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Rational Points over Finite Fields on a Family of Higher Genus Curves and

Hypergeometric Functions

Yih Sung

Abstract. In this paper we investigate the relation between the number of rational

points over a finite field Fpn on a family of higher genus curves and their periods in

terms of hypergeometric functions. For the case y` = x(x− 1)(x− λ) we find a closed

form in terms of hypergeometric functions associated with the periods of the curve.

For the general situation y` = xa1(x − 1)a2(x − λ)a3 we show that the number of

rational points is a linear combination of hypergeometric series, and we provide an

algorithm to determine the coefficients involved.

1. Introduction

1.1. Background

The Legendre family of elliptic curves is defined explicitly by

Xλ =
{
y2 = x(x− 1)(x− λ)

}
on C2, where λ ∈ C−{0, 1} = P 1

C−{0, 1,∞}. It is generally understood that the number

of rational points of Xλ over a finite field Fp with the prime p is related to a period integral

on Xλ, which in turn is related to the Gauss hypergeometric series 2F1(
1
2 ,

1
2 , 1;λ) modulo p.

This hypergeometric series is a solution of a hypergeometric differential equation in which

the derivatives are given by the Gauss-Manin connection of the family. The first goal of

this paper is to understand corresponding situations for more general families of Riemann

surfaces {Xλ} of higher genus. We want to give an explicit formula of the number of

rational points on Xλ over a finite field Fp with the prime p in terms of period integrals or

hypergeometric series, as in the case of the Legendre family. We are particularly interested

in families associated with triangle groups, in which the Legendre family is a special case.

It is important to note that a fibre curve Xλ in this family may have singularities, which

makes the situation more complicated and interesting. We also investigate Fpn because
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the case of n > 1 is more subtle than the case of n = 1. We will finally consider the counts

modulo p and modulo pn. The former situation is explained completely in this paper. For

the latter situation, we will provide examples to demonstrate that the problem at hand is

more subtle so that the general problem remains open.

The classical correspondence between the period of Xλ and the number of rational

points on Xλ over Fp can be proved through brute force, as shown in [1]. By direct

calculation, the number of rational points on Xλ is

|Xλ| ≡ −(−1)(p−1)/2
(p−1)/2∑
r=0

(
−1/2

r

)2

λr mod p

= −(−1)(p−1)/22F1,(p−1)/2(
1−p
2 , 1−p2 , 1;λ) mod p.

(1.1)

To clarify the subindex of F , (p − 1)/2 refers to the truncation in the summation. Note

that the Gauss hypergeometric function 2F1(a, b, c;λ) satisfies a second-order differential

equation

(1.2) x(x− 1)
d2u

dx2
+ ((a+ b+ 1)x− c)du

dx
+ ab · u = 0.

It is surprising that the number of rational points on Xλ is related to a solution of a dif-

ferential equation defined on the base of the family. In papers [3] and [4] Manin explained

this phenomenon by applying the Lefschetz Fixed Point Formula. Since h0(Xλ,K) = 1

the holomorphic differential ωλ = dx/y generates H0(Xλ,K). Manin observed that by

taking the local coordinate x of Xλ and fixing a base point q, ωλ can be expressed as

ωλ = dx+
∑
r≥1

ar(x− x(q))rdx.

Then by the Lefschetz fixed-point theorem Manin showed that ap−1 satisfies the Picard-

Fuch equation (1.2) modulo p. Therefore periods of Xλ are related to the number of

rational points on Xλ modulo Fp and satisfy the hypergeometric equation (1.2).

1.2. Statement of results

We consider the family of curves defined by y` = x(x−1)(x−λ) and y` = xa1(x−1)a2(x−
λ)a3 with assumptions that a1, a2, a3 ∈ Z>0, (`, a1, a2, a3) = 1 and α = a1 + a2 + a3 ≤ `.

For the first family, we offer a formula in a closed form:

Theorem 1.1. Let m ≥ 4, ` be integers. Let Xm
λ be the family of algebraic curves defined

by ym = x(x − 1)(x − λ) over the finite field Fq, q = pn, with the parameter λ ∈ Q. Let

` = (m, q− 1), so that ` satisfies ` | (q− 1). If ` = 1, the number of rational points on Xλ

is ∣∣Xm
λ,p

∣∣ ≡ 0 mod p.
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If ` ≥ 2, let Sreg and Sirr be sets such that

Sreg =

{
(0, s), (1, s′)

∣∣∣ `
2
− 1 ≤ s ≤ `−

[
`

3

]
− 2, 0 ≤ s′ ≤ `−

[
2`

3

]
− 2

}
,

Sirr =

{
(0, s)

∣∣∣ 0 ≤ s < `

2
− 1

}
,

and denote a = 2− 3(s+1)
` − r, b = 1− (s+1)

` , c = 2
(

1− (s+1)
`

)
− r = 2b− r. Then

∣∣Xm
λ,q

∣∣ ≡ ∑
(r,s)∈Sreg

−kr,s · 2F1,Nr,s(a, b, c;λ)

+
∑

(r,s)∈Sirr

−k′r,s · λMr,s
2F1,N ′r,s(a− c+ 1, b− c+ 1,−c+ 2;λ)− δ mod p,

where δ = (`, 3)− 1,

Nr,s =

(
2− r − 3(s+ 1)

`

)
(q − 1), kr,s = (−1)Nr,s

( (`−s−1)(q−1)
`

Nr,s

)
and

Mr,s =

(
1− 2(s+ 1)

`

)
(q − 1), N ′r,s =

s+ 1

`
(q − 1), k′r,s = (−1)Nr,s

( (`−s−1)(q−1)
`

Mr,s

)
.

In a more general case, we derive the following result.

Theorem 1.2. Let m ≥ 4, ` be integers, and Y `
λ be the family of algebraic curves defined by

y` = xa1(x−1)a2(x−λ)a3 over the finite field Fq where q = pn. Assume `, a1, a2, a3 ∈ Z>0,

(`, a1, a2, a3) = 1, α = a1 + a2 + a3 ≤ `, and ` | (q − 1). Then

|Yλ,q| ≡
∑̀
k=1

(∑
α∈B
−cαFNα(aα, bα, cα;λ)−

∑
m

δk,mλ
m

)
(mod p),

where B is a basis of holomorphic one forms on Y `
λ and FNα(aα, bα, cα;λ) are the associated

hypergeometric functions for some aα, bα, cα ∈ Q, and δk,m are rational numbers reflecting

the singularities of the curves.

An explicit algorithm to find the constants involved in the above theorem is presented

in the appendix.

