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Restrictions on Seshadri Constants on Surfaces

 Lucja Farnik, Tomasz Szemberg*, Justyna Szpond and Halszka Tutaj-Gasińska

Abstract. Starting with the pioneering work of Ein and Lazarsfeld [9] restrictions

on values of Seshadri constants on algebraic surfaces have been studied by many

authors [2, 5, 10, 12, 18, 20, 22, 24]. In the present note we show how approximation

involving continued fractions combined with recent results of Küronya and Lozovanu

on Okounkov bodies of line bundles on surfaces [13, 14] lead to effective statements

considerably restricting possible values of Seshadri constants. These results in turn

provide strong additional evidence to a conjecture governing the Seshadri constants

on algebraic surfaces with Picard number 1.

1. Introduction

Let X be a smooth algebraic variety and let L be a nef line bundle on X. For any point

x ∈ X the real number

ε(L;x) = inf
C3x

(L · C)

multxC
,

where the infimum is taken over all irreducible curves C passing through x, measures in

effect the local positivity of L at x. We say that a curve C ⊂ X is a Seshadri curve of L

at x if ε(L;x) = (L · C)/multxC.

These numbers, the Seshadri constants, were introduced by Demailly in [7] in con-

nection with his works on the Fujita Conjecture and they have become a subject of

considerable interest ever since. The well known Seshadri criterion of ampleness gives

a fundamental positivity restriction on the Seshadri constants of ample line bundles.

Theorem 1.1 (Seshadri criterion of ampleness). Let X be a smooth algebraic variety and

let L be a line bundle on X. Then

L is ample if and only if inf
x∈X

ε(L;x) > 0.
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It is natural to wonder if there are any other constrains on the values of Seshadri

constants of ample line bundles. Whereas examples of Miranda and Viehweg show that

the Seshadri constants of ample line bundles can become arbitrarily small, in the ground-

breaking paper [9] Ein and Lazarsfeld showed that there is a positive uniform lower bound

when restricting to very general points. Oguiso in [19] showed that the Seshadri function

(1.1) ε(L; · ) : X 3 x→ ε(L;x) ∈ R

is lower semi-continuous in the topology whose closed sets are countable unions of Zariski
closed sets. In particular there is an open and dense subset of X in this topology where

the Seshadri function attains its maximal value. We denote this maximal value by ε(L; 1).

The number 1 here indicates that the Seshadri constant is taken at a very general point

of X without specifying this point. In this terminology the aforementioned result of Ein

and Lazarsfeld is the following.

Theorem 1.2 (Ein-Lazarsfeld). Let X be an algebraic surface and let L be an ample line

bundle on X. Then

ε(L; 1) ≥ 1.

This result cannot be improved in general even under the assumption that the self-

intersection d = (L2) of L is very large, see Example 2.5. The main result of this note shows

that nevertheless the set of potential values ε(L; 1) can take on is surprisingly limited.

For a non-square integer d and (p, q) a solution to the Pell equation

(1.2) y2 − dx2 = 1

(i.e., q2 − dp2 = 1) we define the following set

Exc(d; p, q) =
{

1, 2, . . . , b
√
dc
}
∪
{
a

b
such that 1 ≤ a

b
<
p

q
d and 2 ≤ b < q2

}
.

Theorem 1.3. Let X be a smooth projective surface, x ∈ X, L an ample line bundle

on X such that (L2) = d is not a square. Let (p, q) be an arbitrary solution to the Pell

equation (1.2). Then either

ε(L; 1) ≥ p

q
d,

or ε(L; 1) ∈ Exc(d; p, q).

The finiteness of possible values of ε(L; 1) strictly below any rational number smaller

than
√

(L2) follows already from [19, Theorem 1]. However Oguiso result addresses all

line bundles L separately and the statement is ineffective. The key point of Theorem 1.3

is that possible values of ε(L; 1) depend in a uniform way only on (L2) and their set is

effectively described and relatively small. Under additional assumptions on X or L one
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can thus try to reduce further the set of exceptional values (i.e., those lower than p
qd).

