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A Finiteness Result for Inverse Three Spectra Sturm-Liouville Problems

Ying Yang* and Guangsheng Wei

Abstract. The finiteness for an inverse three spectra Sturm-Liouville problem with po-

tential q on the interval [0, 1] and boundary parameters h0, h1 is studied in this paper.

Under condition that two boundary conditions at a fixed internal rational point a of

(0, 1) are different and known a priori, we show that there exist at most a finite number

of triplets (q;h0, h1) corresponding to the three spectra of a Sturm-Liouville equation

defined on [0, 1], [0, a] and [a, 1], respectively, with the same boundary conditions at

two endpoints 0 and 1.

1. Introduction

The main goal of this paper is to concern the finiteness problem of recovering the potential

q on the interval [0, 1] of a Sturm-Liouville equation

(1.1) − u′′ + q(x)u = λu

using three spectra σ(L) = {λn}∞n=0, σ(L−) = {µ−n }
∞
n=0 and σ(L+) = {µ+n }∞n=0 correspond-

ing to three Sturm-Liouville problems L, L− and L+, which are generated respectively by

(1.1) defined on [0, 1], [0, a] and [a, 1] and the following Robin boundary conditions

u′(0) + h0u(0) = 0 = u′(1) + h1u(1),(1.2)

u′(0) + h0u(0) = 0 = u′(a) + h−u(a),(1.3)

u′(a) + h+u(a) = 0 = u′(1) + h1u(1).(1.4)

Here all the boundary parameters h0, h1, h−, h+ belong to R, the potential q ∈ L1[0, 1] is

real-valued and a ∈ (0, 1) is fixed.

In the literature there are many results (see [1, 2, 5, 6, 9–11, 13] and the references

therein) related to the inverse three spectra problem. This problem was first investigated

by Pivovarchik [10] under condition that a = 1/2 and σ(L) and σ(L∓) are the Dirichlet

spectra (i.e., all h0, h1, h± = ∞). Further investigation has been carried out by Gesztesy
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and Simon [5] under the more general situations of a ∈ (0, 1) and Robin spectra. So far, this

inverse problem has been studied in various settings, for example, see [1] for distributional

potentials, [9] for Jacobi matrices, [2] for Stieltjes strings and [6] for compound systems.

We note that Gesztesy and Simon [5] proved uniqueness of the reconstructed q whenever

the three spectra do not overlap and suggested a counterexample to uniqueness otherwise.

Hryniv and Mykytyuk [6] also discussed the situation of the overlapping of three Dirichlet

spectra for the case of singular potentials. However, all the above studies are restricted to

the case of h− = h+.

Our immediate motivation for this paper is a recent research of the second author and

X. Wei [13], who considered the case of h− 6= h+ and established the following extended

inverse three spectra theorem.

Theorem 1.1. Fix h+, h− ∈ R with h+ > h− and let a = 1/2. Suppose the following

interlacing property holds:

(1.5) µ−n < λ2n < µ+n < λ2n+1 < µ−n+1

for all n ∈ N0 := N∪ {0}. Then h0, h1 and q a.e. on [0, 1] are uniquely determined by the

three spectra σ(L) and σ(L±).

It is worth mentioning that the interlacing property (1.5) of the associated eigenvalues

in general does not hold for all n ∈ N0, even the three spectra do not overlap for the case

of h− 6= h+. However, we observe that, in appropriate circumstance, (1.5) remains valid

when n is sufficiently large. Motivated by this situation, a natural question occurs:

what if we take out condition (1.5)?

Our purpose here is to consider this question in a more general case of Theorem 1.1 that

the fixed interior point a is a rational number, namely,

(1.6) a =
m1

m2
,

where m1 < m2 and m1,m2 ∈ N are co-prime.

In this paper, we shall prove that there exist at most a finite number K0 (say) of

triplets (q;h0, h1) corresponding to the three spectra of the Sturm-Liouville problems L

and L∓ provided that h− 6= h+ and the following condition is satisfied

(1.7) max {h−, h+} < B(h0, h1; q) or min {h−, h+} > B(h0, h1; q)

where

(1.8) B(h0, h1; q) = ah1 + (1− a)h0 +
a

2

∫ 1

a
q(t) dt− 1− a

2

∫ a

0
q(t) dt.



A Finiteness Result for Inverse Three Spectra Sturm-Liouville Problems 169

Here K0 depends only on the norm ‖q‖L1 and the boundary parameters h0, h1 and h±

(see Section 3 below). The finiteness result does not need precondition that three spectra

are pairwise disjoint, that is, condition (1.5) can be dropped. In fact, we shall find out

that condition (1.7) implies interlacing property (1.5) for sufficiently large n when a is

a rational number (see Section 2 for details). This together with Borg’s theorem [4] can

ensure that at most a finite number of triplets (q;h0, h1) correspond to the three spectra

of the problems L and L∓. By the way, we return to consider the uniqueness problem of

recovering the potential q.

Similar results may be obtained for the Dirichlet boundary conditions, where h0 =∞
and/or h1 =∞ and for the case of h+ 6= h−. Moreover, the technique used to obtain our

result in the paper is based on Borg’s two-spectra theorem [4].

The structure of this paper is as follows. In Section 2 we prove results concerning the

interlacing property of the associated eigenvalues for sufficiently large n > N . Section 3

presents the way to find the N . The finiteness theorem and its proof will be presented in

Section 4.