We note that to combine the classical counting technique and the Lefschetz fixed-point

theorem is necessary. If we apply only classical counting methods, it is difficult to see how

counting is related to the periods of holomorphic differentials; on the other hand, if we

apply only the Lefschetz fixed-point theorem we cannot determine precise constants for

each hypergeometric function.
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Compared to the Legendre family of elliptic curves, there are a few significant differ-

ences that we need to address. First, the algebraic curves we are interested have singulari-

ties. Therefore, we need to apply normalization or to use a desingularisation model of the

curves in order to apply the Lefschetz Fixed Point Formula. The difference in counting on

the number of rational points in the affine part of the normalization and the curve itself

gives rise to an expression that we call the correction term in this article, represented by

δ and δk,m in the above theorems. Secondly, there are more than one choice of basis of

the space of holomorphic differentials. Thus, we need to consider an appropriate linear

combination of period integrals or appropriate hypergeometric functions in order to com-

pute the explicit coefficients in Theorem 1.2. Finally, we consider the finite field Fq where

q = pn and n > 1. For most of our results, we consider the number of rational points

in Fpn modulo p. The situation of rational points in Fpn modulo pn will be explained by

explicit examples in the last section.

1.3. Contents

Throughout this article, we assume that λ ∈ C − {0, 1}. We derive the closed formula

for the case y` = x(x − 1)(x − λ) in Section 2. In Section 3, we give an algorithm to

handle the case y` = xa1(x − 1)a2(x − λ)a3 . In Section 4, we remark on an extension of

results from the finite field Fp to Fpn for elliptic curves and make some observations about

the truncation levels of the hypergeometric functions involved. In the last section, we list

several examples to illustrate subtle points in the formulations and computations of our

theorems.

2. Case of X defined by y` = x(x− 1)(x− λ)

2.1. Genus formula and Abelian differentials

Let us consider a family of curves Xλ defined by

y` = w(x) = x(x− 1)(x− λ)

over the finite field Fq where q = pn. Let Cλ be a smooth model of the projectivization

of Xλ. Let Xλ,q be the curve defined over Fq. For brevity, we drop the dependence on λ

and q and simply denote a curve in the family by X. By the defining equation, we know

H0(X,KX) is generated by the Abelian differentials

(2.1) ωr,s = xrys
dx

y`−1
= xr[x(x− 1)(x− λ)][s−(`−1)]/` dx

and we will find the appropriate range of r and s later. For ` ≤ 4, by checking the

smoothness at∞ after change of coordinates we may simply apply the genus formula. For
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` > 4, after compactification in P2, the curve is defined by

W `
1 = W0(W0 −W2)(W0 − λW2)W

`−3
2 .

Specialize to the affine open set UW0=1, and the curve is defined by y` = (1−z)(1−λz)z`−3

which has a singularity at (0, 0). Let C be a smooth model of X. To find the genus of C,

the standard method is to apply the Hurwitz Formula.

Lemma 2.1. [2, Theorem 3] Let ` > 4.

(a) The genus of C is given by

g(C) =

`− 2 if 3 | `,

`− 1 if 3 - `.

(b) Denoted by [a] the integral part of a. A basis of holomorphic one forms on C is given

by dx
yi

and xdx
yj

, where [ `3 ] + 1 ≤ i ≤ `− 1 and [2`3 ] + 1 ≤ j ≤ `− 1.

After resolving the singularities of X, we get a smooth model C in

P2 × P1 × · · · × P1.

The coordinates are (x, y, z; z1, t1; y1, w1; . . . ; yi, wi; . . .) and C is defined by y` = x(x −
1)(x − λ) and the associated equations of blowup. Once x and y are determined, the

rest of the values are determined accordingly. Thus, away from the singularities and their

preimage on the blowup there is a one-one correspondence of rational points between X

and C. This implies that we can count the number of rational points on C. Since the

Lefschetz Fixed Point Formula requires that the curve is smooth, we must consider the

smooth model C rather than X. Then we consider the Frobenius map

Fb(x, y, z; z1, t1; y1, w1; . . . ; yi, wi; . . .) = (xq, yq, zq; zq1, t
q
1; y

q
1, w

q
1; . . . ; yqi , w

q
i ; . . .),

and the classical argument applies. For the computation of the trace map, we localize the

computation to an affine open set U of C by choosing U = C −∞ = X −∞. Then we

take the local parameter x to continue on the computation.

2.2. Hypergeometric functions and periods

By Lemma 2.1, we know that the basis of holomorphic 1-forms can be chosen as

(2.2) ω0,s, 0 ≤ s ≤ `−
[
`

3

]
− 2, and ω1,s, 0 ≤ s ≤ `−

[
2`

3

]
− 2.
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Recalling the formula of the period

2F1(a, b, c;x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− xt)−a dt,

and comparing ωr,s with the differential in the integral, we have

(2.3) a =
`− s− 1

`
, b = r +

s+ 1

`
, c = r +

2(s+ 1)

`
.

Hence a change of coordinate λ = 1/x is needed. We have an technical observation:

Proposition 2.2. Letting λ = 1/x, the analytic continuation of xa · 2F1(a, b, c;x) at ∞ is

2F1(a− c+ 1, a, a− b+ 1;λ).

Proof. The change of variable x = 1/λ means that we study the behavior of the hyperge-

ometric series at ∞ after analytic continuation. Note that ∞ here does not mean the ∞
of X. It simply means the change of variable x = 1/λ. By taking an appropriate branch

cut in the domain to take roots of −1 we can consider the period integral

(2.4) λ−a2F1(a, b, c; 1/λ) =
Γ(c)(−1)−a−b+c−1

Γ(b)Γ(c− b)

∫ 1

0
tb−1(t− 1)c−b−1(t− λ)−a dt

with c > b > 0. Multiplying λα to (1.2) we have

(2.5) (λ− 1)λα+2d2u

dλ2
+ ((2− c)λ+ (a+ b− 1))λα+1du

dλ
− abλαu = 0.

Our plan is to replace u with λαu and find an appropriate α such that uλα satisfies a

new hypergeometric differential equation. By direct calculation, the above equation can

be rewritten as

λ(λ− 1)
d2

dλ2
(λαu) + [(2− c+ 2a)λ+ (−a+ b− 1)]

d

dλ
(λαu) + a(a− c+ 1)(λαu) = 0

by taking α = −a and dividing two sides by λ. Comparing with (1.2) we have
a′ + b′ + 1 = 2a− c+ 2,

−c′ = −a+ b− 1,

a′ · b′ = a(a− c+ 1),

=⇒


a′ = a− c+ 1,

b′ = a,

c′ = a− b+ 1.

Hence the proof is complete.

Let us end the subsection by introducing a notation.

Notation 2.3. The truncated hypergeometric series is defined by

2F1,N (a, b, c;λ) :=

N∑
k=0

(a)k(b)k
(c)k k!

λk.

Similarly, we denote FN (a, b, c;x) the truncated hypergeometric series of F (a, b, c;x),

which is a solution to the hypergeometric equation (1.2).
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2.3. Counting rational points

Let us consider the Frobenius map Fb(x) = xq on the normalization Cλ of Xλ. Applying

the Lefschetz fixed-point theorem to Fb, we have [1, (2.34)]

1− Tr(F ∗b |H1(Cλ,O)) = number of fixed points of Fb.

