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Cross Theorems for Separately (·,W )-meromorphic Functions

Thai Thuan Quang* and Lien Vuong Lam

Abstract. It is shown that Rothstein’s theorem holds for (F,W )-meromorphic func-

tions with F is a sequentially complete locally convex space. We also prove that a

meromorphic function on a Riemann domain D over a separable Banach E with values

in a sequentially complete locally convex space can be extended meromorphically to

the envelope of holomorphy D̂ of D. Using these results, in the remaining parts, we

give a version of Kazarian’s theorem for the class of separately (·,W )-meromorphic

functions with values in a sequentially complete locally convex space and generalize

cross theorem with pluripolar singularities of Jarnicki and Pflug for separately (·,W )-

meromorphic functions with values in a Fréchet space.

1. Introduction

The classical Hartogs theorem states that every separately holomorphic function on prod-

ucts of domains in complex Euclidian spaces is holomorphic. This theorem has been a

source of inspiration for numerous research works in Complex Analysis for many years.

The well known Hartogs theorem on holomorphicity of separately holomorphic functions

was extended to the special subsets in Cm+n by several authors, in particular by Siciak [28],

Nguyen Thanh Van and Zeriahi [16], Shiffman [26]. It is easy to see that their results are

true for vector-valued case. However, in the meromorphic case the situation is different,

and more difficult even for scalar functions. Rothstein [22] proved the Hartogs theorem

for scalar meromorphic functions. Later, Kazarian [13] and Shiffman [26] extended the

Rothstein theorem to the special subsets in Cm+n for the meromorphic case. We known

that, there are CN -valued weakly meromorphic functions which are not meromorphic, and

hence Rothstein’s theorem for vector-valued meromorphic functions not be deduced from

the results for the scalar case.
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The problem of determining the envelope of holomorphy of separately holomorphic

functions defined on some cross sets was studied by several authors. The theorems obtained

in this type are often called cross theorems. In 1970, by using the relative extremal

functions, Siciak [27] established the envelope of holomorphy for separately holomorphic

functions for the case where the cross set has a special shape, a product of domains in C.

Later, Jarnicki and Pflug generated for the cross theorem with singularities [11]. With

the help of generalization of Rothstein’s theorem and extension theorem with pluripolar

singularities, they considered the cross theorem for meromorphic functions [10]. Recently,

Quang and Dai [18] generated Siciak’s result to the class of separately (·,W )-holomorphic

functions.

The paper continues and generalizes the investigations from [18] and [19]. It is also a

continuation of an our earlier work [20] in which, using some results of Grosse-Erdmann [6]

and modifying the argument of Siu [29], some generalizations of the Levi extension theorem

to the class of separately (·,W )-meromorphic functions have been introduced.

In the paper we would like to generalize a result of Kazarian [13] on the crosses (The-

orems 5.1, 5.3) and cross theorem with pluripolar singularities of Jarnicki and Pflug [10]

(Theorem 6.4) to the above class of functions with values in either a sequentially complete

locally convex space or a Fréchet space. The proofs are respectively presented in Sections 5

and 6.

One of the most important tools used in the proofs of Kazarian’s theorem [13] and cross

theorem with pluripolar singularities of Jarnicki and Pflug [10] is Rothstein’s theorem. So,

before that, the problem to be considered in Section 3 is Rothstein’s theorem for (·,W )-

meromorphic functions with values in a locally complete space (Theorem 3.1). The proof

is based on a generalization of the Levi extension theorem (Theorem 3.2) and modification

the arguments of Kazarian in [13] and of Jarnicki-Pflug in [10].

Another tool that we will use in the proofs is concerning to domains of existence for

Fréchet-valued meromorphic functions. Section 4 is devoted to the discussion this problem

for Fréchet-valued meromorphic functions (Theorem 4.1). We prove that a meromorphic

function on a Riemann domain D over a locally convex space E with values in a Fréchet

space F can be extended meromorphically to the envelope of holomorphy D̂ of D when

E is a Banach space with a Schauder basis (Theorem 4.4).

We also review in Section 2 some elements of locally convex spaces and pluripotential

theory pertaining to our work.
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2. Preliminaries

2.1. General notations

We shall use standard notations of the theory of locally convex spaces as presented in the

book of Schaefer [23]. A locally convex space always is a complex vector space with a

locally convex Hausdorff topology.

For a Fréchet space E we always assume that its locally convex structure is generated

by an increasing system {‖·‖k} of semi-norms. Then we denote by Ek the completion

of the canonically normed space E/ ker ‖·‖k and ωk : E → Ek denotes the canonical map

and Uk denotes the set {x ∈ E : ‖x‖k < 1}. Sometimes it is convenient to assume that

{Uk}k∈N is a neighbourhood basis of zero (shortly U(E)).

If B is an absolutely convex subset of E we define a norm ‖·‖∗B on E∗, the strongly

dual space of E with values in [0,+∞] by

‖u‖∗B = sup {|u(x)| : x ∈ B} .