A typical assumption of this kind is that the Picard number ρ(X) of X equals 1. The

Seshadri constants of ample line bundles on surfaces with ρ(X) = 1 were considered in

a series of papers [20–22] leading to the following conjecture which has motivated our

research here.

Conjecture 1.4. Let X be a smooth projective surface with Picard number 1 and let L be

the ample generator of the Néron-Severi space with (L2) = d. Assume furthermore that d

is a non-square. Then

ε(L; 1) ≥ p0

q0
d,

where (p0, q0) is the primitive solution of the Pell equation (1.2).

In other words, the Seshadri constants of generators of the ample cone on surfaces

with Picard number 1 taken at very general points are expected not to lie in the set

Exc(d; p0, q0).

Remark 1.5. It is well known that there are surfaces such that the equality in Conjec-

ture 1.4 holds, so that the lower bound there cannot be improved without additional

conditions on X, see [2].

In Theorems 4.1 and 4.2, we verify Conjecture 1.4 for two infinite series of line bundles

L, namely line bundles with (L2) of the form n2 − 1 or n2 + n for an arbitrary positive

integer n.

We conclude our note with a case by case study of line bundles with low self-intersection

numbers in Section 5. More specifically, we study line bundles with self-intersection up to

8. We show in particular how the general statement of Theorem 1.3 can be considerably

improved when coupled with Proposition 2.2 and when working with a specific number

(L2).

2. General properties of the Seshadri constants

In this section we recall properties of the Seshadri constants needed in the sequel. For a

general introduction to this circle of ideas we refer to the book of Lazarsfeld [15] and the

survey [3].

We begin with a useful lower bound on the self-intersection of curves moving in a

nontrivial family, see [12, Theorem A] and [1]. This bound will be applied to the Seshadri

curves of a fixed line bundle.

Proposition 2.1 (Bounding self-intersection of curves in a family). Let X be a smooth

projective surface. Let (Ct, xt) be a nontrivial family of pointed curves Ct ⊂ X such that
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for some integer m ≥ 2 there is multxt Ct ≥ m. Then

(C2
t ) ≥ m(m− 1) + gon(Ct).

The next proposition shows that if ε(L; 1) is relatively small compared to (L2), then

there are geometric reasons, see [23, Theorem]. We say that X is fibred by Seshadri curves

if there exists a morphism f : X → B to a curve B such that for a very general point

x ∈ X, the curve f−1(f(x)) computes ε(L;x).

Proposition 2.2 (Fibration by Seshadri curves). Let X be a smooth projective complex

surface and let L be an ample line bundle on X. If

ε(L; 1) <

√
3

4
(L2),

then X is fibred by Seshadri curves. In particular, ε(L; 1) is an integer.

We record also for further reference the following property of line bundles whose Se-

shadri curves are smooth.

Proposition 2.3 (Smooth Seshadri curves). Let X be a smooth projective surface and let

L be a primitive ample line bundle on X (i.e., L is not divisible in the Picard group of

X). Assume that ε(L; 1) is computed by smooth curves. Then

(1) either X is fibred by Seshadri curves, or

(2) (L2) = 1.

Proof. Assume to begin with that

ε(L; 1) <
√

(L2).

Let Cx be a smooth curve computing ε(L;x) in a very general point x ∈ X. Then it is

(L · Cx) <
√

(L2).

Combined with the Hodge Index Theorem, this implies

(2.1) (C2
x)(L2) ≤ (L · Cx)2 < (L2)

and hence (C2
x) < 1. Since Cx passes through a very general point of X, it must be

(C2
x) ≥ 0, which gives finally (C2

x) = 0.

Now, there is a standard argument (see [17, Proof of Theorem 2] or [23, Proof of

Theorem]) using the countability of components of the Hilbert scheme of curves on X,

which implies that there is at least one dimensional algebraic family of curves {Cx}. Since
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(C2
x) = 0, two distinct curves Cx and Cy in this family are disjoint. Thus one can define

a map from X to the parameter curve T , whose very general fibers are the curves Cx.

In the remaining case we have

ε(L; 1) =
√

(L2).