Recall that the number of rational points on Xλ is denoted by |Xλ|. Therefore, we get

|Xλ| = −Tr(F ∗b |H1(Cλ,O))− (|points at ∞ on Cλ| − 1)

≡
∑

(r,s)∈S

−kr,s · FNr,s(2− r −
3(s+1)
` , `−s−1` , 2− r − 2(s+1)

` ;λ)− δ∞ mod p(2.6)

for some constants kr,s Nr,s, δ∞, where S is the set of subscripts defined in (2.2), and

δ∞ = |points at ∞ on Cλ| − 1. Note that in the second congruence identity, We take

{ωr,s}(r,s)∈S as the basis of H1(Cλ,O), applying the similar technique in the calculation of

the classical case of elliptic curves, and then each element ωr,s in the basis will contribute

kr,s ·FNr,s(a′, b′, c′;λ) to the trace of F ∗b . The parameters of the hypergeometric functions

a′ = 2 − r − 3(s+1)
` , b′ = 1 − s+1

` = `−s−1
` , c′ = 2 − r − 2(s+1)

` are determined by (2.3)

and Proposition 2.2. In addition, the term δ∞ in (2.6) denotes the difference between the

number of rational points at ∞ on Cλ and Xλ, and we call δ∞ the correction term at ∞.

Our goal is to determine these constants by counting rational points over some primes.

First, let us explain how to compute δ∞. In Lemma 2.1 we saw if (3, `) = 3, the point

at infinity of the smooth model Cλ splits into three points, and if (3, `) = 1 the smooth

model has only one point at infinity of Cλ. On the other hand |Xm
λ | only counts the

rational points in UW2=1, so for the case (3, `) = 3 we have to make a correction −(3− 1).

These corresponds to δ∞ = 0 or 2 respectively.

Consider q such that

(2.7) ` | (q − 1).

This implies (`, p) = 1 and ` 6≡ 0 mod p, so the fractions in (2.6) are well defined. In the

following counting process, we need a criterion of the existence of `-roots:

Lemma 2.4. Let ` | (q − 1) and a ∈ Fq. Then

(2.8) a(q−1)/` ≡

1 iff a = y` for some y,

other values there does not exist y such that a = y`.

Proof. The proof follows the lines of the proof of the classical case, namely the case of

` = 2. If there exists y such that a = y`, then

a(q−1)/` ≡ yq−1 ≡ 1 in Fq
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by the little Fermat theorem. Conversely, we assume a(q−1)/` ≡ 1. Consider the algebraic

closure Ω of Fq such that Ω contains all roots of the algebraic equations y` ≡ b for b ∈ Fq.
Thus a = y` is solvable in Ω. Then the assumption a(q−1)/` ≡ 1 implies yq−1 ≡ 1 in Ω.

However, the equation yq−1 − 1 ≡ 0 is solvable in Fq. Let F∗q = 〈α〉, then

yq−1 − 1 ≡ (y − α)(y − α2) · · · (y − αq−1).

Therefore, y ∈ Fq.

Now we want to count the number of rational points on Xλ,q. Given a pair (x, y) ∈
Xλ,q we apply (2.8) to x(x − 1)(x − λ) to see if (x, y) is a rational point on Xλ,q. Let

t = [x(x− 1)(x− λ)](q−1)/`. We intend to find a polynomial f(t) satisfying

f(0) = 1, f(1) = `, f(ζi) = 0 for 0 ≤ i ≤ `− 1.

This means that if x(x − 1)(x − λ) = 0, there is only one point (x, 0) on Xλ,q; if x(x −
1)(x− λ)1/` exists in Fq, there are ` points on Xλ,q; if x(x− 1)(x− λ)1/` does not exist in

Fq, (x, y) is not a rational point on Xλ,q. Observe that the simplest function f satisfying

f(ζi) = 0 for 0 ≤ i ≤ `− 1 is

f(t) = (t− ζ)(t− ζ2) · · · (t− ζ`−1) =
t` − 1

t− 1
= 1 + t+ · · ·+ t`−1,

and f(t) also satisfies f(0) = 1 and f(1) = `. Hence f is a counting function and we have

|Xλ| ≡
∑
x∈Fq

(t+ · · ·+ t`−1) mod p.

Let us compute each term
∑

x t
k. The highest power of x in

∑
x t
k is 3k

` (q − 1). By the

observations

(2.9)
∑
x∈Fq

xk ≡

−1 mod p if (q − 1) | k,

0 mod p if (q − 1) - k,

we need the power to be a multiple of (q − 1), which implies

3k ≥ `.

By the range 0 ≤ k ≤ ` − 1, we know
⌈
`
3

⌉
≤ k ≤ ` − 1. For simplicity, let us first

consider the case δ = 0 and we will come back to the case δ 6= 0 later. Assume that δ = 0
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or (3, `) = 1 and recall that ` | (q − 1). By the power series expansion, we get∑
x∈Fq

tk =
∑
x∈Fq

x
k(q−1)

`

∑
m

(k(q−1)
`

m

)
(−1)mx

k(q−1)
`
−m
∑
n

(k(q−1)
`

n

)
(−λ)nx

k(q−1)
`
−n

=
∑
x∈Fq

x
k(q−1)

`

∑
m,n

(k(q−1)
`

m

)(k(q−1)
`

n

)
(−1)m+nλn · x

2k(q−1)
`
−(m+n)

=
∑
x∈Fq

∑
N

(−1)N
∑

m+n=N

(k(q−1)
`

m

)(k(q−1)
`

n

)
λn · x

2k(q−1)
`
−(m+n)x

k(q−1)
` .

(2.10)

Definition 2.5. For fixed k the counting in (2.10) is called a weight-k counting of |Xλ,q|.

Let us examine the numerical conditions closely. m,n in (2.10) come from the bi-

nomial expansion, so they are required to be integers. Plus (2.9) we can write N =(
3k
` − r − 1

)
(q − 1) for some r ∈ Z≥0 satisfying

k(q − 1)

`
≥ N =⇒

(
r + 1− 2k

`

)
(q − 1) ≥ 0

=⇒
(
r + 1− 2k

`

)
≥ 0.(2.11)

If r = 1 (2.11) always holds, because k ≤ `− 1 < `. If r = 0 (2.11) becomes

1− 2k

`
≥ 0 =⇒ `

2
≥ k.

Thus, we divide the situation into two cases.

• Regular parameters. r = 1,
⌈
`
3

⌉
≤ k ≤ `− 1; and r = 0,

⌈
`
3

⌉
≤ k ≤ `

2 .

• Irregular parameters. r = 0, `
2 < k ≤ `− 1.