2. Preliminaries

In this section, we shall establish the interlacing property among the associated eigenvalues

for sufficiently large n. We begin by considering the initial-value problems of (1.1) with

initial conditions

u(0) = 1, u′(0) = −h0,(2.1)

v(1) = 1, v′(1) = −h1.(2.2)

Let u := u(x, λ) and v := v(x, λ) denote the solutions of (1.1)–(2.1) and (1.1)–(2.2),

respectively. Note that the eigenvalues {λn}∞n=0 of the problem L are precisely the zeros

of the transcendental function

(2.3) ω(λ) = u(x, λ)v′(x, λ)− u′(x, λ)v(x, λ),

where ω(λ) is independent of x ∈ [0, 1]. Similarly, if letting

ω−(λ, h−) = u′(a, λ) + h−u(a, λ),(2.4)

ω+(λ, h+) = v′(a, λ) + h+v(a, λ),(2.5)

then the eigenvalues {µ∓n }
∞
n=0 of two problems L∓ are the zeros of the functions ω∓(λ, h∓),

respectively. It is known [4] that ω(λ) and ω∓(λ, h∓) are entire in λ of the order 1/2 and
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the eigenvalues {λn}∞n=0, {µ∓n }
∞
n=0 have the following asymptotics

λn = λ1,n + 2A+ αn,(2.6)

µ−n = µ−1,n + 2A− + α−n ,(2.7)

µ+n = µ+1,n + 2A+ + α+
n ,(2.8)

where three sequences {αn}∞n=0 and {α∓n }
∞
n=0 are infinitely small as n→∞,

(2.9) λ1,n = (nπ)2, µ−1,n =

(
m2

m1
nπ

)2

, µ+1,n =

(
m2

m2 −m1
nπ

)2

and

A = h1 − h0 +
1

2

∫ 1

0
q(t) dt,

A− =
m2

m1

(
h− − h0 +

1

2

∫ m1/m2

0
q(t) dt

)
,

A+ =
m2

m2 −m1

(
h1 − h+ +

1

2

∫ 1

m1/m2

q(t) dt

)
.

(2.10)

We first consider the interlacing property between {λ1,n}∞n=0 and {µ1,n}∞n=0 for all n ∈ N0,

where

{µ1,n}∞n=0 := {µ−1,n}
∞
n=0 ∪ {µ+1,n}

∞
n=0

(counting multiplicity) is an increasing sequence.

Lemma 2.1. Let a = m1/m2 be an irreducible fraction with m1 < m2 and m1,m2 ∈ N.

Then for all n ∈ N0 := N ∪ {0}, we have

(2.11) µ1,n ≤ λ1,n ≤ µ1,n+1.

Proof. We first prove (2.11) holds for n = 0, 1, . . . ,m2. Without loss of generality, we

assume m1 > m2 −m1. Consider the sequence of the numbers a−n := nm2/m1 for n =

0, 1, . . . ,m1 − 1 and a+j := jm2/(m2 −m1) for j = 0, 1, . . . ,m2 −m1 − 1. Once m1 and

m2 are given, then they can be arrayed as

(2.12) a0 = a1 < a2 < a3 < · · · < am2−1 < am2 ,

where a0 = a1 = a−0 = a+0 , am2−1 = a−m1−1 = m2(1− 1/m1) (because m1 > m2 −m1) and

am2 = m2. Note that if n0m2/m1 = j0m2/(m2 −m1) for some n0 > 0 and j0 > 0, then

m1

m2
=

n0
n0 + j0

,
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which contradicts the precondition that m1 and m2 are co-prime. This shows that (2.12)

remains valid.

Now, we need to show that the interval (aj , aj+1) contains j for j = 1, 2, . . . ,m2 − 1.

Since m1 < m2 and therefore m2/m1 > 1 and m2/(m2−m1) > 1, it follows that if aj and

aj+1 are adjacent of
{
a−1 , . . . , a

−
m1−1

}
and

{
a+1 , . . . , a

+
m2−m1−1

}
, respectively, then there

exists at least an integer k belonging to (aj , aj+1). On the other hand, considering another

case that two endpoints aj and aj+1 are not adjacent of the a−n ’s and a+j ’s, for example,

aj = n0m2/m1 and aj+1 = j0m2/(m2 −m1); if (aj , aj+1) does not contain any integer,

then aj+1 − aj ≤ 1 and there exists an integer k1 satisfying

(2.13) k1 ≤
m2

m1
n0 < k1 + 1 and k1 <

m2

m2 −m1
j0 ≤ k1 + 1.

This implies k1 < n0 + j0 < k1 + 1, which is impossible. Therefore, we find each interval

(aj , aj+1) for j = 1, 2, . . . ,m2 − 1 contains at least a positive integer. This together with

am2−1 = m2(1 − 1/m1) < m2 yields (aj , aj+1) contains j. Multiplying π to aj to (2.13),

we conclude that (2.11) holds for n = 0, 1, . . . ,m2.

We next prove (2.11) holds for n ≥ m2. In this case, there exists p ∈ N such that

n = pm2 +m0, where m0 ∈ {0, 1, . . . ,m2 − 1}. This yields

(2.14)
√
µ1,n = (pm2 + am0)π,

√
λ1,n = (pm2 +m0)π,

and therefore (2.11) holds for all n ∈ N0. The proof is complete.

Let us mention that, since a is a rational number and hence it has rotative periodicity,

it follows from the above proof that for any p ∈ N,

µ1,pm2 = λ1,pm2 = µ1,pm2+1 < λ1,pm2+1 < µ1,pm2+2 < · · ·

< µ1,(p+1)m2−1 < λ1,(p+1)m2−1 < µ1,(p+1)m2
.

