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A Characterization of Multipliers of a Lau Algebra Constructed by

Semisimple Commutative Banach Algebras

Sin-Ei Takahasi, Hiroyuki Takagi and Takeshi Miura*

Abstract. A necessary and sufficient condition for a Lau type binary operation defined
by two mappings to be an algebra-operation is given in terms of multipliers. Also a
characterization of multipliers of a Lau algebra constructed by semisimple commuta-

tive Banach algebras is given in terms of multipliers of original Banach algebras.

1. Introduction

In 2007, Sangani Monfared introduced a product xgy on the Cartesian product A x B of
two Banach algebras A and B, which is of the form

(a,b) xg (c,d) = (ac + 6(d)a + 0(b)c, bd),

where 6 is a multiplicative linear functional on B. He investigated the Banach algebra
(A x B, xg) in [4]. This type of product was first introduced by A. Lau [3] for a special
class of Banach algebras in 1983. After Lau, a product xg is called a -Lau product and
the algebra (A x B, xg), abbreviated to A x¢ B, is called a -Lau Banach algebra. Several
mathematicians have studied 7-Lau Banach algebras A x, B defined by a norm-decreasing
homomorphism 7 from B into A instead of . We will note that the unitization and the
direct product are special cases of a Lau product. In this paper, we first give a necessary
and sufficient condition for a Lau type binary operation defined by two mappings to
be an algebra-operation in terms of multipliers. Secondly, we give a characterization of
multipliers of the Lau algebra constructed by semisimple commutative Banach algebras in
terms of multipliers of original Banach algebras. This extends a characterization obtained
by P. A. Dabhi [1].

Received February 24, 2016; Accepted June 6, 2016.

Communicated by Xiang Fang.

2010 Mathematics Subject Classification. Primary: 46J05; Secondary: 46HO05.

Key words and phrases. Semisimple commutative Banach algebras, Multipliers, Double multipliers, Lau
Banach algebras.

The authors are partially supported by JSPS KAKENHI Grant Numbers (C)-25400120, 15K04897 and
15K04921, respectively.

*Corresponding author.

1401


http://journal.tms.org.tw

1402 Sin-Ei Takahasi, Hiroyuki Takagi and Takeshi Miura

2. Lau type binary operations

Let A and B be algebras. Then the Cartesian product A x B becomes a linear space with
pointwise operations. Let Fy(A) be the set of all mappings p from A into itself such that

p(0) = 0. Then Fy(A) becomes a linear space with pointwise operations:

(p+o)a) =pla) +o(a) and (Ap)(a)= Ap(a)

fora € A, p,o € Fo(A) and A € C. Also a mapping p in Fy(A) is called a left (resp. right)
multiplier of A if p(xy) = p(z)y (resp. p(xzy) = zp(y)) holds for all x,y € A. Also an
ordered pair (7,0) of mappings in Fy(A) is called a double multiplier if z7(y) = o(x)y
holds for all z,y € A. In particular, the algebra of all linear mappings from A into itself
is denoted by L(A).

For two mappings S: d +— Sy and T': b +— T}, from B into Fy(A), we define

(a,b) xs1 (¢,d) = (ac+ Sqa + Tyc, bd)
for each (a,b), (¢,d) € A x B. Then xgr is a binary operation on A x B.

Theorem 2.1. Let S and T be as above. Then x g1 is an algebra-operation on A x B if
and only if the following conditions hold:

(i) S (resp. T') is an anti-homomorphism (resp. a homomorphism) from B into L(A).
(ii) Sy (resp. Ty) is a right (resp. left) multiplier of A for all b € B.
(iii) SpTy = T4Sp holds for all b,d € B.
(iv) (Tp,Sp) is a double multiplier of A for all b € B.