2.4. Contributions from regular parameters

By (2.9) we observe that the non-zero terms in (2.10) corresponding to the power of x

satisfy
2k(q − 1)

`
− (m+ n) +

k(q − 1)

`
= (r + 1)(q − 1)

for some r ∈ Z≥0. Hence

(2.12) N = m+ n =

(
3k − `
`
− r
)

(q − 1)

for some r ∈ Z≥0, and the coefficients are

− (−1)N
N∑
n=0

( k(q−1)
`

N − n

)(k(q−1)
`

n

)
λn

≡ −(−1)N
(k(q−1)

`

N

)
· 2F1,N (3k` − r − 1, k` ,

2k
` − r;λ) mod p.

(2.13)
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Compare (2.13) with (2.6) and we have

(2.14) k = `− s− 1.

Therefore,

Nr,s =

(
2− r − 3(s+ 1)

`

)
(q − 1),

kr,s = (−1)Nr,s
( (`−s−1)(q−1)

`

Nr,s

)
.

By construction, Nr,s ∈ Z>0. This implies

(2.15) 2− r − 3(s+ 1)

`
> 0 =⇒ r = 0, 1.

For r = 0, the inequality becomes

2`

3
− 1 > s =⇒ 2k +

2γ

3
− 1 > s, (by writing ` = 3k + γ)

=⇒ (2k + γ − 1)− γ

3
> s,

which matches (2.2), because in (2.2) the equation reads

s ≤ `−
[
`

3

]
− 2 =⇒ s ≤ (3k + γ)− k − 2

=⇒ s ≤ (2k + γ − 1)− 1 < (2k + γ − 1)− γ

3
.

For r = 1, (2.15) becomes

`

3
− 1 > s =⇒ k +

γ

3
− 1 > s =⇒ (k + γ − 1)− 2γ

3
> s,

which also matches (2.2), because in (2.2) the equation reads

s ≤ `−
[

2`

3

]
− 2 =⇒ s ≤ (3k + γ)−

(
2k +

[
2γ

3

])
− 2

=⇒ s ≤ (k + γ − 1)−
([

2γ

3

]
+ 1

)
< (k + γ − 1)− 2γ

3
.

This concludes the computation of the regular parameters.
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2.5. Contributions from irregular parameters

We redo the computation:

− (−1)N
N∑
n=0

( k(q−1)
`

N − n

)(k(q−1)
`

n

)
λn

= −(−1)N
k(q−1)/`∑

n=( 2k
`
−1)(q−1)

( k(q−1)
`

N − n

)(k(q−1)
`

n

)
λn

= −(−1)N
( k(q−1)

`
(2k−`)(q−1)

`

)
λ

(2k−`)(q−1)
` · 2F1(

(k−`)(q−1)
` , k` (1− q), 2k(q−1)−`(q−2)` ;λ)

≡ −(−1)
(3k−`)
`

(q−1)
( k(q−1)

`
(2k−`)(q−1)

`

)
λ

(2k−`)(q−1)
` 2F1(

`−k
` ,

k
` ,

2(`−k)
` ;λ) mod p.

(2.16)

Referring to (2.13), letting a = 3k−`
` , b = k

` , c = 2k
` (because r = 0), one can recognize

that the parameters in (2.16) are

(a− c+ 1, b− c+ 1,−c+ 2).

Therefore, for the irregular parameters, FN is chosen to be x1−c2F1,N (a − c + 1, b − c +

1,−c + 2;x). This can be justified in the partial summation because the lower bound
(2k−`)(q−1)

` > 0.

In the above calculation, we assumed δ = 0 or equivalently (3, `) = 1, soN = m+n 6= 0.

Consider the case (3, `) = 3 ⇒ ` = 3`′ and set N = 0 which implies

3k

`
=
k

`′
= r + 1,

and we know r = 0, 1 which leads to k = `′, 2`′ ≤ 3`′ − 1 = `− 1. This means that there

are two situations in which N = 0 and the summation
∑

[x(x− 1)(x−λ)]k(q−1)/` contains

xq−1 or x2(q−1). Consequently, these two terms contribute −2 after summing over Fq.
The above discussion, together with (2.13) and (2.16), concludes the proof of Theo-

rem 1.1 in the case of m = `, with ` | (p− 1).

2.6. Conclusion of proof of Theorem 1.1

Lemma 2.6. Let d = (`, q − 1) = gcd(`, q − 1) and S be the set of F∗q. Denote Sn =

{an | a ∈ S}.

(a) If ` - (q − 1), then the number of rational points of y` = x(x− 1)(x− λ) over Fq is

the same as the number of rational points of yd = x(x− 1)(x− λ) over Fq.

(b) If d = 1, then S` = S, namely for every a ∈ Fq the equation y` = a has a unique

solution in Fq.
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Proof. For (a), this is a basic property of the units F∗p of a finite field Fp. For (b), by the

same property of F∗q , one can show S` = S.

By this lemma, we can always assume ` | (q− 1) and if d = (`, p− 1) = 1, the equation

y` = x(x − 1)(x − λ) has a unique solution in Fq for every x ∈ Fq. Thus the counting

polynomial is f(t) = 1 and we have

|Xλ,q| ≡
∑
x∈Fq

1 ≡ 0 mod p.

Now we can complete the proof of Theorem 1.1 for general m as stated. Observe the

following relation between H0(Cmλ ,K) and H0(C`λ,K), where C`λ is the smooth model of

the curve defined in P2 with the defining equation

W `
1 = W0(W0 −W2)(W0 − λW2)W

`−3
2 .

In the affine piece UW2=1 ⊂ P2, by (2.2) we want to show

(2.17) m−
[m

3

]
≥ `−

[
`

3

]
and m−

[
2m

3

]
≥ `−

[
2`

3

]
.

Write m = `k, and ` = 3q + r, 0 ≤ r ≤ 2. Then

m−
[m

3

]
≥ `−

[
`

3

]
⇐⇒ 2q(k − 1)− r +

(
rk −

[
rk

3

])
since 2q(k − 1)− r ≥ 2[q(k − 1)− 1] ≥ 0. For the other inequality,

m−
[

2m

3

]
≥ `−

[
2`

3

]
⇐⇒ q(k − 1)−

(
r −

[
2r

3

])
+

(
rk −

[
2rk

3

])
≥ 0

since
(
r −

[
2r
3

])
≤ 1 (if r = 2,

[
2r
3

]
= 1; if r = 1,

[
2r
3

]
= 0). These two inequalities allow

the local expression

xr+
s−(`−1)

` (x− 1)
s−(`−1)

` (x− λ)
s−(`−1)

` dx

of the differential wr,s to have the same format in H0(Cm,K) and H0(C`,K), and allow

the indices to match. Therefore, we can safely proceed the reduction and complete the

proof.

3. Case of X defined by y` = xa1(x− 1)a2(x− λ)a3

3.1. Basic facts

We can apply the method developed in the preceding section to a more general situation.