Obviously ‖·‖∗B is the gauge functional of B◦. Instead of ‖·‖∗Uk we write ‖·‖∗k. By EB

we denote the linear hull of B which becomes a normed space in a canonical way if B is

bounded. The space E is called locally complete if every such space EB is Banach.

For a locally convex space F , a subset W ⊂ F ′ is called separating if u(x) = 0 for each

u ∈ W implies x = 0. Clearly, this is equivalent to the span of W being weak∗-dense (or

dense in the co-topology).

We say that W ⊂ F ′ determines boundedness if every subset B ⊂ F is bounded

whenever u(B) is bounded in C for all u ∈W . This holds if and only if every σ(F, spanW )-

bounded set is F -bounded. Obviously, the linear span of such sets is σ(F ′, F )-dense.

Clearly, if W ⊂ F ′ determines boundedness in F ′, then W is separating.

2.2. Pluripolar sets and pluriregular sets (L-regular sets)

Let X be a complex space and Ω be a set in X. By PSH(Ω) we denote the set of all

plurisubharmonic (psh) functions on Ω.

Definition 2.1. A subset K of X is called pluripolar if for every z ∈ K there exist a

neighbourhood U of z and ϕ ∈ PSH(U), ϕ 6= −∞ such that

K ∩ U ⊂
{
z′ ∈ U : ϕ(z′) = −∞

}
.

It is well known that a subset X of Cp is pluripolar if and only if there exists ϕ ∈
PSH(Cp), ϕ 6≡ −∞ such that

X ⊂ {z ∈ Cp : ϕ(z) = −∞} .
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Let K ⊂ Ω with Ω is an open set in X. Put

U (K,Ω) = {u ∈ PSH(Ω) : u|K ≤ 0;u|Ω ≤ 1} .

We denote uK,Ω the relatively extremal function of the couple (K,Ω) defined by

hK,Ω(z) = sup {u(z) : u ∈ U (K,Ω)} .

Let ω(·,K,Ω) := h∗K,Ω be the upper-semicontinuous regularization of hK,Ω:

ω(z,K,Ω) = lim sup
Ω3z′→z

hK,Ω(z′), z ∈ Ω.

Definition 2.2. The point a ∈ Ω is called the locally pluriregular (or locally L-regular)

point of K if a ∈ K∩Ω and ω(a,K∩U,U) = 0 for all neighbourhood U of a in Ω. Moreover,

K is said to be locally pluriregular (or locally L-regular) if it is locally pluriregular at every

point a ∈ K.

Denote K∗ the set of all pluriregular points of K (in Ω). If K is non-pluripolar, then

K∗ is non-pluripolar and K \K∗ is pluripolar.

Definition 2.3. The set K is said to be pluriregular (or L-regular) if ω(·,K ∩ U,U) = 0

on K for all neighbourhood U of K.

2.3. The cross

Definition 2.4 (N -fold cross). Let N ∈ N, N ≥ 2, and let ∅ 6= Aj ⊂ Dj ⊂ Ckj , kj ∈ N,

where Dj is a domain, j = 1, . . . , N . The set

X := X(A1, . . . , AN ;D1, . . . , DN )

:=

N⋃
j=1

A1 × · · · ×Aj−1 ×Dj ×Aj+1 × · · · ×AN

⊂ Ck1+···+kN

is called the N -fold cross associated to the N pairs (Aj , Dj).

Definition 2.5. Let N ∈ N, N ≥ 2, and let ∅ 6= Aj ⊂ Dj ⊂ Ckj , kj ∈ N, where Dj is a

domain, j = 1, . . . , N and let X := X(A1, . . . , AN ;D1, . . . , DN ). Put

X̂ :=

(z1, . . . , zN ) ∈ D1 × · · · ×DN :

N∑
j=1

ω(zj , Aj , Dj) < 1

 .
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Definition 2.6 (Generalized N -fold cross). Let N ∈ N, N ≥ 2, and let ∅ 6= Aj ⊂ Dj ⊂
Ckj , kj ∈ N, where Dj is a domain. Moreover, let Sj ⊂ A′j × A′′j , j = 1, . . . , N , where

A′j = A1 × · · · ×Aj−1 and A′′j = Aj+1 × · · · ×AN . The set

T := T(A1, . . . , AN ;D1, . . . , DN ;S1, . . . , SN )

:=
N⋃
j=1

{
(z′, zj , z

′′) ∈ A′j ×Dj ×A′j : (z′, z′′) /∈ Sj
}

is called the generalized N -fold cross associated to the N triples (Aj , Dj , Sj).

Here, z′ = (z1, . . . , zj−1) ∈ A′j and z′′ = (zj+1, . . . , zN ) ∈ A′′j .

Remark 2.7. (a) It is clear that T ⊂ X.

(b) X := X(A1, . . . , AN ;D1, . . . , DN ) = T(A1, . . . , AN ;D1, . . . , DN ;∅, . . . ,∅).

(c) If N = 2, then T(A1, A2;D1, D2;S1, S2) = X(A1\S2, A2\S1;D1, D2). Consequently,

any generalized 2-fold cross is a 2-fold cross.