Proof. Suppose that x g7 is an algebra-operation on A x B. Since

(e, f) xs1 ((a,b) + (¢, d)) = (e, f) xs1 (a+c,b+d)
= (e(a+ c) + Sptae + Ty(a+c), f(b+d))

and since

(67 f) XsT (a7 b) =+ (6, f) XS T (C, d)
= (ea + Spe + Tya, fb) + (ec + Sge + Tc, fd)
= (e(a+c) + (Sp + Sa)e + Tra + Tye, f(b+ d)),

it follows that
Sprae +Ty(a+c) = (Sp + Sa)e + Tra+ Tyc
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for all (a,b), (c,d), (e, f) € A x B. Putting e = 0 in the above equation, we see that Ty is
additive for each f € B. Also putting a = ¢ = 0 in the same equation, we see that S is

additive. Similarly, considering the equation

(((l, b) + (Cv d)) Xs,T (6, f) = (a7 b) Xs,T (6, f) + (Cv d) XSs,T (67 f)7
we see that 7" and Sy (f € B) are additive. Also since
A((a,b) xg71 (c,d)) = (Aac + ASga + XTyc, Abd)
and
(a,b) xs1 (A(e,d)) = (a,b) xs1 (A, Ad) = (Aac + Sxga + Tp(Ac), Abd),
it follows that
ASqa + XTye = Syga + Tb(/\c)

for all (a,b),(c,d) € A x B and A € C. Putting a = 0 in the above equation, we see that
T}, is homogeneous for each b € B. Also putting ¢ = 0 in the same equation, we see that

S is homogeneous. Similarly, considering the equation

A(a,b) xsr (¢, d)) = (Ma, b)) x5, (¢, d),

we see that T and Sy (d € B) are homogeneous. Consequently, we obtain that both S
and T are linear mappings from B into L£(A).
Now for (a,b), (c,d), (e, f) € A x B, we have

((a,0) xs:7 (¢,d)) xs.7 (€, )
= (ac + Sqa + Tye,bd) x 57 (e, f)
= (ace + (Sqa)e + (Tyc)e + S¢(ac + Sqga + Tyc) + Tyqe, bdf)
= (ace + (Sqa)e + (Tpc)e + S¢(ac) + Sy(Sqa) + S¢(Tpe) + Tpqe, bdf)

and

(a,0) xs7 ((¢;d) x5, (e, f))
= (a,b) xg1 (ce + Stc+ Tye, df )
= (ace + a(Syc) + a(Tqe) + Sgra + Ty(ce + Spc + Tye), bdf)
= (ace + a(Syc) + a(Tge) + Sqra + Ty (ce) + Tp(Syc) + Ty(Tyhe), bdf).

Therefore x g7 is associative if and only if

(Sqa)e + (Tyc)e + Sg(ac) + Sp(Sqa) + Sp(Tye) + Thae

2.1
@1) = a(Sfc) + a(Tye) + Sara + Ty(ce) + Ty(Src) + Ty(Tue)
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holds for all (a,b), (c,d), (e, f) € A x B. Putting e =0 in ({2.1), we have
(2.2) St(ac) + S¢(Sqa) + S¢(The) = a(Syc) + Sgra + Ty(Sfc)
for all a,c € A and b,d, f € B. Putting ¢ = 0 in (2.2]), we have

(2.3) S¢(Sqa) = Syra

for all « € A and d, f € B. Putting a =0 in , we have

(2.4) $7(The) = Ty(Syo)

forallce A and b, f € B. By , and , we have

(2.5) S¢(ac) = a(Syc)

for all a,c € A and f € B. By , and , the equation becomes
(2.6) (Saa)e + (The)e + Thae = a(Tye) + Ty(ce) + Tp(Tue)

for all a,c,e € A and b,d € B. Putting a = ¢ =0 in ([2.6|), we have

(2.7) Tyge = Ty(Tye)
for all e € A and b,d € B. By (2.7) and ([2.6)), we have
(2.8) (Sqa)e + (Tye)e = a(Tye) + Ty(ce)

for all a,c,e € A and b,d € B. Putting ¢ = 0 in (2.8)), we have

(2.9) (Sqa)e = a(Tye)
for all a,e € A and d € B. By ([2.8) and (2.9)), we have
(2.10) (Tye)e = Ty(ce)

for all c,e € A and b € B. Therefore (2.1)) implies (2.3), (2.4), (2.5, (2.7), (2.9) and
[E-10). Conversely, we can easily see that 23), (3), [E5), @), 9) and 210) imply
2.

Also we have the following equivalences:

(2.3) <= Sig = SSa(d,f € B)

<= S is an anti-homomorphism from B into £(A).
(2.4) <= S¢T, =TpSf (b, f € B).
(2.5) <= each S is a right multiplier of A (b € B).
2.7 <= Twy=T1T,(bdec B)

<= T is an algebra-homomorphism from B to £(A).
(2.9) <= each (T}, Sp) is a double multiplier of A (b € B).