(2.15)

Here µ1,pm2 = µ1,pm2+1 = µ−1,pm1
= µ+1,p(m2−m1)

. This together with condition (1.7) will

help us to identify the interlacing property between {λn}∞n=0 and {µn}∞n=0 for sufficiently

large n. However, if a is an irrational number, then the rotative periodicity (2.15) does

not remain true. Moveover, in general we do not know the exact positions in (2.15) of

µ−1,pm1+j
for j = 1, 2, . . . ,m1−1 and µ+1,p(m2−m1)+j

for j = 1, 2, . . . ,m2−m1−1, but when

m1 and m2 are given concretely. For example, if m1 = 3 and m2 = 10, then a simple

calculation shows that µ1,10p+5 = µ−1,3p+1 and µ1,10p+8 = µ−1,3p+2, and other µ1,10p+k are

µ+1,7p+j for j = 1, 2, . . . , 6.

We next consider the interlacing property between {λn}∞n=0 and {µn}∞n=0 for sufficiently

large n, where

(2.16) {µn}∞n=0 :=
{
µ−n
}∞
n=0
∪
{
µ+n
}∞
n=0

(counting multiplicity) is an increasing sequence.
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Lemma 2.2. Let a be defined as in Lemma 2.1. Suppose the boundary parameters h0,

h1, h− and h+ defined in (1.2)–(1.4) satisfy (1.7). Then there exists a positive number N

such that, for all n > N ,

(2.17) µn < λn < µn+1.

Proof. Without loss of generality, we assume max {h−, h+} < B(h0, h1; q) in (1.7). The

similar argument can deal with another case. Note that this assumption implies A−A− > 0

and A+−A > 0. From (2.6)–(2.10) and Lemma 2.1, we have that if n = pm2 for all p ∈ N0

then µn = µ−pm1
, µn+1 = µ+p(m2−m1)

,

λn − µn = λ1,pm2 − µ−1,pm1
+A−A− + αpm2 − α−pm1

= A−A− + αpm2 − α−pm1

(2.18)

and

λn − µn+1 = λ1,pm2 − µ+1,p(m2−m1)
+A−A+ + αpm2 − α+

p(m2−m1)

= A−A+ + αpm2 − α+
p(m2−m1)

.
(2.19)

Recall that A − A− > 0 and A+ − A > 0. Since three sequences {αn}∞n=0 and {α±n }
∞
n=0

are infinitely small as n → ∞, it follows that there exists a positive integer, denoted by

Ne, satisfying

(2.20)
∣∣αpm2 − α−pm1

∣∣ < A−A−

2
,
∣∣∣αpm2 − α+

p(m2−m1)

∣∣∣ < A+ −A
2

for all n > Ne and therefore µn < λn < µn+1 when n = pm2 and n > Ne.

On the other hand, if n = pm2 + j for j = 1, 2, . . . ,m2 − 1, then

λn − µn = (λ1,n − µ1,n) + (A+ αn)− (Aε + αεm)

≥ nπ
(√

λ1,n −
√
µ1,n

)
+ (A+ αn)− (Aε + αεm)

= nπ2(j − aj) + βn + βεm

≥ nπ2C−0 − |βn| − |β
ε
m| ,

(2.21)

where ε = ± when µn = µ±m, aj are defined by (2.12), βn = A + αn, βεm = Aε + αεm, and

C−0 = min {(j − aj) : j = 1, 2, . . . ,m2 − 1}. It is easy to see that

(2.22) C−0 ≥ max

{
1

m1
,

1

m2 −m1

}
.

Note that two sequences {βn}∞n=0 and {β±m}
∞
m=0 are bounded. Therefore, there are M0(βn)

and M0(β
±
m) satisfying |βn| ≤ M0(βn) and |β±m| ≤ M0(β

±
m) for all n,m ∈ N0. For the

positive constant C−0 in (2.22), there exists the positive number

(2.23) N−i =
M0(βn) +M0(β

±
m)

π2C−0
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such that λn > µn for all n > N−i and n = pm2 + j for j = 1, 2, . . . ,m2− 1. In accordance

with the similar argument, one infers that λn < µn+1 for all n > N+
i and n = pm2 + j for

j = 1, 2, . . . ,m2 − 1, where

(2.24) N+
i =

M0(βn) +M0(β
±
m)

π2C+
0

with C+
0 = min {(aj+1 − j) : j = 1, 2, . . . ,m2 − 1} and C+

0 satisfies (2.22). Thus, if we

choose Ni = max
{
N+
i , N

−
i

}
, then the strict inequality µn < λn < µn+1 holds for each

n > Ni with n = pm2 + j for j = 1, 2, . . . ,m2 − 1.

By means of the discussion above for two cases, we infer that the interlacing property

(2.17) holds for all n > N := max {Ne, Ni}. This completes the proof.

By the proof of Lemma 2.2, we see that there are two positive numbers Ne and Ni so

that

(2.25)

µpm2 < λpm2 < µpm2+1 if p > Ne/m2,

µpm2+j < λpm2+j < µpm2+j+1 if p > Ni/m2,

where j = 1, 2, . . . ,m2− 1. This fact urges us to find out two positive numbers Ne and Ni

to ensure (2.25) holds. Note that Ne and Ni are only related to the L1 norm of q and the

boundary parameters h0, h1 and h± (see Section 4 for details).

Let us concern with the functions

ω−(λ, h+) = u′(a, λ) + h+u(a, λ),(2.26)

ω+(λ, h−) = v′(a, λ) + h−v(a, λ),(2.27)

and denote their zeros by {υ∓n }
∞
n=0. Then both sets {υ−n }

∞
n=0 and {υ+n }∞n=0 are the spectra

of the following two Sturm-Liouville problems

(2.28)


−u′′ + qu = λu on [0, a],

u′(0) + h0u(0) = 0,

u′(a) + h+u(a) = 0,

and

(2.29)


−u′′ + qu = λu on [a, 1],

u′(a) + h−u(a) = 0,

u′(1) + h1u(1) = 0.