Here the assumption that the Seshadri constant is actually computed by a curve is essential

to conclude. Indeed, we have then the equality in (2.1). Hence 0 ≤ (C2
x) ≤ 1. If (C2

x) = 0,

we conclude as before. If (C2
x) = 1, then we have equality in the Hodge inequality, so

it must be that Cx and L are numerically proportional. Since L is primitive, it must be

(L2) = 1 and we are done.

Proposition 2.3 implies immediately the following property of line bundles on surfaces

with Picard number 1.

Corollary 2.4. Let X be a surface with Picard number 1. Assume that there exists an

integer k such that the Seshadri constant of the ample generator L at a very general point

x of X is computed by a curve Cx ∈ |kL|. Then

(1) either multxCx ≥ 2, or

(2) (L2) = 1 and ε(L; 1) = 1.

Proof. This follows from Proposition 2.3 since there are no fibrations on surfaces with

Picard number 1.

The next example shows in particular that the assumption on the Picard number of

X in Corollary 2.4 is essential.

Example 2.5. Let X = P1 × P1 and let L = sH + V , where H is the class of the fiber

of the projection from X onto the second factor and V is the class of the fiber of the

projection onto the first factor. Then (L2) = 2s and ε(L;x) = 1 for all points x ∈ X.

Indeed, the fiber in |H| passing through x is the Seshadri curve of L at x.

3. An application of Okounkov bodies to the Seshadri constants

In this section we prove Theorem 1.3. The proof builds upon ideas of Küronya and

Lozovanu from [13]. Relating the Seshadri constants and Okounkov bodies is not new;

see, e.g., [8, 11]. The key insight here is to use the infinitesimal approach in the form

which is a slight generalization of [13, Example 4.4]. Our approach has been also strongly

influenced by works of Nakamaye and Cascini [6, 18]. For an introduction to Okounkov

bodies we refer to the work of Lazarsfeld and Mustaţă [16].
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Proof of Theorem 1.3. If ε(L; 1) ≥ p
qd, then there is nothing to prove. In the remaining

case it must be ε(L;x) < p
qd for an arbitrary point x ∈ X. Let now x be a very general

point of X, i.e., a point in which the function defined in (1.1) attains its maximal value.

Since the value of the Seshadri constant is submaximal [4, Proposition 1.1] guarantees

that there exists a curve C computing ε(L;x). With a = (L.C) and b = multxC we have

(3.1) ε(L;x) =
a

b
<
p

q
d.

Note that the integers a and b need not be coprime.

If b = 1, i.e., ε(L;x) is computed by a smooth curve, then

(3.2) ε(L;x) ∈
{

1, 2, . . . , b
√
dc
}
⊂ Exc(d; p, q)

and we are done. (Proposition 2.3 provides additional information on X and L in this

case.)

So we may assume b ≥ 2. Then by [13, Proposition 4.2], the generic infinitesimal

Newton-Okounkov polygon ∆(L;x) is contained in the triangle 4OAB with vertices at

points

O = (0, 0), A = (a/b, a/b), B = (a/(b− 1), 0).

Comparing the areas of the two figures, we obtain

(3.3)
a

b
· a

b− 1
= 2 ·Area(4OAB) ≥ 2 ·Area(∆(L;x)) = d.

From (3.1) and (3.3), we obtain

a2

b2
<
p2d

q2
d =

q2 − 1

q2
d ≤ q2 − 1

q2

a2

b(b− 1)
,

which implies
b− 1

b
<
q2 − 1

q2
.

This inequality can hold if and only if b < q2. This verifies the bound on the multiplicity

of the Seshadri curve asserted in Theorem 1.3.

In order to conclude observe that all possible pairs (a, b) ∈ N2 with a
b <

p
qd lie in the

range

(3.4) 1 < b < q2 and b ≤ a < b · p
q
d,

hence they are contained in the set Exc(d; p, q). Note that the inequality (3.3) restricts

the actual set of possible values even further. We will explore this in Section 5.
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4. Towards the conjecture

In this section we prove that Conjecture 1.4 holds for two sequences of integers d such

that the primitive solution (p0, q0) of the Pell equation (1.2) satisfies p0 ∈ {1, 2}.

