theorem 6.3.

Note that by the same argument as the above proof, Theorem 6.1 is applied for
c = π and gn = (1/2π)kn, since ζα ≤ (π/

√
2)ηα.

Let (λn(j)) (n, j = 1, 2, . . .) be a lower triangular infinite matrix of real num-
bers and we define

k0(t) = 1, kn(t) = 1 + 2
n∑

j=1

λn(j) cos jt (n ∈ N, t ∈ R).
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Then applying Abel’s transformation twice to the function kn(t), we have

kn(t) =
n−1∑
j=0

(j + 1)Fj(t)∆2λn(j) + (n + 1)λn(n)Fn(t), λn(0) = 1,

where Fm(t) is the mth Fejér kernel and

∆2λn(j) = λn(j)− 2λn(j + 1) + λn(j + 2).

Therefore, if λn(n) ≥ 0 and {λn(j)}j∈N0 is convex, i.e., ∆2λn(j) ≥ 0 for all
j ∈ N0, then kn(t) is a nonnegative, even trigonometric polynomial of degree at
most n and so Corollary 6.4 (a) and (b) hold with

ηα =
(
sup

{ ∞∑
m=0

a(λ)
α,m(1 − λm(1)) : λ ∈ Λ

})1/2
.

For several examples of λn(j) which produce important positive summability ker-
nels, see [12].

Moreover, there is a wide variety of examples of nonperiodic functions hn(t)
for which Theorem 6.3 can be applied, from a probabilistic point of view. These
can be induced by various probability density functions (see [12]).
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