Finally, we consider the interlacing property between {µn}∞n=0 and {υn}∞n=0 for suffi-

ciently large n, where

(2.30) {υn}∞n=0 :=
{
υ−n
}∞
n=0
∪ {υ+n }∞n=0

(counting multiplicity) is an increasing sequence.
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Lemma 2.3. Fix n ∈ N0. Consider the corresponding eigenvalue µ−n (h0, h−) of the oper-

ator L− as the function of h0 and h−. Then µ−n (h0, h−) is a continuous function of h0,

h− for (h0, h−) ∈ R2 and, it is strictly decreasing in h0 ∈ R for any fixed h− ∈ R; and

strictly increasing in h− ∈ R for any fixed h0 ∈ R.

Proof. The proof refers the proof of [14, Theorem 4.4.3] and is therefore omitted.

Lemma 2.4. Let a be defined as in Lemma 2.1. Suppose the interlacing property (2.17)

holds. For the same N existence of which is proved in Lemma 2.2, then one of the following

two interlacing properties holds for each n > N ,

µn < υn < µn+1 for h+ > h−,(2.31)

υn < µn < υn+1 for h+ < h−.(2.32)

Proof. Let ω1(λ) = ω−(λ, h−)ω+(λ, h+) and ω2(λ) = ω−(λ, h+)ω+(λ, h−). Then from

(2.3)–(2.5) and (2.26)–(2.27) we get

ω(λ) =
1

h+ − h−

∣∣∣∣∣∣u
′(a, λ) + h+u(a, λ) v′(a, λ) + h+v(a, λ)

u′(a, λ) + h−u(a, λ) v′(a, λ) + h−v(a, λ)

∣∣∣∣∣∣
=

1

h+ − h−
[ω2(λ)− ω1(λ)].

(2.33)

It should be noted that, by adding a constant to the potential q if need be, we can assume

that three continuous functions ω(λ), ω1(λ) and ω2(λ) are real in interval (0,∞) and their

all zeros are positive. Since {λn}∞n=0 and {µn}∞n=0 are the zeros of the functions ω(λ)

and ω1(λ), respectively, we obtain µn < λn < µn+1 for all n > N , which is proved in

Lemma 2.2.

We first show that there exists υm ∈ {υn}∞n=0 so that υm ∈ (µn, µn+1) for each n > N ,

where {υn}∞n=0 are the zeros of function ω2(λ). Since µn and µn+1 are the adjacent zeros

of ω1(λ), it follows from (2.33) that

(2.34) ω(µn)ω(µn+1) =
1

(h+ − h−)2
ω2(µn)ω2(µn+1).

It is known [4] that

ω(λ) = (λ0 − λ)

N∏
n=1

λn − λ
n2π2

∞∏
n=N+1

λn − λ
n2π2

,

and each λn is the only simple zero of ω(λ) in the interval (µn, µn+1) for n > N . Then we

have ω(µn)ω(µn+1) < 0, which together with (2.34) and h+ 6= h− implies

ω2(µn)ω2(µn+1) < 0.
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By the intermediate value theorem of continuous functions, we infer that there exists at

least υm ∈ {υn}∞n=0 so that υm ∈ (µn, µn+1) for each n ≥ N .

We next prove that for each n > N the interval (µn, µn+1) contains at most one element

of the set {υn}∞n=0 for the case h+ > h−. If µn = µ−k =: µ−k (h0, h−) for some k ∈ N0, then

from Lemma 2.3 we see that the eigenvalue µ−k (h0, h−) is strictly increasing in h− ∈ R for

any fixed h0 ∈ R. In this sense, the eigenvalue υ−k can be regarded as µ−k (h0, h+). On the

other hand, µn = µ+k =: µ+k (h+, h1) is strictly decreasing in h+ ∈ R for any fixed h1 ∈ R
and therefore υ+k can be regarded as µ+k (h−, h1). Since h+ > h−, it follows that µ−k < υ−k
and µ+k < υ+k . This yields that µn < υn and shows that for n > N the interval (µn, µn+1)

contains at most one element of the set {υn}∞n=0. This fact also remains true in the case

h+ < h−.

Combined with the above discussions, we have µn < υn < µn+1 for each n ≥ N when

h+ > h−. Similarly, if h+ < h−, then we have υn < µn < υn+1 for n ≥ N . This completes

the proof.

3. Finding N

In this section we shall identify N = max {Ni, Ne} in Lemma 2.2 such that the interlacing

property (2.17) holds for n > N . We first present the estimates of sequences {αn}∞n=0 in

(2.6) and {βm}∞m=0 in (2.21) to find Ne and Ni such that |αn| < δ and |βm| < M0 hold for

all n > Ne and m > Ni. Here the positive number δ is given a priori. The method used

here mainly relies on that of used in [8, 12].

Throughout this section, we always assume that (1.7) holds. Let us consider the

Sturm-Liouville problem L which is generated by (1.1)–(1.2). It is well known [4] that its

eigenvalues {λn}∞n=0 obey the following asymptotic expression

(3.1) λn = (nπ)2 + 2A+ c(n) + γn,

where γn = O(1/n) as n→∞, A is defined by (2.10) and c(n) are the Fourier coefficients

for potential q:

(3.2) c(n) =

∫ 1

0
q(t) cos(2nπt) dt.

We need the following lemma which is a copy from [7, Theorem 4.2.1]. We cite this lemma

here without proof.