Theorem 4.1 (The case p0 = 1). Let d = n2 − 1 for a positive integer n. Then Con-

jecture 1.4 holds for all polarized pairs (X,L), with X a smooth projective surface with

Picard number one, and L the ample generator of Pic(X) with (L2) = d, that is

ε(L; 1) ≥ p0

q0
d =

n2 − 1

n
.

Proof. For d = n2− 1 the primitive solution to Pell’s equation is (p0, q0) = (1, n). Assume

to the contrary that for a very general point x ∈ X there exists a curve C ∈ |kL| for some

k ≥ 1 computing ε(L;x) = a/b and a, b ∈ Exc(d; 1, n). By Corollary 2.4 we have b ≥ 2.

Thus Proposition 2.1 applies and we have

(4.1) k2(n2 − 1) = k2d = (C2) ≥ b(b− 1) + 1.

On the other hand,

a

b
=
L.C

b
=
kd

b
=
k(n2 − 1)

b
<
p0

q0
d =

n2 − 1

n

implies

(4.2) b ≥ kn+ 1.

Now it easy to see that (4.1) and (4.2) cannot be satisfied simultaneously. Indeed, com-

bining both inequalities we get

k2(n2 − 1) ≥ (kn+ 1)kn+ 1.

In the previous case we had p0 = 1. Now we pass to the next case, i.e., p0 = 2. Then

d is of the form d = n2 + n for some integer n ≥ 1 and q0 = 2n+ 1.

Theorem 4.2 (The case p0 = 2). Let d = n2 + n for a positive integer n. Then Conjec-

ture 1.4 holds for all polarized pairs (X,L), where X is a smooth projective surface with

Picard number one, and L is the ample generator of Pic(X) with (L2) = d, that is

ε(L; 1) ≥ p0

q0
d =

2n(n+ 1)

2n+ 1
.

Proof. We assume to the contrary that for a very general (hence any) point on X, there

exists a curve Cx ∈ |kL| for some k ≥ 1 such that with a = (L.Cx) = kL2 and b = multxCx

there is
a

b
<

2

2n+ 1
(n2 + n).
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Equivalently we have

(4.3)
k(2n+ 1)

2
< b.

The standard argument with the Hilbert scheme of curves revoked in the proof of Propo-

sition 2.3 implies that such curves move in a nontrivial family of dimension at least 1.

We have b ≥ 2 by Corollary 2.4. Hence, by Proposition 2.1 we have

(4.4) b(b− 1) + 1 ≤ k2(n2 + n).

Now the argument splits according to the parity of k.

Case 1: Assume that k = 2`. Then (4.3) reads b > 2`n+ `. This implies

b ≥ 2`n+ `+ 1,

and in turn we get

(4.5) b(b− 1) + 1 ≥ (2`n+ `+ 1)(2`n+ `).

On the other hand from (4.4) we get

(4.6) b(b− 1) + 1 ≤ 4`2(n2 + n).

It is elementary to check that (4.5) and (4.6) together give a contradiction.

Case 2: The case k = 2`+ 1 follows similarly. From (4.3) we get b > (2`+ 1)n+ 2`+1
2

so that

b ≥ (2`+ 1)n+ `+ 1.

Hence

b(b− 1) + 1 ≥ [(2`+ 1)n+ `+ 1] [(2`+ 1)n+ `] + 1

and this contradicts inequality (4.4) in this case as well. We leave the details to the

reader.

Thus the first remaining case is p0 = 3. The first d with p0 = 3 is d = 7. We will see

in the next section that already in this case our approach leaves over some possibilities

which require additional arguments.

5. Line bundles with small self-intersection

In this section we analyze consequences of Theorem 1.3 on the distribution of values of the

Seshadri constants in general points of line bundles with fixed low degree both in general

and in the ρ(X) = 1 cases.
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5.1. Line bundles of degree 1

If (L2) = 1, then Theorem 1.2 immediately yields ε(L; 1) = 1. Additionally, in this case

it is known that the number of points where ε(L;x) attains a value strictly less than 1 is

finite.