Definition 2.8. Let N ∈ N, N ≥ 2, and let ∅ 6= Dj ⊂ Ckj is a domain, kj ∈ N,

j = 1, . . . , N . Let U be an open subset of D1 × · · · ×DN and let M ⊂ U be a relatively

closed set. For (a1, . . . , aN ) ∈ (D1× · · · ×DN )∩U and j = 1, . . . , N we define the fiber of

M and the fiber of U over (a′j , ·, a′′j ) as

M(a′j , ·, a′′j ) :=
{
zj ∈ Dj : (a′j , zj , a

′′
j ) ∈M

}
,

U(a′j , ·, a′′j ) :=
{
zj ∈ Dj : (a′j , zj , a

′′
j ) ∈ U

}
.

Remark 2.9. Let N ∈ N, N ≥ 2, and let ∅ 6= Dj ⊂ Ckj is a domain, kj ∈ N, j = 1, . . . , N .

Let U be an open subset of D1×· · ·×DN and let M ⊂ U be a relatively closed set. Then

M(a′j ,zj ,a
′′
j ) is closed in U(a′j , ·, a′′j ) for all (a1, . . . , aN ) ∈ (D1×· · ·×DN )∩U and j = 1, . . . , N .

2.4. Holomorphic functions and meromorphic functions

Definition 2.10. Let E and F be locally convex spaces and let D ⊂ E be open, D 6= ∅.

A function f : D → F is called to be holomorphic if f is continuous and u ◦ f is Gâteaux

holomorphic for every u ∈ F ′.

By H(D,F ) we denote the vector space of all holomorphic functions on D with values

in F . This space equipped with the compact-open topology. Instead of H(D,C) we write

H(D). For details concerning holomorphic functions on locally convex spaces we refer to

the book of Dineen [4].

We denote by H∞(D,F ) the subspace of all bounded functions in H(D,F ). Instead

of H∞(D,C) we write H∞(D).
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Now assume that K is a compact subset of E and let H(K) denote the space of germs

of holomorphic functions on K. This space is equipped with the inductive limit topology

H(K) = lim ind
U↘K

H∞(U)

where U ranges over all neighbourhoods of K in E.

Definition 2.11. Let ∅ 6= F ⊂ H(X \ M,F ). We say that a point a ∈ M is non-

singular with respect to F (a ∈ Mns,F ) if there exists an open neighbourhood U of a

such that for each f ∈ F there exists a function f̃ ∈ H(U,F ) with f̃ = f on U \M . If

a ∈Ms,F := M \Mns,F then we say that a is singular with respect to F .

If Mns,F = ∅, i.e., Ms,F = M , then we say that M is singular with respect to F . If

F = H(X \M,F ), then we simply say that M is singular and we skip the index F .

Definition 2.12. Let E and F be locally convex spaces and D0 be a dense open subset of

an open set D in E. We say that a function f : D0 → F is meromorphic on D if for every

z ∈ D there exist a neighbourhood Uz of z in E and holomorphic functions hUz : Uz → F ,

σUz : Uz → C such that

f
∣∣
Uz∩D0

=
hUz
σUz

∣∣∣∣
Uz∩D0

.

The functions hUz and σUz are called the local numerator and local denominator of f

at z respectively. We say
hUz
σUz

is the local representation of f at z. In [14], Khue proved

that, if D is a Stein manifold and F is a sequentially complete locally convex space, this

representation of f is global, that means f = h
σ with h ∈ H(D,F ) and σ ∈ H(D).

We denote

M(D,F ) = {f is meromorphic on D} and M(D) = M(D,C).

By

P (f) =

{
z ∈ D : there exists a local representation

hUz

σUz

such that hUz (z) 6= 0, σUz (z) = 0

}
and

I(f) =

{
z ∈ D : for every local representation

hUz

σUz

we have hUz
(z) = 0, σUz

(z) = 0

}
we denote the pole set and the indeterminacy set of f respectively. It is shown in [14]

that they are analytic sets in D with

codimP (f) ≥ 1 and codim I(f) ≥ 2.



Cross Theorems for Separately (·,W )-meromorphic Functions 1015

Definition 2.13 (Separately holomorphic on a generalized N -fold cross). Let N ∈ N,

N ≥ 2, and let ∅ 6= Aj ⊂ Dj ⊂ Ckj , kj ∈ N, where Dj is a domain, let Sj ⊂ A′j × A′′j ,
j = 1, . . . , N , and let T := T(A1, . . . , AN ;D1, . . . , DN ;S1, . . . , SN ) be the generalized N -

fold cross.

We say that a function f : T → F is separately holomorphic if for any j ∈ {1, . . . , N}
and (a′j , a

′′
j ) ∈ (A′j ×A′′j ) \ Sj the function f(a′j , ·, a′′j ) is holomorphic in Dj . Put

Hs(T, F ) = {f is separately holomorphic on T} .

Definition 2.14 (Separately holomorphic on X \M). Let N ∈ N, N ≥ 2, and let ∅ 6=
Aj ⊂ Dj ⊂ Ckj , kj ∈ N, where Dj is a domain, and let X := X(A1, . . . , AN ;D1, . . . , DN ).