(2.10) <= each T} is a left multiplier of A (b € B).
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Therefore we obtain the desired conditions (i)—(iv).
Conversely, suppose that (i)—(iv) hold. By a similar argument, we can easily see that

X g, is an algebra-operation on A x B. O

If xgr is an algebra-operation on A x B, then we call (A x B, xg7) a Lau algebra
defined by S and 7', and denote (A x B, xg1) by A xg1 B.
Now let M(A) be the set of all double multipliers of A. Then it becomes an algebra

with natural operations:

(Tl, Sl) + (TQ, 52) = (Tl + 15,51 + 52),
ATy, S1) = (NT1, \Sh),
(T1,51)(Ts, S2) = (Th Tz, S2.51).

Also we denote by M;(A) and M, (A) the algebra of all left multipliers of A and the algebra
of all right multipliers of A, respectively. If a left annihilator of A is only zero or if a right

annihilator of A is only zero, then A is said to be without order.

Lemma 2.2. Assume that A is without order. If (T,S),(T",5") € M(A), T,T" € M;(A)
and S, S" € M,(A), then TS = S'T.

Proof. First assume that a left annihilator of A is only zero. Since

(TS")(x)y = T(S'z)y = T((S"x)y) = T(«T"y)
= (Tx)(T'y) = §'(Tx)y = (S'T)(x)y

for all x,y € A, the assumption implies that T'S’ = S’T. Assume next that a right

annihilator is only zero. Since

y(TS")x = y(T(S'x)) = (Sy)(S'z) = S'((Sy)z)
= 5'(yT'x) = yS'(Tx) = y(ST)x

for all z,y € A, the assumption implies that T'S" = S'T. O

A semisimple Banach algebra is, of course, without order. It is known that if A is a
semisimple Banach algebra and (7', S) € M(A), then:

(v) T is a left multiplier of A and S is a right multiplier of A.

(vi) T and S are bounded linear operators on A.

From Theorem Lemma [2.2] and the above facts, we obtain the following.
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Corollary 2.3. Assume that A is a semisimple Banach algebra. Then X g1 is an algebra-
operation on A X B if and only if the mapping b — (Tp, Sp) is a homomorphism from B
into M(A).

Assume that A is a semisimple commutative Banach algebra. If (T),5) € M(A), then
T = S. Indeed, since

2(Tx)y = zyTx = 2(Sy)r = x(Sy)z = 2yT'z = yoT'z = y(Sx)z = 2(Sx)y

for all x,y,z € A, it follows from the semisimplicity of A that T' = S as required. As
a consequence, M (A) becomes the usual multiplier algebra of A. Therefore for any two
mappings S,T: B — Fy(A), xgr is an algebra-operation on A x B if and only if S =T
and T is a homomorphism from B into M(A). In this case, we write X7 for x7r and
A x7 B for A xp 1 B. We can easily see that if B is commutative, then A x7 B is also

commutative.

3. A characterization of multipliers of Lau algebras

In this section, we focus on the semisimple commutative Banach algebras. Let A and
B be semisimple commutative Banach algebras. By ®4 and ®p, we denote the Gelfand
spaces of A and B, respectively. Let M(A) be the multiplier algebra of A with Gelfand
space ®pray. Put Ly(z) = ax for each a,z € A. Then L, is a multiplier of A. We
sometimes identify L, with a. Then A is an ideal of M(A). Let T be a norm-decreasing
homomorphism from B into M (A). Then the Lau algebra A X1 B becomes a commutative

Banach algebra with the {!-norm:
1(a, b)[| = [lall + [[ol ~ ((a,0) € A x B).
For any ¢ € A*, the dual space of A, and for any ¢ € B*, the dual space of B, we put
(o, ¥)(a,b) = p(a) +4(b) ((a,b) € Ax B).

Then (p,1) is a continuous linear functional on A x7 B with the norm max {||¢||, |||/}
Let ¢ € ®4. Choose e, € A with ¢(e,) =1 and put

P(S) = p(Sey)

for all S € M(A). Here ¢ does not depend on a choice of e,. Indeed, if a € A with
p(a) =1, then

p(Sa) = p(epSa) = p((Sep)a) = p(Sep)p(a) = p(Sey).