Lemma 3.1. Given any positive number δ(A), there exists a positive Nf (0, 1) such that

for all n > Nf (0, 1),

(3.3) |c(n)| < δ(A).
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Remark 3.2. Generally speaking, if the unknown potential q belongs to L1[0, 1], we do not

know the exact Nf (0, 1) such that (3.3) holds for n > Nf (0, 1), although we only know its

existence. However, if q ∈W 1,1[0, 1], then it follows from [7] that∣∣∣∣∫ 1

0
q(t) cos(2nπt) dt

∣∣∣∣ ≤ ‖q′‖L1

2nπ
.

This yields Nf (0, 1) = ‖q′‖ /(2πδ(A)), which only depends on the norm ‖q′‖L1 .

By a result of Mclaughlin [8], one can prove

Lemma 3.3. For the problem L, we have

(3.4) |ω(λ)− ρ sin(ρ)| ≤ B

and

(3.5)

∣∣∣∣ω(λ)− ρ sin(ρ)− (h0 − h1) cos(ρ) +

∫ 1

0
q(t) cos(ρ(1− t)) cos(ρt) dt

∣∣∣∣ ≤ B

|ρ|

for λ ∈ R, where λ = ρ2, ω(λ) is defined in (2.3) and

(3.6) B = (1 + |h0|)(1 + |h1|)
(

1 + ‖q‖ e‖q‖
)

with ‖q‖ := ‖q‖L1[0,1].

In the following, we present the estimates for Ne and Ni in Lemmas 3.4 and 3.5, which

will help us to obtain the number of triplets (q;h0, h1) corresponding to three spectra. Set

(3.7) δ(A) = min
{∣∣A−A+

∣∣ , ∣∣A−A−∣∣ , A0

}
,

where A0 = min {1/m1, 1/(m2 −m1)} and A and A± are defined by (2.10). With the

above preliminaries provided, we first need to identify Ne.

Lemma 3.4. Consider the problem L. Let δ(A) be given by (3.7) and let Nf (0, 1) be

defined in Lemma 3.1 corresponding to the positive constant δ(A)/2. Then, for the eigen-

values asymptotic (3.1), there exists Ne(0, 1) given by

(3.8) Ne(0, 1) = max

{
Nf (0, 1),

2C

δ(A)

}
such that for all n > Ne(0, 1),

(3.9) |αn| := |c(n) + γn| < δ(A).

Here

(3.10) C = B(4 + 7B),

and B is defined in (3.6).
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Proof. The proof of this lemma consists of two parts. First, we prove that for D = 5B

and n > 25B/π2 the eigenvalue λn lies in In(D) =
[
(nπ)2 −D, (nπ)2 +D

]
. We prove the

inequality (3.9) holds in the second part.

We first prove the existence of the eigenvalue λn in In(D) for n > 25B/π2. In order to

prove this fact, we only need to show that ω(λ) changes sign in In(D). For λ = (nπ)2 +D,

in virtue of 1 + t/4 ≤
√

1 + t ≤ 1 + t/2 for 0 ≤ t ≤ 1, we obtain

(3.11) nπ

(
1 +

5B

4n2π2

)
≤
√
λ ≤ nπ

(
1 +

5B

2n2π2

)
.

Moreover, by using |sin(nπ + t)| > |t| (1− t2/6), we deduce that

(3.12) (−1)n sin(
√
λ) > (−1)n sin

(
nπ +

5B

4nπ

)
>

5B

4nπ
.

By (3.4), (3.11) and (3.12), we have (−1)nω(λ) > 0. Similarly, for λ = (nπ)2 −D, we get

(3.13) nπ

(
1− 0.106

n

)
<
√
λ ≤ nπ

(
1− 5B

4n2π2

)
.

It follows from (3.4), (3.12) and (3.13) that (−1)nω(λ) < 0. Therefore, there is at least one

eigenvalue λn in In(D) for n > 25B/π2. On the other hand, by means of the asymptotic

of {λn}∞n=0 (see (3.1)), we see that there is only one λn in In(D).

We secondly prove (3.9) holds. Using (3.5) we obtain that for λn = ρ2n,∣∣∣∣sin(ρn)− A

ρn
cos(ρn)− cos(ρn)

2ρn

∫ 1

0

q(t) cos(2ρnt) dt−
sin(ρn)

2ρn

∫ 1

0

q(t) sin(2ρnt) dt

∣∣∣∣ ≤ B

|λn|
,

where A is defined by (2.10). Denote λn = (nπ)2 + C0 with |C0| < 5B. We know

(3.14)
√
λn = nπ

(
1 +

C0

2(nπ)2
+ C1

)
with |C1| < C2

0/[4(nπ)4] and we have

(3.15)

∣∣∣∣∣sin(
√
λn)− (−1)n

(
λn − (nπ)2

)
2nπ

∣∣∣∣∣ < B(1 +B)

4n2π
.

From (3.14), we get
√
λn = (1+C2)nπ, where |C2| < 3B/(nπ)2 and 1/

√
λn = (1+C3)/(nπ)

with |C3| < 2 |C2|. Therefore,

(3.16)

∣∣∣∣sin(ρn)

2ρn

∫ 1

0
q(t) sin(2ρnt) dt

∣∣∣∣ < 2B ‖q‖
(nπ)2

.