Moreover, let U be an open neighbourhood of X and let M ⊂ U be such that for all

(a1, . . . , aN ) ∈ A1× · · · ×AN and j ∈ {1, . . . , N} the fiber M(a′j , ·, a′′j ) is relatively closed in

Dj .

We say that a function f : X \M → F is separately holomorphic (f ∈ Hs(X \M,F ))

if for any (a1, . . . , aN ) ∈ A1 × · · · × AN and j ∈ {1, . . . , N} the function f(a′j , ·, a′′j ) is

holomorphic in the open set Dj \M(a′j , ·, a′′j ). Put

Hs(X \M,F ) = {f is separately holomorphic on X \M} .

Definition 2.15 (Separately meromorphic on T \ M). Let N ∈ N, N ≥ 2, and let

∅ 6= Aj ⊂ Dj ⊂ Ckj , kj ∈ N, where Dj is a domain, let Sj ⊂ A′j × A′′j , j = 1, . . . , N ,

and let T := T(A1, . . . , AN ;D1, . . . , DN ;S1, . . . , SN ) be the generalized N -fold cross. Let

M ⊂ T , S ⊂ T \M be relatively closed.

We say that a function f : (T \ M) \ S → F is separately meromorphic if for any

(a1, . . . , aN ) ∈ (A1 × · · · × AN ) \ Sj with (M ∪ S)(a′j , ·, a′′j ) 6= Dj and j ∈ {1, . . . , N} there

exists a function f̃(a′j , ·, a′′j ) ∈ M(Dj \M(a′j , ·, a′′j ), F ) such that f̃(a′j , ·, a′′j ) = f(a′j , ·, a′′j )
on Dj \ (M ∪ S)(a′j , ·, a′′j ).

Observe that f ∈ Hs(T \ (M ∪ S), F ). Put

Ms(T \M,F ) = {f is separately meromorphic on T \M} .

2.5. (·,W )-holomorphic functions and (·,W )-meromorphic functions

Let E, F be locally convex spaces, D an open subset of E, W a subset of F ′.

Definition 2.16. A function f : D → F is called

• (F,W )-holomorphic if u ◦ f ∈ H(D) for all u ∈W ;

• (F,W )-holomorphic, bounded if u ◦ f ∈ H∞(D) for all u ∈W .
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We denote

HW (D,F ) = {f : f is (F,W )-holomorphic on D} ;

HW,∞(D,F ) = {f : f is (F,W )-holomorphic, bounded on D} .

Definition 2.17. Let T = T(A1, . . . , AN ;D1, . . . , DN ;S1, . . . , SN ) be a generalized N -fold

cross. Let M ⊂ T be relatively closed.

We say that a function f : (T \M) → F is separately (F,W )-holomorphic on T \M
if for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ (A′j × A′′j ) the functions (u ◦ f)(a′j , ·, a′′j ) are

holomorphic on Dj \M(a′j , ·, a′′j ) for every u ∈W . We denote

HW
s (T \M,F ) = {f : f is separately (F,W )-holomorphic on T \M} ;

HW,∞
s (T \M,F ) = HW

s (T \M,F ) ∩HW,∞(T \M,F );

HW,∞,c
s (T \M,F ) = HW,∞

s (T \M,F ) ∩ C(T \M,F ).

Definition 2.18. A function f : D → F is called (F,W )-meromorphic if u ◦ f ∈ M(D)

for all u ∈ W . If u ◦ f has a meromorphic extension û ◦ f ∈ M(G) with G ⊃ D for all

u ∈W we say that f has an (F,W )-meromorphic extension to G. Put

MW (D,F ) = {f : f is (F,W )-meromorphic on D} .

Definition 2.19. Let T = T(A1, . . . , AN ;D1, . . . , DN ;S1, . . . , SN ) be a generalized N -fold

cross. Let M ⊂ T , S ⊂ T \M be relatively closed.

We say that a function f : (T \M)\S → F is separately (F,W )-meromorphic on T \M
if for any j ∈ {1, . . . , N} and (a′j , a

′′
j ) ∈ (A′j × A′′j ) \ Sj with (M ∪ S)(a′j , ·, a′′j ) 6= Dj , there

exist functions (u ◦̃ f)(a′j , ·, a′′j ) ∈M(Dj \M(a′j , ·, a′′j )) such that

(u ◦̃ f)(a′j , ·, a′′j ) = (u ◦ f)(a′j , ·, a′′j )

on Dj \ (M ∪ S)(a′j , ·, a′′j ) for every u ∈W . We denote

MW
s (T \M,F ) = {f : f is separately (F,W )-meromorphic on T \M} .

3. Rothstein’s theorem for (·,W )-meromorphic functions

The aim of this section is to consider the Rothstein theorem for class of (F,W )-meromorphic

functions where F is a locally complete space.