Let p be a prime and q = pn. Let Xλ be the curve defined by y` = xa1(x− 1)a2(x− λ)a3

where `, a1, a2, a3 ∈ Z>0, (`, a1, a2, a3) = 1, α = a1 + a2 + a3 ≤ `, ` | (q − 1) and Cλ be

a smooth model of Xλ. Then the genus of Cλ is calculated by the technique applied in

Lemma 2.1.
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Lemma 3.1. [2, (4)] Let C be a smooth model of the curve X defined by y` =
∏m
j=1(x−

qj)
aj . Denote α =

∑m
i=1 ai. Assume (`, a1, . . . , am) = 1 and ` ≥ α. Then

g(C) =
1

2
`(m− 1)− 1

2


m∑
j=1

(`, aj) + (`, α)

+ 1,

where (a, b) = gcd(a, b).

Proof. If aj ≥ 2, X has a singularity at qj . Then by blowing up there are (`, aj) points

above qj with branch index `/(`, aj). Hence by the Hurwitz formula,

g(C) = 1 +
(m− 1)`

2
− 1

2


m∑
j=1

(`, aj) + (`, α)

 .

In our case the genus of Cλ is calculated by

g(Cλ) = `+ 1− 1

2
((`, a1) + (`, a2) + (`, a3) + (`, α)) .

On the open set UW2=1 − {0, 1, λ} of Cλ, consider the differentials defined by

ωk1,k2,k3,k =
xk1(x− 1)k2(x− λ)k3 dx

yk
and ωr,k =

xr dx

yk

which has the same form of ωr,s introduced in the preceding section. (Recall (2.14):

k = `− 1− s.) Then we have the following technical lemma for later use.

Lemma 3.2. There exists a basis B = {ωk1,k2,k3,k} such that the number

(3.1) M(k1, k3, k) =

(
(α− a2)

`
k − (k1 + k3)− 1

)
(q − 1)

is uniquely determined by k1, k3 and k. Denote Bk the subset of B containing the holo-

morphic differentials of the type (∗, ∗, ∗, k).

Proof. We will give an explicit algorithm to construct B in the appendix.

3.2. Proof of Theorem 1.2

We break the argument into three steps. The first step is to use the Lefschetz fixed-point

theorem to get a rough idea of the shape of the summation. The second step is to examine

the local behavior of each singular point and make necessary corrections, which we named

correction functions. The last step is to calculate the number of rational points by the

classical technique which we developed in the preceding sections. We can then determine

the precise values of the constants according to the formulas derived in the first step.
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Step 1: Count rational points by the Lefschetz fixed-point theorem.

Let us recall (2.6) and compute the number of rational points. Since a1, a2, a3 might be

greater than 1, there might be singularities at 0, 1, λ, ∞. Thus, we must take corrections

on those points. Hence

1− Tr(F ∗b |H1(Cλ,O)) = number of fixed points of Fb on Cλ,

which implies the number of rational points on Xλ is

|Xλ| = −Tr(F ∗b |H1(Cλ,O))− (δ∞ + δ0 + δ1 + δλ),

where δ0, δ1, δλ are corrections at 0, 1, λ respectively and δ∞ = |points at ∞| − 1. Let

δ = δ0 + δ1 + δλ + δ∞. Then

(3.2) |Xλ| ≡
∑

ωk1,k2,k3,k∈B
−ck1,k2,k3,k · FNk1,k2,k3,k − δ mod p

for some constants ck1,k2,k3,k and Nk1,k2,k3,k.

Now we want to determine the corresponding parameters a, b, c for every differential

ωk1,k2,k3,k ∈ B. Recall the explicit expression of the differential ωk1,k2,k3,k ∈ B:

ωk1,k2,k3,k = x

(
k1−a1k`

)
(x− 1)

(
k2−a2k`

)
(x− λ)

(
k3−a3k`

)
dx.

By comparing with the differential tb−1(t− 1)c−b−1(t− λ)−a dt,

a =
a3k

`
− k3, b = k1 −

a1k

`
+ 1, c = k1 + k2 −

a1k

`
− a2k

`
+ 2

and

a′ = −
3∑
j=1

kj +
αk

`
− 1, b′ =

a3k

`
− k3, c′ = −k1 − k3 +

a1k

`
+
a3k

`
.

For simplicity, let r =
∑3

j=1 kj , which plays a similar role as r defined in the previous case

y` = x(x− 1)(x− λ). Then we know the corresponding truncated hypergeometric serious

is

(3.3) − ck1,k2,k3,kFNk1,k2,k3,k(αk` − r − 1, a3k` − k3,−k1 − k3 + a1k
` + a3k

` ;λ),

where ck1,k2,k3,k and Nk1,k2,k3,k are two constants to be determined and F can be either

2F1,N (a′, b′, c′;λ) or λ(c
′−1)(q−1) ·2F1,N (a′−c′+1, b′−c′+1,−c′+2). Note that the exponent

of λ in front of the hypergeometric series satisfies (c′ − 1)(q − 1) ≡ (1− c′) mod p, which

is consistent with the solution to the hypergeometric differential equations, and this is

exactly the number M we introduced in (3.1).
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Lemma 3.3. Let Nk1,k2,k3,k = (αk` − r − 1)(q − 1) and N ′k1 = (k1 + 1 − a1k
` )(q − 1). Let

M = M(k1, k3, k) be defined as in Lemma 3.2. If M < 0, (k1, k2, k3, k) belongs to the

regular parameters and the solution to the hypergeometric differential equation in Fq with

parameters (a′, b′, c′) is

2F1,Nk1,k2,k3,k
(a′, b′, c′;λ).

If M ≥ 0, (k1, k2, k3, k) belongs to the irregular parameters and the solution to the differ-

ential equation in Fq is

λM · 2F1,N ′k1
(a′ − c′ + 1, b′ − c′ + 1,−c′ + 2;λ).

Proof. The only issue is the length of truncation. Since we are working on Fq, either

(a′)n = 0 in Fq or (b′)n = 0 in Fq can end the series. Note that for the first case,

a′+Nk1,k2,k3,k = (αk` −r−1)q ≡ 0, so we can take it as the length of truncation. Similarly,

for the second case, since b′ − c′ + 1 = (k1 + 1− a1k
` ) we can take (k1 + 1− a1k

` )(q − 1) as

the length of truncation and it is precisely the value of N ′k1 .

Step 2: Compute the correction functions.

In this step we generalize the correction terms defined in the last section, which is

used to relate the number of rational points on X to the number of rational points on the

normalization C. In general, the correction terms might depend on λ, which is different

from the case in the last section. Thus instead of requiring a correction constant, we need

a correction function δ(λ). By the defining equation of Xλ, there might be singular points

along 0, 1, λ. Around x = 0, the defining equation of Xλ reads

y` = xa1(−1)a2(−λ)a3 + (higher order terms).

Let d1 = (`, a1), then there are rational points on Cλ over x = 0 if and only if a d1-th root

of (−1)a2(−λ)a3 exists in Fq. By (2.8), we want to design a function such that

δ(1) = d1 − 1, δ(ζi) = −1 for 1 ≤ i ≤ d1 − 1.