By cos(
√
λn) = cos(nπ + C2nπ) = (−1)n + C4 with |C4| < |C2nπ|2 /2, we calculate

(3.17)

∣∣∣∣Acos(ρn)

ρn

∣∣∣∣ < (−1)nA

nπ
+ C5,
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where |C5| ≤ |A| (|C3|+ |C4|+ |C3C4|)/(nπ) < |A| (1+B)/[2(nπ)2]. Let 2
√
λn = 2nπ+C6

with |C6| < 6B/(nπ). Then

(3.18) cos(2
√
λnt) = cos(2nπt) + C7,

where |C7| < 9B/(nπ). (3.17) and (3.18) together yield

(3.19)
cos(ρn)

2ρn

∫ 1

0
q(t) cos(2ρnt) dt =

(−1)nc(n)

2nπ
+ C8,

where |C8| < (1+2B) ‖q‖ /(n2π). Furthermore, combined with the above discussions, one

infers that ∣∣∣∣λn − (nπ)2

2nπ
− A

nπ
− c(n)

2nπ

∣∣∣∣ < B(1 +B)

4n2π
+

2B ‖q‖
(nπ)2

+
|A| (1 +B)

2(nπ)2

+
(1 + 2B) ‖q‖

n2π
+

B

(nπ)2
,

(3.20)

which implies
∣∣λn − (nπ)2 − 2A− c(n)

∣∣ < C/n by a simple calculation, where C is defined

by (3.10). In all, when n > max
{

25B/π2, 2C/δ(A)
}

we find

(3.21)
∣∣λn − (nπ)2 − 2A

∣∣ < c(n) +
δ(A)

2
.

By virtue of (3.7), one shows that δ(A) ≤ C0 ≤ 1 and, therefore,

(3.22)
2C

δ(A)
≥ 2C = 2B(4 + 7B) >

25B

π2
,

which means (3.21) holds for all n > 2C/δ(A). Moreover, by Lemma 3.1, we deduce that

|c(n)| < δ(A)/2, when n > Nf (0, 1). Substituting the above inequality into (3.21), we

obtain the representation (3.9) for each n > Ne(0, 1) := max {Nf (0, 1), 2C/δ(A)} and the

proof of Lemma 3.4 is complete.

Consider two other Sturm-Liouville problems L[0,a] and L[a,1], which are defined on

interval [0, a] and [a, 1], respectively, where a = m1/m2 is an irreducible fraction with

m1 < m2 and m1,m2 ∈ N. Recall that {µ−n }
∞
n=0 and {µ+n }∞n=0 are their spectra. Thus,

by the same argument in the proof of Lemma 3.4, for the given positive δ(A) defined by

(3.7), we easily infer that there exist two positive numbers Ne(0, a) and Ne(a, 1) defined

as

(3.23) Ne(0, a) = max

{
Nf (0, a),

2C−
δ(A)

}
and Ne(a, 1) = max

{
Nf (a, 1),

2C+

δ(A)

}
such that for all n > max {Ne(0, a), Ne(a, 1)} the following inequalities hold:

(3.24)
∣∣α−n ∣∣ < δ(A) and

∣∣α+
n

∣∣ < δ(A).
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Here α±n are defined in (2.7)–(2.8) and Nf (0, a) and Nf (a, 1) are given by Lemma 3.1 corre-

sponding to the Fourier coefficients for potential q defined on [0, a] and [a, 1], respectively.

Moreover, C− and C+ in (3.23) are given by

(3.25) C− = B− + 5B2
− +

m2

m1
(3B− + 2B2

−),

where B− = (1 + |h0|)(1 + |h−|)
(
1 + ‖q‖ e‖q‖

)
with ‖q‖ := ‖q‖L[0,a], and

(3.26) C+ = B+ + 5B2
+ +

m2

m2 −m1
(3B+ + 2B2

+),

where B+ = (1 + |h+|)(1 + |h1|)
(
1 + ‖q‖ e‖q‖

)
with ‖q‖ := ‖q‖L[a,1].

Set

(3.27) Ne = max

{
Ne(0, 1),

m2

m1
Ne(0, a),

m2

m2 −m1
Ne(a, 1)

}
.

It is easy to see that the Ne defined above only depends on the associated norms of the

potential q and the boundary parameters h0, h1 and h±.

We next need to identify Ni.

Lemma 3.5. Let B be defined as in Lemma 3.3 (see (3.6)). Then for the eigenvalues

asymptotic (3.1) there exists Ni(0, 1) defined by

Ni(0, 1) =
25B

π2

such that for all n > Ni(0, 1),

(3.28) |βn| := |2A+ αn| < 5B,

where A is defined by (2.10).

Proof. The proof of this lemma follows Lemma 3.4 and is therefore omitted.

Furthermore, by Lemma 3.5, we also infer that there exist two numbers Ni(0, a) and

Ni(a, 1) for the problems L[0,a] and L[a,1], which are defined as

(3.29) Ni(0, a) =
25m1B−
m2π2

and Ni(a, 1) =
25(m2 −m1)B+

m2π2
,

which imply that for all n > max {Ni(0, a), Ni(a, 1)} the following inequalities hold:

(3.30)
∣∣β−n ∣∣ < m2

m1
5B− and

∣∣β+n ∣∣ < m2

m2 −m1
5B+,

where β±n = 2A± + α±n .

Set

(3.31) Ni = max

{
Ni(0, 1), Ni(0, a), Ni(a, 1),

2M0

A0π2

}
,

where M0 = max {5B, 5m2B−/m1, 5m2B+/(m2 −m1)} and A0 is defined in (3.7).

Based on the above discussion, we are now in a position to identify N .
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Theorem 3.6. Let Ne and Ni be given by (3.27) and (3.31), respectively. Let the as-

sumptions of Lemma 2.2 hold. Then Ne > Ni, that is,

(3.32) N = max {Ni, Ne} = Ne.

Furthermore, we have that the interlacing property (2.17) remains valid for n > Ne.

Proof. In view of the proof of Lemma 2.2, we only need to verify that Ne > Ni. By the

same reason as (3.22), we obtain

2C

δ(A)
>

25B

π2
,

2C−
δ(A)

>
25m1B−
m2π2

,
2C+

δ(A)
>

25(m2 −m1)B+

m2π2
.