Throughout this section we shall adopt the following notations:

∆r(s) := {t ∈ C : |t− s| < r} ; ∆r = ∆r(0); ∆ = ∆1;

∆N
r (s) := ∆r(s1)× · · · ×∆r(sN ), for s = (s1, . . . , sN ) ∈ CN .

The following is the main result of this section.
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Theorem 3.1. (cf. [10, 22]) Let f ∈ M(∆p × ∆q, F ) where ∆p ⊂ Cp, ∆q ⊂ Cq are the

unit polydiscs and F is a sequentially complete space. Assume that A ⊂ ∆p is a locally

pluriregular set such that for any a ∈ A we have (P (f))(a, ·) 6= ∆q. Let G ⊂ Cq be a

domain such that ∆q ⊂ G. Assume that for every a ∈ A the function fa has an (F,W )-

meromorphic extension to G where W is a subspace of F ′ that determining boundedness.

Then there exist an open neighbourhood Ω of (∆p × ∆q) ∪ (A × G) and a function f̃ ∈
M(Ω, F ) such that f̃ = f on ∆p ×∆q.

The first is a generalization of the Levi extension theorem for (·,W )-meromorphic

functions.

Let F be a locally convex space, Ω ⊂ C a domain and f : Ω → F be a meromorphic

function. Then for every point t ∈ Ω there exists some non-negative integer N so that

(λ− t)Nf(λ) has a holomorphic extension to t. We write ot(f) for the least such number

N , possibly 0. If ot(f) > 0 then t is a pole of f .

Theorem 3.2. Let F be a sequentially complete locally convex space, W a separating

subset of F ′ and f ∈ M(D × (∆r \ ∆), F ), where r > 1 and D is an open set in Cn.

Suppose D∗ is a dense set in D such that for each z ∈ D∗ there exist a set Pz ⊂ ∆r

without limit points in ∆r and a locally bounded function f−z : ∆r \ Pz → F satisfying

(i) f−z = fz on ∆r \∆;

(ii) f−z has an (F,W )-meromorphic extension to ∆r with P (û ◦ f−z ) ⊂ Pz for all u ∈W
and for all t ∈ Pz

max
u∈W

ot(û ◦ f−z ) <∞.

Then f extends meromorphically to D ×∆r.

Proof. (a) From the hypotheses (i) and (ii), by Grosse-Erdmann [6, Theorem 4] for each

z ∈ D the function fz is extended to a meromorphic function f̂z on ∆r.

(b) Now we consider the case where F is a Fréchet space. As in [29] we may assume

that f is holomorphic on D × (∆r \∆). We have a Laurent series expansion

f(z, λ) =

+∞∑
k=−∞

Ck(z)λ
k, (1 < |λ| < r)

where Ck(z) are holomorphic on D. Let

Dp =
{
z ∈ D : f̂z has at most p poles

}
,

where the number of the pole points is counted with their multiplicities. Since D =
⋃
pDp

there exists some p such that Dp is dense in D. Let K denote the quotient field of
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H(F ′bor×D), where F ′bor is the space F ′ equipped with the bornological topology associated

to the strongly topological dual F ′ of F . Note that F ′bor is a bornological (DF )-space.

Consider the subspace V of K p+1 generated by {Vk}k≥1 with

Vk = (Ĉ−k, Ĉ−k−1, . . . , Ĉ−k−p) (k ≥ 1),

where Ĉ−k(u, z) = u(C−k(z)) for u ∈ F ′bor and z ∈ D. Observe that Ĉk ∈ K for k > −∞,

because Ĉk is Gâteaux holomorphic and bounded on sets of the form B ×K where B is

bounded in F ′bor and K is compact in K, and hence, Ĉk is holomorphic [15]. We can check

that dim V ≤ p, that means

H = det


Ĉ−k1 · · · Ĉ−k1−p

. . . . . . . . . . . . . . . . . . . . . .

Ĉ−k1+p · · · Ĉ−k1+p−p

 ≡ 0 on F ′ ×D

for 1 ≤ k1 < · · · < k1+p. For each z ∈ Dp, from the meromorphicity of f̂z, there exist

a0, . . . , ap ∈ F such that (
p∑

m=0

amλ
m

)(
+∞∑

k=−∞
Ck(z)λ

k

)
is holomorphic on ∆r. This means

a0C−k(z) + · · ·+ apC−k−p(z) = 0 for k ≥ 1.

Hence H(z) = 0 for z ∈ Dp. Since Dp is dense in D we have H ≡ 0 on F ′ ×D. Choose

a basis Vk1 , . . . , Vkq of V , where q ≤ p. Then for each k ≥ 1 there exist holomorphic

functions α(k), α
(k)
1 , . . . , α

(k)
q with α(k) 6≡ 0 such that

(3.1) α(k)Vk =

q∑
i=1

α
(k)
i Vki .

Since q ≤ p, there exist holomorphic functions β0, β1, . . . , βp on D with values in F such

that

(3.2)

p∑
m=0

β̂mĈ−ki−m ≡ 0 on F ′bor ×D for 1 ≤ i ≤ q

where β̂m : F ′bor ×D → C are given by

β̂m(u, z) = u(βm(z)), ∀u ∈ F ′bor, 0 ≤ m ≤ p.