The following example shows that there is little hope to obtain any classification of

line bundles with self-intersection 1.

Example 5.1. Let X be a smooth projective surface with Picard number ρ(X) = 1 and

let L be the ample generator on X with d = (L2). Let f : Y → X be the blow up of

X at d − 1 very general points, with the exceptional divisor E (being the union of d − 1

exceptional curves). Then M := f∗L− E is an ample line bundle with (M2) = 1.

5.2. Line bundles of degree 2

In this case the primitive solution to the Pell’s equation is p0 = 2 and q0 = 3 so that

Exc(2; 2, 3) =

{
1,

5

4
,
6

5
,
7

6
,
8

7
,
9

7
,
9

8
,
10

8

}
.

The extremal value 1 is attained for example by the line bundle L of bidegree (1, 1) on

P1 × P1.

If ρ(X) = 1, then Conjecture 1.4 holds by Theorem 4.2 and we have

ε(L; 1) ≥ 4

3
.

The value 4/3 is actually attained on a principally polarized simple abelian surface, see [20,

Proposition 2].

5.3. Line bundles of degree 3

The primitive solution to the Pell’s equation is now p0 = 1 and q0 = 2. Hence the

exceptional set in this case is

Exc(3; 1, 2) =

{
1,

4

3

}
.

Let f : X → P2 be the blow up of a point P ∈ P2 with the exceptional divisor E and let

H = f∗(OP2(1)). Then for the line bundle L = 2H −E we have (L2) = 3 and ε(L; 1) = 1,

the Seshadri constant at a point Q ∈ X being computed by the proper transform of the

line passing through P and Q (this applies also to Q infinitesimally near to P ).

The exceptional value 4/3 is excluded by Proposition 2.2. If ρ(X) = 1, then Conjec-

ture 1.4 holds by Theorem 4.1, hence ε(L; 1) ≥ 3/2.
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5.4. Line bundles of degree 5

The primitive solution to Pell’s equation is now p0 = 4 and q0 = 9.

The lower bound predicted by Conjecture 1.4 equals in this case 20/9, while Theo-

rem 1.2 leaves us with the set of 2401 possible exceptional pairs (a, b) satisfying

2 ≤ b ≤ 80 and b+ 1 ≤ a < 20

9
b.

By making sure that the pairs above satisfy the inequality (3.3), we reduce the number of

exceptions to 41, starting out with

(4, 2), (6, 3), (8, 4), (10, 5), (11, 5), (13, 6), (15, 7), (17, 8), . . .

and ending with (151, 68). Thus for a line bundle L with (L2) = 5 we have

(5.1) either ε(L; 1) ≥ 20

9
or ε(L; 1) ∈

{
1, 2,

11

5
,
13

6
,
15

7
,
17

8
, . . .

}
where the latter set consists of 28 values (some exceptional pairs give the same value of the

Seshadri constant). This list cannot be further reduced with our methods for an arbitrary

surface X and an arbitrary line bundle L with (L2) = 5. We show here surfaces with the

two least values of ε(L; 1) in the list (5.1).

Example 5.2 (N = 5 and ε(L; 1) = 1). Let f : X → P2 be the blow up of P2 in a point

P . Let as usual H = f∗(OP2(1)) and let L = 3H − 2E, where E is the exceptional divisor

of f . Let x ∈ X be a generic point. In particular x is not a point on the exceptional

divisor, so that x can be viewed also as a point on the projective plane P2. Let Cx be the

line joining x and P . Then its proper transform Dx on X has the class H − E. Thus

ε(L;x) ≤ L.Dx

1
= 1.

Since ε(L; 1) ≥ 1 by Theorem 1.2, we conclude that ε(L; 1) = 1 in this case.