This means if a d1-th root of (−1)a2(−λ)a3 exists, there are d1 rational points on Cλ and

we must make a correction d1−1. If a d1-th root of (−1)a2(−λ)a3 does not exist, we must

make a correction −1 because (0, 0) is a rational point on Xλ.

Clearly, the function δ(r) = (1+r+ · · ·+rd1−1)−1 satisfies the properties we discussed

above. Hence the correction function at x = 0 can be defined by

(3.4) δ0(r) =

d1−1∑
j=1

rj ,
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where d1 = (`, a1) and r = ((−1)a2(−λ)a3)(q−1)/d1 . By the same idea, we find that the

local defining equations of Xλ around x = 1, x = λ are

y` = (x− 1)a2(1− λ)a3 and y` = λa1(λ− 1)a2(x− λ)a3 ,

and their associated correction functions are

(3.5) δ1(s) =

d2−1∑
j=1

sj , δλ(t) =

d3−1∑
j=1

tj ,

where d2 = (`, a2), a3 = (`, a3) and s = ((1− λ)a3)(q−1)/d2 , t = (λa1(λ− 1)a2)(q−1)/d3 .

The singularity at infinity is simply δ∞ = (`, α), so the total correction function is

(3.6) δ = δ0 + δ1 + δλ + δ∞.

Lemma 3.4. rκ1, sκ2, tκ3 in (3.4) and (3.5) such that

κi ·
q − 1

di
= k, 1 ≤ i ≤ 3

contribute to the weight-k counting of |Xλ,q|.

Proof. The proof is directly from construction.

Then we can decompose δ with respect to the weight-k structure and write

(3.7) δ =
∑
k

∑
m

δk,m λ
m.

Note that the constant δ∞ is at weight 0.

Step 3: Determine the constants.

Let us apply the classical technique again (cf. (2.10))

|Xλ| ≡
∑
x∈Fq

(t+ · · ·+ t`−1) mod p.

Then

∑
x∈Fq

tk =
∑
x∈Fq

x
a1k(q−1)

`

∑
m

(a2k(q−1)
`

m

)
(−1)mx

a2k(q−1)
`

−m

×
∑
n

(a3k(q−1)
`

n

)
(−λ)nx

a3k(q−1)
`

−n

=
∑
N

(−1)N
∑

m+n=N

(a2k(q−1)
`

m

)(a3k(q−1)
`

n

)
λn ·

∑
x∈Fq

x
αk(q−1)

`
−N .

(3.8)
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For brevity, we denote

(3.9) N2(k) =
a2k(q − 1)

`
, N3(k) =

a3k(q − 1)

`
.

By (2.9) the power of x is αk(q−1)
` −N = (r + 1)(q − 1) for some r ∈ Z≥0. Hence

(3.10) N = N(k) =

(
αk

`
− r − 1

)
(q − 1)

for some r ∈ Z≥0, and (3.8) can be simply written as

−
∑
N

(−1)N
∑

m+n=N

(
N2

m

)(
N3

n

)
λn.

By using the property of finite fields, we know that there are two relations in Fq:

λq−1 = 1 and 1 + λ+ · · ·+ λq−2 = 1

for λ 6= 0, 1. Fixing k, the weight-k counting of |Xλ,q| is

|Xλ,q|(k) ≡ −
∑
N(k)

(−1)N
∑

m+n=N

(
N2

m

)(
N3

n

)
λn

≡
∑

ωk1,k2,k3,k∈Bk

−ck1,k2,k3,kFNk1,k2,k3,k(a, b, c;λ)−
∑
m

δk,mλ
m

(3.11)

in Fq, where Bk is defined as in Lemma 3.2. According to the relations between N , N2,

N3, there are four different types of summation. Fix k, then N2, N3 are fixed (cf. (3.9)).

Lemma 3.5. Assume 0 < N ≤ N2 +N3, then

(a) for N ≤ N2, N ≤ N3,

N∑
n=0

(
N2

N − n

)(
N3

n

)
λn =

(
N2

N

)
2F1,N (−N,−N3, 1−N +N2;λ);

(b) for N2 < N ≤ N3,

N∑
n=0

(
N2

N − n

)(
N3

n

)
λn =

(
N2

N

)
λN−N2

2F1,N2(−N2, N − (N2 +N3), N −N2 + 1;λ);

(c) for N3 < N ≤ N2,

N∑
n=0

(
N2

N − n

)(
N3

n

)
λn =

(
N2

N

)
2F1,N3(−N,−N3, 1−N +N2;λ);
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(d) for N2 < N , N3 < N ,

N∑
n=0

(
N2

N − n

)(
N3

n

)
λn

=

(
N2

N

)
λN−N2

2F1,N2+N3−N (−N2, N − (N2 +N3), N −N2 + 1;λ).

Proof. These identities can be justified directly.

We need to enumerate possible (k, r)s such that αk(q−1)
` ∈ Z>0. This corresponds to

δ∞. If d∞ > 1, we find the number of k satisfying αk
` − r − 1 ∈ Z as we did in defining

the correction in the case of y` = x(x− 1)(x− λ). Let ` = `′ d∞ and α = α′ d∞. Consider

the condition

αk

`
− r − 1 =

α′k

`′
− r − 1 ∈ Z≥0 =⇒ k = `′k′, and k has to satisfy

⌈
`′

α′

⌉
≤ k ≤ `− 1.

This implies 1 ≤ k′ ≤ d∞−1 because if k′ = d∞ ⇒ α−r−1 ≥ 0 which violates r ≤ α−2.

Therefore, the corrections is d∞ − 1 which is exactly δ∞, the correction at infinity.

Now we are ready to determine the constants ck1,k2,k3,k. The assumption 0 ≤ N ≤
N2 +N3 implies

min

{[
αk

`

]
− 1,

[
a2k

`

]
+ (k1 + k3)

}
≥ r ≥ max

{⌈
a1k

`

⌉
− 1, 0

}
,

and this gives the range of r for fixed k. Unlike the case of y` = x(x − 1)(x − λ),

the differential ωr,k associated with the summation
∑

m+n=N

(
N2

m

)(
N3

n

)
λn might not be

holomorphic on Xλ. However, by Lemmas 3.2, 3.3 and (3.11), for each weight k, we know

that there exist {ck1,k2,k3,k} such that

(3.12) |Xλ,q|(k) +
∑
m

δk,mλ
m ≡

∑
ωk1,k2,k3,k∈Bk

−ck1,k2,k3,kFNk1,k2,k3,k(a, b, c;λ)

in Fq, where a = αk
` − r − 1, b = a3k

` − k3, c = −k1 − k3 + a1k
` + a3k

` . This concludes the

proof of Theorem 1.2.