From (3.1) and (3.2) it follows that

p∑
m=0

β̂mĈ−k−m ≡ 0 on F ′ ×D for k ≥ 1.
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Hence,

ĝ :=

(
p∑

m=0

β̂m(u, z)λm

)(
+∞∑

k=−∞
Ĉk(u, z)λ

k

)
is holomorphic on F ′bor ×D ×∆r. Then the meromorphic function

ĥ :=

(
p∑

m=0

β̂m(u, z)λm

)−1

ĝ

is the extension of f̂ , where f̂ : F ′bor×D× (∆r \∆)→ C is given by f̂(u, z, λ) = u(f(z, λ)).

Now, for each continuous semi-norm α on F we consider fα = ωαf , where Fα is the Banach

space associated to α and ωα : F → Fα is the canonical map. By [8], fα is extended to a

meromorphic function gα on D ×∆r. Put

P =
⋃
α

P (gα).

We have P (ĥ) ∩ (F ′α ×D ×∆r) = P (ĝα) = F ′α × P (gα) for every α. Hence

P (ĥ) =
⋃
α

(F ′α × P (gα)) = F ′ × P.

The equality yields that P is a hypersurface in D ×∆r. Let (z0, λ0) ∈ R(P ), the regular

locus of P . Then there exist a neighbourhood U of (z0, λ0) in D×∆r and a holomorphic

function σ on U such that σ|P∩U = 0 and σ′(z, λ) 6= 0 for (z, λ) ∈ U . Hence σpĥ is

holomorphic on F ′bor × U for some p ≥ 0. On the other hand, since ĥ
∣∣
F ′×[(D×∆r)\P ]

is a

holomorphic extension of f̂ which is continuous linear in u ∈ F ′bor for (z, λ) ∈ D×(∆r \∆),

we infer that σpĥ so is for (z, λ) ∈ D × ∆r. Thus, σpĥ induced a holomorphic function

σph : U → [F ′bor]
′. This yields that ĥ is induced by a meromorphic function h on D ×∆r

with values in [F ′bor]
′, since codimS(P ) ≥ 2, where S(P ) is a singular locus of P . Moreover,

by uniqueness and since h = f on [D×(∆r \∆)]\P it follows that h can be considered as a

meromorphic function on D×∆r with values in F . Hence f is extended meromorphically

to D ×∆r.

(c) General case. Assume that F is a sequentially complete locally convex space. As

in notations of (b), put

P =
⋃
α

P (gα).

First we show that P is a hypersurface in D ×∆r. Let D′ be a relatively compact open

subset of D and 0 < r′ < r. For each continuous semi-norm α of F , let nα denote

the number of irreducible branches of P (gα) ∩ (D × ∆r′). To prove the analyticity of

P ∩ (D ×∆r′) we have to check supα nα <∞. Otherwise there exists a sequence {αk} of

continuous semi-norms on F such that αk ↗ +∞. Consider the space E = lim projk Fαk
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and the canonical map ω : F → E. By (b), ω◦f has a meromorphic extension h : D×∆r →
E. Since P (gαk) ⊂ P (h) for k ≥ 1, and hence, the number of irreducible branches of

P (h) ∩ (D′ × ∆r) is equal to +∞. This is impossible. Since D′ and r′ are arbitrary, P

is a hypersurface. Since u ◦ f has a holomorphic extension to (D × ∆r) \ P for every

u ∈ F ′, it follows that f has also a holomorphic extension f̂ to (D ×∆r) \ P . It remains

to show that f̂ in fact is meromorphic on (D ×∆r) \ S(P ) and hence, on D ×∆r. Given

w0 ∈ (D ×∆r) \ S(P ). After changing of coordinates we can write f̂ in the form

f̂(z, λ) =

+∞∑
k=−∞

ck(z)λ
k

in the neighbourhood ∆n × ∆ of w0, where ck(z) are holomorphic on ∆n. If f̂ is not

meromorphic at w0, then there exists a sequence kj ↘ −∞ such that ckj 6= 0 on ∆n.

Choose for each j ≥ 1, uj ∈ F ′ such that uj ◦ ckj 6= 0. Consider g = η ◦ f , where

η : F → CN is the map induced by {uj}, that means η(y) = {uj(y)}j≥1. By (b), g has a

meromorphic extension to ∆n ×∆. This yields that there exists j0 such that

uj ◦ ckj ≡ 0 for j < j0.

It is impossible.

We shall prove the following proposition.

Proposition 3.3. Let D1 ⊂ Cn1, D2 ⊂ Cn2 be domains and A1 ⊂ D1, A2 ⊂ D2 be

locally pluriregular subsets. Let F be a locally complete space and W ⊂ F ′ be a subspace

determining boundedness. Assume that f : X → F is a function such that

(i) for every a1 ∈ A1 the function fa1 ∈ HW,∞(D2, F );

(ii) for every a2 ∈ A2 the function fa2 ∈ HW,∞(D1, F ).