Example 5.3 (N = 5 and ε(L; 1) = 2). Let f : X → P1×P1 be the blow up of P1×P1 at

3 general points P , Q, R with exceptional divisors E, F , G. Let H = f∗(OP1×P1(1, 1) and

let L = 2H −E − F −G. Let x be a generic point on X. In particular x is not contained

in the union of the exceptional divisors E ∪ F ∪ G. Let Cx be a curve of type (1, 1) in

P1 × P1 passing through P , Q and x. Then its proper transform Dx on X has the class

H − E − F . Hence

ε(L;x) ≤ L.Dx

1
= 2.

With a little more care one can show that in this case indeed ε(L; 1) = 2.
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It turns out that we can reduce further the number of possibilities by imposing the

condition ρ(X) = 1 on X. Let L be an ample generator with (L2) = 5. Then for any

curve C ∈ |kL| for some positive integer k, 5 divides a = (L · C). This leaves only the

pairs

(10, 5), (15, 7), (35, 16), (55, 25), (75, 34).

In summary, if X is a smooth projective surface with Picard number one, L an ample

line bundle on X with (L2) = 5, then

either ε(L; 1) ≥ 20

9
or ε(L; 1) ∈

{
2,

11

5
,
15

7
,
35

16
,
75

34

}
.

Remark 5.4. It is generally expected that for a generic surface X of degree d ≥ 5 in P3 there

is ε(OX(1); 1) =
√
d. The best available lower bounds can be read of [22, Theorem 2.1].

For a generic quintic surface this lower bound is 15/7.

5.5. Line bundles of degree 6

The primitive solution to Pell’s equation is now p0 = 2 and q0 = 5. A computer count

shows that the set Exc(6; 2, 5) has 252 elements

Exc(6) =

{
1,

25

24
,
24

23
,
23

22
, . . . ,

31

13
,
43

18
,
55

23

}
.

A considerable number of these values can be discarded using Proposition 2.2. The mod-

ified set Exc′(6; 2, 5) still contains 51 elements

Exc′(6) =

{
17

8
,
49

23
,
32

15
, . . . ,

31

13
,
43

18
,
55

23

}
.

However, if ρ(X) = 1, then Theorem 4.2 implies that Conjecture 1.4 holds, so that all these

51 possible values are also discarded under this assumption. This underlines the power of

Theorem 4.2. It is also worth to remark here that simple application of Proposition 2.1

(i.e., without taking into account that all involved numbers are integers and subject to

certain divisibilities) would leave the following set of 6 exceptional values

Exc′′(6; 2, 5) =

{
9

4
,
7

3
,
26

11
,
19

8
,
31

13
,
43

18

}
.

This shows that arithmetic flavor arguments as in the proof of Theorem 4.2, even though

simple, are in fact inevitable.
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5.6. Line bundles of degree 7

The primitive solution to Pell’s equation is now p0 = 3 and q0 = 8. We consider now only

surfaces with ρ(X) = 1.

Theorem 5.5. Assume that X is a surface with ρ(X) = 1 and let L be an ample generator

with (L2) = 7. Then

either ε(L; 1) ≥ 21

8
or ε(L; 1) =

28

11
.

Proof. Taking into account that ρ(X) = 1 and the divisibility condition 7 | a the list of

possible exceptional values of ε(L; 1) is reduced to

(7, 3), (28, 11), (49, 19).

We show how to exclude the pairs (7, 3) and (49, 19). Since the Seshadri curve C is singular

in both cases, these curves form a 2-dimensional family. Then by Proposition 2.1 with

either (C2) = 7 and q = 3, or (C2) = 343 and q = 19 we obtain gon(C) = 1. Hence X

is covered by rational curves. As these curves intersect, X is actually a rational surface.

But the assumption ρ(X) = 1 forces X to be P2. This contradicts the assumption that

the ample generator of the Picard group has degree 7.

5.7. Line bundles of degree 8

The primitive solution to Pell’s equation is now p0 = 1 and q0 = 3. The set Exc(8; 1, 3)

contains 37 elements ranging from 1 to 21/8. Applying Proposition 2.2 the list reduces to

Exc′(8; 1, 3) =

{
5

2
,
18

7
,
13

5
,
21

8

}
.

Assuming additionally that ρ(X) = 1, the list gets empty in accordance to Theorem 4.1.
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