3.3. Algorithm to find the coefficients

Let Gk(λ) = |Xλ,q|(k) +
∑

m δk,mλ
m. Then by the classical technique of taking derivatives

we can generate enough equations to solve for {ck1,k2,k3,k}. Assuming |Bk| = m, we take

derivatives with respect to λ and get a system of equations

Gk(λ) =
∑
−ck1,k2,k3,kFNk1,k2,k3,k(a, b, c;λ),

G′k(λ) =
∑
−ck1,k2,k3,kF ′Nk1,k2,k3,k(a, b, c;λ),

...

G
(m−1)
k (λ) =

∑
−ck1,k2,k3,kF

(m−1)
Nk1,k2,k3,k

(a, b, c;λ).

(3.13)
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By Lemma 3.5, we have Gk(λ) = f1 + · · · + fn where fi = Ci 2F1,Ni(a, b, c;λ) or fi =

Ciλ
(c−1)

2F1,Ni(a, b, c;λ) for every i. Let g1, g2, . . . , gm be the vectors of functions on the

right-hand side of (3.13). Each entry of gj has the form 2F1,Nj (a
′, b′, c′;λ) or λ(c

′−1)(q−1)

2F1,Nj (a
′ − c′ + 1, b′ − c′ + 1,−c′ + 2;λ). Let c1, . . . , cm be the unknowns and Gk be the

column vector (Gk(λ), G′k(λ), . . . , Gm−1k (λ))T . Then, by Cramer’s rule one has

cj =
W [g1, . . . , Gk, . . . , gm]

W [g1, . . . , gm]
= constant,

where W represents the Wronskian. Thus we can introduce any number into λ. For

simplicity, we can set λ = 1. Notice that fi and gj have the form λMFN (a, b, c;λ) and the

derivative of a hypergeometric series with respect to λ is

F ′N (a, b, c;λ) =
ab

c
FN−1(a+ 1, b+ 1, c+ 1;λ).

This implies

(λMFN (a, b, c;λ))(s)
∣∣∣
λ=1

= Css (λM )(s) + Css−1(λ
M )(s−1)F ′N (a, b, c;λ) + · · ·

∣∣∣
λ=1

=
s∑
j=0

Css−j (M · · · (M − s+ j + 1))
(a)j(b)j

(c)j
FN−j(a+ j, b+ j, c+ j; 1)

=
s∑
j=0

(−s)s−j(−M)s−j(a)j(b)j
(c)j j!

FN−j(a+ j, b+ j, c+ j; 1).

Apply this formula to every f
(s)
i and g

(s)
j , 1 ≤ s ≤ m− 1 and we get an explicit expression

of coefficients in (3.12).

4. Remarks on the Legendre family of elliptic curves over Fq

The results of Section 2 in the case of ` = 2 and q = p give rise to the classically known

results for the Legendre family of elliptic curves. In the case of q = pn with n > 1, apart

from the method presented in Section 2, one can also obtain a similar expression by a

classical approach of considering a truncated hypergeometric series related to p instead of

pn. The goal of this section is to show that after applying Weil’s results on the number of

rational points over a finite field the two countings with different truncated hypergeometric

series are actually the same.

4.1. Arithmetic geometry

Let us first generalize the classical arguments in counting. There are two steps in this

argument. The first step is to apply Fermat’s little theorem to count the numbers of
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rational points directly:

(4.1) |Eλ| ≡
∑
x∈Fp

(
1 + (x(x− 1)(x− λ))(p−1)/2

)
mod p.

Here we follow the same guild line. On the finite field Fq, the identity

aq−1 ≡ 1

for a ∈ F∗q holds. By the construction of Fq, we have a criterion of quadratic roots:

a(q−1)/2 ≡

1 if there exists y such that a = y2,

−1 otherwise,

which is a special case of (2.8). Hence we have

|Eλ| · 1 ≡
∑
x∈Fq

(
1 + (x(x− 1)(x− λ))(q−1)/2

)
in Fq.

By (2.9) we can conclude

(4.2) |Eλ| · 1 ≡ −(−1)(q−1)/2
(q−1)/2∑
r=0

(
−1/2

r

)2

λr in Fq,

which implies

|Eλ,q| ≡ −(−1)(q−1)/2
(q−1)/2∑
r=0

(
−1/2

r

)2

λr mod p

≡ −(−1)(q−1)/22F1,(q−1)/2(
1
2 ,

1
2 , 1;λ).

(4.3)

For the interpretation, recall the Picard-Fuch equation(
1

4
+ (2λ− 1)

∂

∂λ
+ λ(λ− 1)

∂2

∂λ2

)
ap−1(λ)(x− x(q))p−1

≡ −1

2

d

dx
(cp(λ)(x− x(q))p) ≡ 0

(4.4)

over Fq, where q = pn. On Fq, the Frobenius map is F (x) = xq. Therefore, we only have

to replace p by q and get

|Eλ| ≡ −aq−1(λ) ≡ −k ·
(q−1)/2∑
r=0

(
−1/2

r

)2

λr in Fq

=⇒ |Eλ| ≡ −k · 2F1,(q−1)/2(
1
2 ,

1
2 , 1;λ) mod p.

(4.5)

Let us explain the first identity. Since aq−1 satisfies (4.4), aq−1 has a series expression

aq−1 =

q−1∑
k=0

ckλ
k.
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This is because Fq has q elements which implies that the upper bound of the summation

is q − 1. Another explanation is by Fermat’s little theorem, which says λq = λ for every

λ. Hence the highest meaningful power of λ is q − 1. Then, through the explicit solution

of the hypergeometric differential equation, we have

(4.6) aq−1 ≡ k
(q−1)/2∑
r=0

(
−1/2

r

)2

λr in Fq.

By comparing (4.2), (4.5) and (4.6), we have k ≡ (−1)(q−1)/2 in Fq, which implies that

k can be taken as an integer and

k ≡ (−1)(q−1)/2 mod p.

Therefore by (4.2), (4.3) and (4.6) we can conclude

Proposition 4.1.

(4.7) |Eλ,q| ≡ −aq−1(λ) ≡ −(−1)(q−1)/2 · 2F1,(q−1)/2(
1
2 ,

1
2 , 1;λ)

for every q = pn.

4.2. Computation after Weil

Let us approach the same problem by Weil’s conjecture/theorem on smooth algebraic

curves. By using Tate’s module or Étale cohomology one can derive

#E(Fq) = 1− αn − βn − pn

≡ 1− (αn + βn) mod p,
(4.8)

where β = α and |α| = |β| =
√
q (cf. [5, p. 136]). Let a = (α + β) ∈ Z. Note that the

notation #E(Fq) includes the infinity point. Thus by our notation we have

#Eλ(Fq) = 1 + |Eλ,q| .

We can calculate a by letting n = 1 and comparing with (1.1), which implies

a ≡ (−1)(p−1)/22F1,(p−1)/2(
1
2 ,

1
2 , 1;λ) mod p.