This implies

(3.33) Ne > max {Ni(0, 1), Ni(0, a), Ni(a, 1)} .

Furthermore, because δ(A) ≤ A0, equation (3.10) shows that

2C

δ(A)
≥ 2C

A0
>

10B

A0π2
.

Similarly, since m2 > m1, we have

2C−m2

δ(A)m1
>

2C−
δ(A)

>
10m2B−
A0m1π2

,

2C+m2

δ(A)(m2 −m1)
>

2C+

δ(A)
>

10m2B+

A0(m2 −m1)π2
.

It follows from M0 = max {5B, 5m2B−/m1, 5m2B+/(m2 −m1)} that

(3.34) Ne >
2M0

C0π2
.

Combined with the above discussions, one infers that Ne > Ni and the proof is complete.

Conclusion. By the above discussion, if (1.7) holds, then

(3.35) N = Ne = max

{
Ne(0, 1),

m2

m1
Ne(0, a),

m2

m2 −m1
Ne(a, 1)

}
and (2.17) holds provided that n = pm2 − j > N .
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4. The finiteness theorem

In this section we state and prove the finiteness result for the inverse Sturm-Liouville prob-

lems by three spectra corresponding to the problems L[0,1], L[0,a] and L[a,1], respectively,

involved two different interface parameters h+ and h−.

The following theorem is our main result of the paper.

Theorem 4.1. Let h+, h− ∈ R with h+ 6= h− and a = m1/m2 ∈ (0, 1) be an irreducible

fraction, which all are fixed. Let {λn}∞n=0, {µ−n }
∞
n=0 and {µ+n }∞n=0 be three spectra of the

Sturm-Liouville problems L, L− and L+ defined by (1.1)–(1.2), (1.1)–(1.3) and (1.1)–(1.4),

respectively.

Suppose the inequality (1.7) holds. Let

(4.1) [Ne] = pm2 − j

for some j = 1, 2, . . . ,m2, where Ne is defined by (3.35) and [ · ] is a rule to round down

to the nearest integer. Then there exist at most

(4.2) K0 := Cpm1
pm2

triplets (q;h0, h1) corresponding to three spectra {λn}∞n=0, {µ−n }
∞
n=0 and {µ+n }∞n=0.

Proof. As was well known [4], the specification of the spectra {λn}∞n=0 and {µ∓n }
∞
n=0

uniquely determine ω(λ) and ω∓(λ, h∓), respectively. It follows from (2.33) that

(4.3) ω−(λ, h+)ω+(λ, h−) = ω−(λ, h−)ω+(λ, h+) + (h+ − h−)ω(λ).

Denote by {υn}∞n=0 the increasing sequence of the zeros of ω−(λ, h+)ω+(λ, h−), which can

be obtained from (4.3), since h+ and h− are known. Recall that
{
υ−i
}∞
i=0

and {υ+j }∞j=0

are the zeros of ω−(λ, h+) and ω+(λ, h−). Therefore,

(4.4) {υn}∞n=0 =
{
υ−i
}∞
i=0
∪ {υ+j }

∞
j=0.

Unfortunately, υ−i and υ+j cannot be identified immediately from {υn}∞n=0 for each i, j ∈
N0. In other words, we do not know which one of

{
υ−i
}∞
i=0
∪ {υ+j }∞j=0 is equal to υn for

every n ∈ N0, when
{
µ−i
}∞
i=0

, {µ+j }∞j=0 and {λn}∞n=0 are known a priori.

In order to identify υ−i and υ+j from {υn}∞n=0 for each i, j ∈ N0, we need to show two

parts. In the first part we treat the case where n > Ne. Without loss of generality, we

assume h+ > h−. Similarly for h+ < h−. Let

(4.5) {µn}∞n=0 =
{
µ−i
}∞
i=0
∪ {µ+j }

∞
j=0
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(counting multiplicity). Then by Lemmas 2.2 and 2.4 we see that, for all n > Ne, the

following strict inequalities

(4.6) µn < λn < µn+1 and µn < υn < µn+1

hold, where Ne is defined by (3.35), which together with the interlacing properties µ−i <

υ−i < µ−i+1 and µ+j < υ+j < µ+j+1 for all i, j ∈ N0 implies

(4.7) υn =



υ+m if µn = µ+m and µn+1 = µ+m+1,

υ−m if µn = µ−m and µn+1 = µ−m+1,

υ+m if µn = µ+m and µn+1 = µ−m′ ,

υ−m if µn = µ−m and µn+1 = µ+m′ ,

where m and m′ are the indices corresponding to (4.4) and (4.5). The relationship (4.7)

helps us to identify υ−i and υ+j from {υn}∞n=[Ne]
provided that n > Ne.

Secondly, we treat the case where n ≤ Ne. In this case, we cannot know a priori the

number of
{
υ−i
}∞
i=0

belonging to the set {υn}pm2−1
n=[Ne]

. Thus, we need to consider

(4.8) σ± :=
{
µ−i
}pm1−1
i=0

∪ {µ+j }
p(m2−m1)−1
j=0

and

(4.9) δ± :=
{
υ−i
}pm1−1
i=0

∪ {υ+j }
p(m2−m1)−1
j=0 ,

and label “(−, i)” or “(+, j)” to each element of {υn}pm2−1
n=0 as one of

{
υ−i
}pm1−1
i=0

or

{υ+j }
p(m2−m1)−1
j=0 so that the interlacing properties

(4.10) µ−i < υ−i < µ−i+1 and µ+j < υ+j < µ+j+1

for i = 0, 1, . . . , pm1 − 1 and j = 0, 1, . . . , p(m2 −m1)− 1 are satisfied, when
{
µ−i
}pm1−1
i=0

and {µ+j }
p(m2−m1)−1
j=0 are given a priori. Once this labelling is given, by using Borg’s two-

spectra theorem [4], from (4.6) and (4.10) there exist unique potential q on [0, a] and h0

corresponding to
{
υ−i
}∞
i=0

,
{
µ−i
}∞
i=0

, and unique potential q on [a, 1] and h1 corresponding

to {υ+i }∞i=0, {µ
+
j }∞j=0.