We have the following.
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Lemma 3.1. Let p € ®a. Then ¢ € @04y and (p,p0T) € Pax,B-

Proof. (i) Observe that ¢ is a nonzero continuous linear functional on M(A). If 51,53 €
M(A), then

P(5152) = p(51(52(ep))) = @(exS1(52(€p)))
= p(S1(eg)S2(ep)) = p(S1e,)p(S2e4) = 9(S1)P(S2)

for all S1,Ss € M(A), and hence ¢ € ®p;(4).

(ii) By (i), we have ¢ o T € B* and hence (p,p o T') is a nonzero continuous linear
functional on A xp B. We next show that (¢, o T) is multiplicative. To do this, let
(a,b),(c,d) € A xp B. Then

,poT)(ac+ Tya + Tye, bd)

ac) + ¢(Tga) + ¢(Tpc) + (¢ o T)(bd)
)e(c) + o(Taa) + o(Tye) + (Toa)
)e(c) + o(Taa) + o(Tye) + &(Tp)o(Ta)

(%@O T)((a’ b) XT (07 d)) =

(

o(
p(a
o(a

and

(p; @0 T)(a,b)(p, p o T)(c,d) = (p(a) + ¢(Tp)) (¢ (c) + #(Ta))

= p(a)p(c) + (a)o(Ta) + ¢(c)o(Th) + o(Tp)(Ta)
= ¢(a)p(c) + (a)o(Taey) + o(c)p(Trep) + 0(To)p(Ta)
= p(a)p(c) + (e Taa) + (e Tc) + H(1y)(Ta)
= p(a)p(c) + ¢(Taa) + p(Tye) + o(Tp)p(Ta).-
Therefore
(o, @0 T)((a,b) X7 (¢,d)) = (¢, @ 0 T)(a,b)(p, o T)(c,d)
holds. Consequently, (p,poT) € Pax,B. O

By the above lemma, we have {(¢,p0T): o € ®a} C Pax,p. Also observe that if
1 € ®p, then (0,v) € Pax,p. Then we have {(0,v¢) : ¢ € P} C Payx,p. Put

E={(p,poT):pe®y} and F={(0,¢):¢ € Pp}.
Then we have the following.

Lemma 3.2. The set E (resp. F') is open (resp. closed) in ®ax,p and Pax,p=EUF

(disjoint union,).
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Proof. Take f € ®ax,p arbitrarily. Assume that f|4,q0y # 0. Put

p(a) = f(a,0)
for each a € A. Then ¢ € ® 4. Moreover we have
(0, @0T)(a,b) = ¢(a) + ¢(Tp) = f(a,0) + ¢(Trey)
(

(a,0) + f(Tvep, 0) = f(a,0) + f((ep, 0) x7 (0,0))

=f
= f(a,0) + f(ee,0)(0,b) = f(a,0) + ¢(ey) f(0,b) = f(a,b)

for all (a,b) € A xp B. In other words, (p,poT) = f.
Next assume that f|4.{0} = 0. Put

»(b) = f(0,b)

for each b € B. Then v is a multiplicative linear functional on B. Since

w(b) :f(ovb) :f(a70)+f(07b) :f(a,b)

for all (a,b) € A xp B, it follows that ¢ € &5 and f = (0,1). These observations imply
®ax,p=FEUF. It is evident that ENF = @&. Also it is easy to see that F'is closed in
® 4, B, and hence F is open. ]

Lemma 3.3. The mapping ¢ — (p,poT) (resp. ¥ — (0,%)) is a homeomorphism from
® 4 (resp. Pp) onto E (resp. F).

Proof. Tt is clear that the mapping ¢ — (¢, poT) is a bijection from ®4 onto E. Also this
mapping is continuous. To see this, let {¢)} be a net in ®4 which converges to ¢ € ® 4.
Take (a,b) € A x7 B arbitrarily. Then limy py(e,) = ¢(e,) = 1. Also we have

lim a(Ty(epy))oa(ep) = limpa(Th(ep, Jep) = limpx(Th(ep)ep, )
= limpa(Thep) = (They) = $(1),
and hence limy o) (Ty(ey,)) = @(Tp). Therefore

lim(px, @x 0 T)(a, b) = limpx(a) + lim @A(Th) = p(a) + lim pa(Ti(egp, )
= p(a) + ¢(T}) = (¢, 0 T)(a,b)

holds for all (a,b) € A xp B. In other words, limy(¢x, pr0T) = (p,p o T). It is evident
that the inverse mapping is continuous.