Then there exists exactly one f̂ ∈ H(X̂, F ) with f̂ = f on X.

For the proof of Proposition 3.3 we need the following lemma.

Lemma 3.4. Let D1 ⊂ Cn1, D2 ⊂ Cn2 be domains and A1 ⊂ D1, A2 ⊂ D2 be locally

pluriregular subsets. Then for any f ∈ Hs(X) there exists exactly one f̂ ∈ H(X̂) with

f̂ = f on X.

Proof. Since A1 and A2 are locally pluriregular we have X ⊂ X̂. Observe that A1×A2 ⊂
X is locally pluriregular, hence, is non-pluripolar. By [1, Theorem 3.4.2] there exists

f̂ ∈ H(X̂) with f̂ = f on X. Suppose there is a ĝ ∈ H(X̂) with ĝ = f on X. Then by

the non-pluripolarity of A1 ×A2 we get ĝ = f̂ on X̂. Thus f̂ is uniquely determined.
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Now we can prove Proposition 3.3 as follows.

Since A1, A2 are locally pluriregular, they are non-pluripolar, hence, are of uniqueness

and X ⊂ X̂. Then, by [5], for each z ∈ A1 and w ∈ A2 we have

fz ∈ H∞(D2, F ) and fw ∈ H∞(D1, F ).

Now, let ϕ ∈ F ′ be an arbitrary continuous linear form on F . Consider the separately

holomorphic function

ϕ ◦ f : X → C.

By Lemma 3.4, there exists exactly one ϕ̂ ◦ f ∈ H(X̂) with ϕ̂ ◦ f = ϕ ◦ f on X. By the

identity principle we can define the mapping

T : F ′bor → H(X̂),

given by

T (ϕ)(z) = ϕ̂ ◦ f(z), z ∈ X̂, ϕ ∈ F ′bor,

where F ′bor is F ′ equipped with the bornological topology associated with the strong

topology β. By the uniqueness of extensions ϕ̂ ◦ f and by using the identity principle,

it follows that T is linear and has the closed graph. Hence, in view of the closed graph

theorem of Grothendieck [7] we derive that T is continuous.

Now we can define the map f̂ : X̂ → [F ′bor]
′
β by the formula

f̂(z)(ϕ) = T (ϕ)(z), z ∈ X̂, ϕ ∈ F ′bor.

For each ϕ ∈ F ′bor we have

f̂(z)(ϕ) = T (ϕ)(z) = (ϕ̂ ◦ f)(z), z ∈ X̂

and hence, we deduce that f̂ : X̂ → [F ′bor]
′
β is holomorphic. Since (ϕ ◦ f̂)(z) = f̂(z)(ϕ) =

(ϕ̂ ◦ f)(z) = (ϕ ◦ f)(z) for all z ∈ X and for all ϕ ∈ F ′, we have f̂ = f on the non-

pluripolar set X. However, F is a closed subspace of [F ′bor]
′
β, by the identity principle it

follows that f̂(X̂) ⊂ F and hence f̂ : X̂ → F is holomorphic.

It is obvious that û ◦ f is a holomorphic extension of u ◦ (f
∣∣
A1×A2

) for all u ∈ W .

From the uniqueness of A1 ×A2 (because A1 ×A2 is non-pluripolar), by [5] f̂ is uniquely

determined. The proposition is proved.

Since the equality ω(z,A1, D1) = 0 for every locally pluriregular point z of A1 from

Proposition 3.3 we obtain

Corollary 3.5. Let X be a 2-fold cross and f : X → F a function as in Proposition 3.3.

Assume that z∗ ∈ A1 is a locally pluriregular point of A1. Then f can be extended holo-

morphically to a neighbourhood {z∗} ×D′2 for all D′2 ⊂ D2.
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Lemma 3.6. Let f : Cp×Cq → F be a meromorphic function on a neighbourhood of D×
{0} in Cp+q. Then − log(Rf )∗ is plurisubharmonic on D where Rf (z) is the meromorphic

radius of fz at 0 ∈ Cq defined by

Rf (z) = sup {r > 0 : fz has a meromorphic extension on ∆q
r}

and (Rf )∗ is the lower semicontinuous regularization of Rf .

The lemma is proved similarly as of Proposition 1.4 and Remark 1.5 in [29] by using

Theorem 3.2.

Lemma 3.7. Let D ⊂ Cm, G0 ⊂ Cn be domains. Let f : D ×G0 → F be a meromorphic

function and let G be an open subset containing G0, where F is a sequentially complete

space. Assume that for almost z ∈ D the function fz has an (F,W )-meromorphic extension

to G where W is a subspace of F ′ that determining boundedness. Then f is extended

meromorphically to D ×G.

Proof. The following argument is a small modification of [26].

Let CP(F ) denote the projective space associated to F and π : F \ {0} → CP(F ) the

canonical map. By the uniqueness, we may assume that F is separable.

Let us consider the following two cases.

Case 1: n = 1.