The number of all the distinguishable permutations of the elements of δ± is K0 :=

Cpm1
pm2 , each of permutations can be regarded as the elements of {υn}pm2−1

n=0 . Note that

some of the permutations may not satisfy (4.10); however, our goal is to find the most

possibility of the triplets (q;h0, h1).

Combined with the above discussions, one infers that there exist at most K0 triplets

(q;h0, h1) when h+, h− and the three spectra {λn}∞n=0, {µ−n }
∞
n=0 and {µ+n }∞n=0 are given.

This completes the proof.
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Note that we have not considered the condition (4.10) in the above proof, and therefore

the number of triplets (q;h0, h1) is not more than (4.2) in most situations. The purpose

of the following corollary is to extend the above result to a more precise situation that the

first element of the set σ± is fixed and (4.10) is satisfied.

Corollary 4.2. With the same notation as in Theorem 4.1, suppose the inequality (1.7)

holds. Fix the first element of the set σ±, and let [Ne] be the same as in Theorem 4.1.

Then there exist at most

(4.11) K1 := Cpm1
pm2−1 + Cpm1−1

pm2−2

triplets (q;h0, h1) corresponding to three spectra {λn}∞n=0, {µ−n }
∞
n=0 and {µ+n }∞n=0.

Proof. From the proof of Theorem 4.1, we only need to prove the largest number of the

distinguishable permutations of the elements of δ± is K1 when the first element of σ± is

fixed and (4.10) is satisfied.

If assuming that µ+0 is the first element of σ±, then the second one is µ+1 or µ−0 .

Obviously, if µ−0 is its second element, then from (4.10) the largest number of the distin-

guishable permutations of the elements of δ± is K1; if µ+1 is its second, then their number

is Cpm1
pm2−1. Moreover, this fact remains valid for the first element of σ± to be µ−0 . In all

cases, there are at most K1 possibility of the distinguishable permutations of the elements

of δ±.

Therefore, there exist at mostK1 triplets (q;h0, h1) corresponding to {λn}∞n=0, {µ−n }
∞
n=0

and {µ+n }∞n=0. This completes the proof.

Remark 4.3. In Corollary 4.2, we only consider that the first element of σ± is fixed.

Moreover, we can compute the exact number when a and p are known a priori, which is

related to the order of the elements in σ±.

In particular, suppose the interlacing condition (2.17) holds for all n ∈ N0, i.e., [Ne] =

0. We have the following uniqueness result.

Corollary 4.4. With the same notation as in Theorem 4.1, suppose that one of the

interlacing properties (2.31) or (2.32) holds for all n ∈ N0 := N ∪ {0}. Then h0, h1 and

the potential q a.e. on [0, 1] are uniquely determined by h+, h− and three spectra {λn}∞n=0,

{µ−n }
∞
n=0 and {µ+n }∞n=0.

Acknowledgments

The research of G. Wei was supported in part by the NNSF of China (No. 11571212) and

the Fundamental Research Funds for the Central Universities of China (No. GK 201401004).



184 Ying Yang and Guangsheng Wei

References

[1] S. Albeverio, R. Hryniv and Y. Mykytyuk, Inverse spectral problems for coupled

oscillating systems: reconstruction from three spectra, Methods Funct. Anal. Topology

13 (2007), no. 2, 110–123.

[2] O. Boyko and V. Pivovarchik, The inverse three-spectral problem for a Stieltjes string

and the inverse problem with one-dimensional damping, Inverse Problems 24 (2008),

no. 1, 015019, 13 pp. https://doi.org/10.1088/0266-5611/24/1/015019

[3] M. C. Drignei, Constructibility of an L2
R(0, a) solution to an inverse Sturm-Liouville

problem using three Dirichlet spectra, Inverse Problems 26 (2010), no. 2, 025003, 29

pp. https://doi.org/10.1088/0266-5611/26/2/025003

[4] G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and Their Applications,

Nova Science Publisher, Huntington, NY, 2001.

[5] F. Gesztesy and B. Simon, On the determination of a potential from three spectra, in

Differential Operators and Spectral Theory, 85–92, Amer. Math. Soc. Transl. Ser. 2,

189, Amer. Math. Soc., Providence, RI, 1999.

https://doi.org/10.1090/trans2/189/07

[6] R. O. Hryniv and Y. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville

operators with singular potentials. Part III: Reconstruction by three spectra, J. Math.

Anal. Appl. 284 (2003), no. 2, 626–646.

https://doi.org/10.1016/s0022-247x(03)00370-6

[7] T. Kawata, Fourier Analysis in Probability Theory, Probability and Mathematical

Statistics, no. 15, Academic Press, New York, 1972.

https://doi.org/10.1016/c2013-0-07405-1

[8] J. R. McLaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric

speed of sound from transmission eigenvalues, J. Differential Equations 107 (1994),

no. 2, 351–382. https://doi.org/10.1006/jdeq.1994.1017

[9] J. Michor and G. Teschl, Reconstructing Jacobi matrices from three spectra, in Spectral

Methods for Operators of Mathematical Physics, 151–154, Oper. Theory Adv. Appl.
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