Moreover, it will be obvious that the mapping ¢ +— (0,%) is a homeomorphism from
®p onto F. OJ
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Hereafter, according to the above lemma, we may identify ® 4 and &5 with £ and F,
respectively. Moreover, we may identify A x {0} and {0} x B with A and B, respectively.

Thus Lemma [3.2] is restated as follows.
Lemma 3.4. &4, = P4 U Pp (disjoint union).

The above disjoint union implies that the commutative Banach algebra A xr B is
semisimple. Also note that ® 4 is an open subset of ® 44,5 and ®p is a closed subset of
@AXTB‘

Now if S is a bounded linear mapping from A X7 B into itself, then there exist a
unique pair of bounded linear mappings S1: A x7 B — A and So: A X7 B — B such that
S(a,b) = (S1(a,b), S2(a,b)) for all (a,b) € A xp B. We will express this by

S = (51,52).
The next theorem describes the multipliers of A X7 B completely.

Theorem 3.5. Let S be a bounded linear mapping from A Xt B into itself with S =
(S1,82). Then S € M(A xr B) if and only if S1 and Sz satisfy the following conditions:

(i) Sila e M(A).
(ii) Salp € M(B).
(iii) Sa|4 = 0.
(iv) (S1b)a = Ty(S1a) — Te(a) for alla € A and b € B.
Proof. First assume S € M (A x B). Let (a,b), (¢,d) € A xp B. Then
(a,b) x7 (S1(c, d), S2(c,d)) = (a,b) x1 S(c,d)

= (S(a,b)) x1 (c,d)
= (Si(a,b), S2(a,b)) x7 (¢, d).

Therefore it follows that
aSi(¢,d) + Tsy(c.a)(a) + Tp(S1(c,d)) = Si(a,b)c + Ty(S1(a, b)) + Tsy(ap)(c)

and
bSQ(C, d) = SQ(CL, b)d

Taking b = d = 0, we have

(3.1) aSic+ Ts,c(a) = (Si1a)c + Ts,q(c).
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Taking a = ¢ = 0, we get

(3.2) Ty(S1d) = Tyg(S1b) and  bSad = (Sab)d.
Taking a = d = 0, we get

(3.3) Ty(Sic) = (S1b)c+ Ts,p(c) and  bSac = 0.

By the second equation of and the semisimplicity of B, we obtain that Ssc = 0 for
all c € A, ie., S2|la =0. Then Ts,. = Ts,q = 0 for all a,c € A. So we have from that
aSic = (S1a)c for all a,c € A, i.e., Si|a € M(A). Also note that the second equation of
implies that So|p € M (B). By the first equation of , we have

(S1b)e = Ty(S1¢) — Tsyp(c)

holds for all ¢ € A and b € B. Consequently, S; and S satisfy the conditions (i)—(iv).
Conversely, assume that S; and Sy satisfy the conditions (i)—(iv). Let a,c € A and
b,d € B. We observe

(3.4) Td(Sch) + Tb(Sl (C, d)) = Tb(Slc) + Td(Sl (CL, b))

In fact, let x be any element of A. Then we have

z[T4(S1a) + Ty(S1(c,d))] = Ta(xS1a) + Ty(zS1(c, d))
= Ty(xS1a) + Tp[xS1c + (S1d)z]
= Ty(xS1a) + Ty[zSic+ Ty(S1z) — Ts,q(x)] (by (iv))
= Ty(zS1a) + Tp(xSic) + (TyTq) (S1z) — (TpTs,a) ()
= Ty(zS1a) + «Tp(S10) + Toa(S1%) — T, (ba) (%) (by (ii))
and
z[Ty(S1¢) + T4(S1(a,b))] = 2Tp(S1¢) + Ty(xS1(a, b))
= xTy(S1¢) + Tg(xS1a + x51b)
= 2Ty(S1¢) + Ty[(zS1a + Tp(S12) — Ts,p()] (by (iv))
= 2Ty(S1¢) + Ty(xS1a) + (TyTy)(S1z) — (TgTs,p) ()
= 2Ty (S1¢) + Ty(xS1a) + Tha(S12) — Ty (ba) (2) (by (ii)).