To abbreviate, we denote F = 2F1,p/2(
1
2 ,

1−p
2 , 1;λ). Then we can derive |Eλ,q| for n ≥ 1

by a simple observation

αn + βn ≡ (α+ β)n ≡ an mod p.
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Proof. The key is to show αn + βn ∈ Z. We will prove this by induction on n. The case

of n = 1 is obvious. For the general case, according to the binomial expansion

(α+ β)n =
n∑
k=0

Cnkα
n−kβk

= (αn + βn) + Cn1 αβ(αn−2 + βn−2) + · · · ,

(4.9)

and then by the induction hypothesis Cn1 αβ(αn−2 +βn−2)+ · · · ∈ Z, we can conclude that

αn + βn ∈ Z. Again by (4.9), since αβ = |α|2 = q,

(α+ β)n = (αn + βn) + q
(
Cn1 (αn−2 + βn−2) + · · ·

)
≡ (αn + βn) mod p.

Therefore we can calculate

#Eλ(Fq) ≡ 1− (αn + βn) ≡ 1− an mod p

≡ 1−
(

(−1)(p−1)/2F
)n

mod p

=⇒ |Eλ,q| ≡ −(−1)(p−1)n/2Fn mod p.

It is easy to verify

(−1)(p−1)n/2 = (−1)(p
n−1)/2,

so we get an equation

(4.10)

(q−1)/2∑
r=0

(
−1/2

r

)2

λr ≡

(p−1)/2∑
r=0

(
−1/2

r

)2

λr

n

mod p.

Remark 4.2. Incidentally, this equation leads to the following non-obvious identity:

2F1,(q−1)/2(
1
2 ,

1
2 , 1;λ) ≡

(
2F1,(p−1)/2(

1
2 ,

1
2 , 1;λ)

)n
mod p.

5. Examples

5.1.

In this subsection, we will use examples to illustrate subtleties between taking modulo p

and modulo q = pn for n > 1, which explains why Theorem 1.1 was stated in terms of

(mod p) instead of (mod q).

Example 5.1. Let X2
λ be defined by y2 = x(x− 1)(x− λ) and p be a prime. Let q = pn.

Recall the formula (4.7)

F 2
λ,q = −(−1)(q−1)/2 · 2F1,(q−1)/2(

1
2 ,

1
2 , 1;λ).

Let λ = 3, then
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• q = 5, then
∣∣X2

3,5

∣∣ = 3 and F 2
3,5 ≡ 3 mod 5.

• q = 52, then
∣∣∣X2

3,52

∣∣∣ = 31 and F 2
3,52 ≡ 1 mod 5, F 2

3,52 ≡ 6 mod 52.

• q = 53, then
∣∣∣X2

3,53

∣∣∣ = 147 and F 2
3,53 ≡ 2 mod 5, F 2

3,53 ≡ 97 mod 53.

These three results shows that taking modulo p is necessary. The identities will be failed

if one takes modulo q = pn.

Example 5.2. Let X4
λ be defined by y4 = x(x− 1)(x− λ) and p be a prime. Let q = pn.

By using Theorem 1.1, we have

F 4
λ,q = −k1λ(q−1)/2FN1(14 ,

3
4 ,

1
2 ;λ)− k2FN2(14 ,

3
4 ,

1
2 ;λ)− k3FN3(12 ,

1
2 , 1;λ),

where

k1 = (−1)5(q−1)/4
(3(q−1)

4
2(q−1)

4

)
, k2 = (−1)(q−1)/4

(3(q−1)
4

(q−1)
4

)
, k3 = (−1)(q−1)/2,

N1 =
q − 1

4
, N2 =

q − 1

4
, N3 =

q − 1

2
.

Let λ = 3, then

• q = 5, then
∣∣X4

3,5

∣∣ = 3 and F 4
3,5 ≡ 3 mod 5.

• q = 52, then
∣∣∣X4

3,52

∣∣∣ = 19 and F 4
3,52 ≡ 4 mod 5, F 4

3,52 ≡ 14 mod 52.

• q = 53, then
∣∣∣X4

3,53

∣∣∣ = 147 and F 4
3,53 ≡ 2 mod 5, F 4

3,53 ≡ 17 mod 53.

• q = 17, then
∣∣X4

3,17

∣∣ = 23 and F 4
3,17 ≡ 6 mod 17.

• q = 7, then
∣∣X4

3,7

∣∣ = 3 and F 2
3,7 ≡ 3 mod 7.

• q = 11, then
∣∣X4

3,11

∣∣ = 15 and F 2
3,11 ≡ 4 mod 11.

The first three results shows that taking modulo p is necessary. The identities will be failed

if one takes modulo q = pn. For q = 5n, 17, they satisfy the assumption (m, q − 1) = 4

(where m = ` = 4). For the last two identities, they satisfy the assumption (m, q− 1) = 2

(where m = 4, ` = 2).

5.2.

The following example shows that the assumption of ` = (m, q − 1) in Theorem 1.1 is

necessary.
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Example 5.3. Let X6
λ be defined by y6 = x(x − 1)(x − λ). As before, we denote F 6

λ,q

the formula provided in Theorem 1.1. Let F ′6λ,q = F 6
λ,q − δ, i.e., without considering the

correction terms. Let λ = 3, then

• q = 7, then
∣∣X6

3,7

∣∣ = 3 and F ′63,7 ≡ 5 mod 7.

• q = 13, then
∣∣X6

3,13

∣∣ = 27 and F ′63,13 ≡ 3 mod 13.

• q = 17, then
∣∣X6

3,17

∣∣ = 23 and F 6
3,17 ≡ 4 mod 17, F 2

3,17 ≡ 6 mod 17.

The first two results shows that the correction terms are necessary. For the last result,

the formula F 6
λ,q does not provide the correct result in the case 6 - (17 − 1). Instead, we

must consider the right power and do the reduction: F 2
λ,q where 2 = (6, 17− 1).

6. Appendix

We will present an explicit algorithm mentioned in the proof of Lemma 3.2. First let us

recall:

Lemma 6.1. [2, Theorem 3] ωk1,k2,k3,k is holomorphic if and only if (k1, k2, k3, k) satisfies

• Test1: `(kj + 1) ≥ kaj + (`, aj) for j = 1, 2, 3, and

• Test2: kα ≥ (k1 + k2 + k3 + 1)`+ (`, α).

Now we declare variables m = `, a = α, k1 = k1, k2 = k2, k3 = k3. Then we have the

following algorithm.

Listing 1: Find a basis

for ( k=IntgerPart (m/a )+1; k<=m−1; k++){
n=−1; // c o n t r o l f l a g .

for ( k3=0; k3<=a−2; k3++){
for ( k2=0; k2<=a−2; k2++){
for ( k1=0; k1<=a−2 && k1+k2+k3>n ; k1++){

Test1 ;

Test2 ;

n=k1+k2+k3 ; // r e s e t the f l a g .

}}}
}

Note that for each fixed k, we move k3 first, then k2, then k1. In this manner we can

make k1 + k2 + k3 keep growing. One can easily justify that this feature makes B satisfy

the requirement in Lemma 3.2.
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