Consequently we have
z[Ta(S1a) + Tp(S1(c, d))] = #[Ty(S1¢) + Ta(S1(a, b))]

for all x € A. Since A is semisimple, we obtain the equality (3.4]) as required.
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Now take (a,b), (c,d) € A X B arbitrarily. Then we have

(a,b) x7 S(c,d)

= (a,b) x7 (S1(c,d), S2(c,d))

= (aSi(c,d) + Ts,(ca)(a) + Tp(S1(c, d)), bS2(c, d))

= (aSi(c,d) + Ts,a(a) + Tp(S1(c, d)), bS2d) (by (iii))
= (aSic+ aS1d + Ts,q(a) + Ty(S1(c,d)), bSad)

= (aS1c+ Ty(S1a) — Tsya(a) + Ts,a(a) + Ty(S1(c, d)), bSad) (by (iv))
= ((S1a)c + T4(S1a) + Tp(Si1(c, d)), dSab) (by (i) and (ii))

and

(5(a,0)) x1 (¢,d)

= (S1(a,b), S2(a, b)) X1 (¢, d)
= (S1(a,b)c + Ty(S1(a, b)) + Tsy(a,p)(c), S2(a, b)d)
= ((S1a)c+ (S1b)c+ Ty(S1(a, b)) + Ts,p(c), (S2b)d) (by (iii))
= ( (¢) + Ta(S1(a, b)) + Ts,b(c), dS2b) (by (iv))
(

(
(Sla)c + Tb(Slc) — TSQb
(Sla)c + Tb(Slc) + Td(Sl (a, b)), dSQb)

Therefore it follows from (3.4) that
(a,b) x7 S(c,d) = (S(a,b)) xr (c,d).
Consequently, we have S € M (A x1 B). O

If {T,:be B} C A, then the above theorem is just [1, Theorem 1] obtained by

P. A. Dabhi.
For each T' € M (A), there exists a unique bounded continuous function T on ®4 such

that ﬂ(cp) = T(p)a(y) for alla € A and ¢ € B4 (see [2]). Put

—

M(A) = {f Te M(A)}.
Definition 3.6. Let U € ]\/Z(A) and V € ]/\4\(3) We say that the ordered pair (U, 17)
satisfies the condition (b) if
W Ty € A (E2{Ls:ac A} C M(A))
for all b € B.

Given a topological space X, we denote by C?(X) the set of all bounded continuous

complex-valued functions on X. Then we have the following.
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Theorem 3.7. ]\//.T(AXTB) equals the set S of all o € C*(® ax,.B) such that o|e, € ]\/Z(A),
oo, € ]\/Z(B) and the ordered pair (0| ,,0le,) satisfies the condition (b).
Proof. Take S € M(A xr B) arbitrarily. Write

S = (Sla 82)7

where S1: Axpr B — A and Sy: A X7 B — B are bounded linear mappings. Then S; and
Sy must satisfy the conditions (i)—(iv) in Theorem Take ¢ € ®4 arbitrarily. By (i)

and (iii), we have

Seg(p) = (p, 90 T)(S(ep, 0)) = (p, 90 T)(S1€4, S2ey)
= (0, o T)(S164,0) = p(Sieg) = S1[a()es(p)
= S51la()

On the other hand, we have

—

Seq () = 8(p, 30 T)(ep, 0) (0, 5o T) = 8(p, 30 T) = S(p).

Therefore we have S(¢) = S/l\\A(go). In other words, §|¢>A = S/1|\A € ]\/Z(A) Take ¢ € &p
arbitrarily. By (ii), we have

Sey (1) = (0,9)(S1(ey), S2(ey)) = ¥(Saey) = ¥(Salp(ey))
= So|p(¥)Ep(¥) = Saln(¥).

On the other hand, we have

L —

Seu (1) = ()0, ¢,)(0,) = S(W)w(es) = S(w).
Therefore we have S(1)) = S/Q\\B(w). In other words, §|<1>B = 5’/2]\3 € ]\/Z(B) Now put
U= 51’,4 and V = SQ’B.

Since Lg,p = T3(S1|a) — Ts,p holds for all b € B from (iv), it follows that the ordered pair
((7, 17) satisfies the condition (b). Then S must be in S. Consequently, ]\/Z(A xp B) CS.

Conversely, let o € S. Then o € C*(®4y,8), olo, = U € M(A), olo, =V € M(B)
and the pair (U, V) satisfies the condition (b). So we have

—

Ula)(p) = a(p,poT)a(p) (p € Pa,ac A)

and

—

V() (¢) = a(0,9)b(¥)) (¢ € Pp,b e B).
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Define S1: Axp B — Aand So: A X7 B — B by
Sl(a, b) = U(a) + TyU — TV(b) and SQ(CL, b) = V(b)

for each (a,b) € A xp B. Then both S; and S are bounded linear mappings. Put
S = (51,52). Then we can easily see that S is a bounded linear mapping from A xr B
into itself and that Sy, Ss satisfy the conditions (i)—(iv) in Theorem Hence we have
from Theorem [3.5| that S € M(A xr B). Let (a,b) € A xp B, ¢ € ®4 and ¢ € Pp. Then

—

S(a7 b)(@? (5 o T) = ((Pv (E 0 T)(Sl(a7 b)7 SQ(a'? b))
= p(S1(a, b)) + o(Tsy(a,p))
=y ((Ua/)egp + (TbU)GSO — Tv(b)ew) + 90(T52(a7b)690)

On the other hand, we have

S(@,b) (. 5o T) = 5(p, 5o )@ b)(p,FoT)
= S(o, o T)(p(a) + 3(Ty))
= S(p, 3o T)(a(y) + Ty(e)).

Therefore we have

(0, 0 T)(@() + To()) = S(, & o T)(@(0) + Th ().

In particular taking a = e, and b = 0 in the above equation, we have

~ ~

S(p) =S(p,poT)=0(p,poT)=0(p) (pe€a),

and hence S|g, = 0|s,. Note that

S(CL, b) (07 @ZJ) = (Oa @Z))(Sﬂ&, b)v SQ(aa b)) = 1/}(,5’2(0,, b))
= (Vb)) = V()b(y) = a()b(¥)).

On the other hand, we have

5(a,0)(0,%) = 5(0,4)(a,b)(0,%)) = S()b(¥).
Therefore we have that S(p) = o(¢) for all 1) € 5, and hence §]¢B = 0|p,. Then we
have ¢ = S € ]/\I\(A x7 B). Consequently, S C ]\/Z(A xp B). Thus we have the desired
result. O
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Note that if {7}, : b€ B} C A, then any ordered pair ((,AI,XA/) with U € M(A) and
V € M(B) always satisfies the condition (b). Therefore the next corollary follows from
Theorem immediately.

Corollary 3.8. Assume that {Ty : b€ B} C A. Then
M(A xr B) = {a € C*(Purxyn) : olo, € M(A),0lo, € M(B)} .
Let # € ®p and id4 the identity mapping of A. Put
T, =0(b)ida

for each b € B. Then T is a norm-decreasing homomorphism from B into M (A). In this
case, X7 is just the §-Lau product x¢ defined in Sangani Monfared [4]. Therefore we have

the following.

Corollary 3.9. ]\/4\(/1 xg B) equals the set of all 0 € C*(®ax,p) such that o|e, € M\(A),
olog € ]/\4\(3) and ole, — o(0)1 € A.

Proof. Let be B, U € M(A) and V € M(B). Then

)

WU — Ty (»)

()T () — Ty (9) = 000)T () — 6(V (b))
= T(p)b(0) - V(0)b(0) = (T () — V(6)

for all ¢ € ® 4. Then we have
TyU — Ty = b(0) (U —V(0)id A)

for all b € B. Then an ordered pair (U,V) satisfies the condition (b) if and only if
U —V(#)ida € A or equivalently, U — V(#)1 € A. Therefore the desired result follows
from Theorem O

The above corollary immediately implies the following.

Corollary 3.10. Suppose that A is a non-unital commutative C*-algebra. Then
M(A xy B) = {a € Co(®ax,B): olo, € M\(B)’JLH;OU|¢A(<’D) = 0(0)} .
In particular, if B is a commutative C*-algebra, then

]\/4\(/1 xg B) = {0 € C'(Pax,B) : (pli_>n;oa|q>A(g0) = 0(9)} :
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