Because for almost z ∈ D the function u ◦ fz is extended meromorphically to G for all

u ∈W , by [6, Theorem 4], for almost z ∈ D the function fz is extended to a meromorphic

function f̂z on G.

Let G1 be an arbitrary open set with G1 ⊂ G0 and D1 = D \ πD(I(f) ∩ (D × G1)),

where πD : D × G → D is the canonical projection. Then gz is holomorphic on G1 for

z ∈ D1, where g = π ◦ f .

By Corollary 3.5 and [25, Theorem 1], for every open set G2 with G1 ⊂ G2 ⊂ G there

exist an open subset D2 ⊂ D of full measure and a holomorphic function g2 : D2 ×G2 →
CP(F ) such that

g2

∣∣
D2×G1

= g
∣∣
D2×G1

.

Let f2 : D2 ×G2 → F be the meromorphic function induced by g2. Then

f2

∣∣
D2×G1

= f
∣∣
D2×G1

.

By [24], the envelope of holomorphy of (D ×G0) ∪ (D2 ×G2) contains D ×G2. Then, f2

and hence f has a meromorphic extension to D×G2. Since G2 is arbitrary, f is extended

to D ×G.
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Case 2: n > 1.

We can easily reduce the lemma to the case G0 = ∆n, G = ∆n
R with R > 1. Suppose

that the lemma has been verified for G0 = ∆n−1, G = ∆n−1
R . Assume that for all u ∈ W

the function u ◦ fz has a meromorphic extension on ∆n
R, where z ∈ D \ A such that

mes(A) = 0. For each r ∈ (0, R) put

B = {(z, ξ) ∈ D ×∆ : {z} ×∆r × {ξ} ⊂ I(f)} ,

C = (A×∆) ∪B.

Then mes(C) = 0 and u◦fz,ξ has a meromorphic extension to ∆n−1
R for (z, ξ) ∈ (D×∆)\C

for all u ∈ W . By the inductive assumption (with D is replaced by D × ∆r), it follows

that f can be extended meromorphically to D ×∆n−1
R ×∆.

Similarly, let

B′ =
{

(z, w) ∈ D ×∆n−1
R : (z, w)×∆r ⊂ I(f)

}
,

C ′ = (A×∆n−1
R ) ∪B′.

Then we also have mes(C ′) = 0 and u ◦ fz,w has a meromorphic extension to ∆R for

(z, w) /∈ C ′ for all u ∈ W . Hence, by Case 1, f can be extended meromorphically to

D ×∆n
R.

We are now in a position to prove the Rothstein theorem.

Proof of Theorem 3.1. (i) The case where G = ∆q
R.

For each z ∈ D, let Rf (z) denote the meromorphic radius of fz at 0 ∈ Cq. Obviously,

Rf ≥ 1 on ∆p and Rf ≥ R on A. Using Lemma 3.7 with D = ∆p we can easily conclude

that f extends meromorphically to the Hartogs domain

Ω := {(z, w) ∈ ∆p × Cq : |w| < (Rf )∗(z)} .

By Lemma 3.6 and Rf ≥ R on A, using the local pluriregularity of A we conclude that

(Rf )∗ ≥ R on A. Thus A×∆q
R ⊂ Ω, and therefore Ω is the required neighbourhood.

(ii) The case where G is arbitrary.

Fix a ∈ A. Let G0 denote the set of all b ∈ G such that there exist rb > 0 and
bf ∈ M(∆p+q

rb (a, b), F ) with ∆p+q
rb (a, b) ⊂ ∆p × G such that for all α ∈ A ∩ ∆p

rb(a) the

function u ◦ bfα has a meromorphic extension (u ◦ bfα)̃ on ∆q
rb(b) for all u ∈W .

Obviously G0 is open, G0 6= ∅ (∆q ⊂ G0). Using (i) one can prove that G0 is closed

in G. Thus G0 = G.

Moreover, one can prove that if ∆q
rb1

(b1)∩∆q
rb2

(b2) 6= ∅ then b1f = b2f on ∆p+q
rb1

((a, b1))

∩ ∆p+q
rb2

((a, b2)). This gives a meromorphic extension of f to an open neighbourhood of

a × G. Since a was arbitrary, we get the required neighbourhood Ω. The proof of the

Rothstein theorem is complete.
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4. Domains of existence for Fréchet-valued meromorphic functions

Let D be a Riemann domain over a Banach space E and f : D → F be a holomorphic

function on D with values in a Banach space F . By Dh
f we denote the domain of existence

of f over E. Hirschowitz [9] proved that if E is separable the set

Zhf :=
{
x∗ ∈ F ′ : Dh

f = Dh
x∗f

}
is not a first category set. Moreover, he also showed that in the general case this result is

not true.

In the first part of this section we study the above problem for meromorphic functions.

Then the obtained result is used to extend Fréchet-valued meromorphic functions.

Now, as in [2], by the sheaf theory method we can construct a Riemann domain Dm
f

over E (which is called the domain of existence of f) such that it is the largest domain on

which f can be extended to a meromorphic function f̂ .

We shall prove the following theorem.

Theorem 4.1. Let D be a Riemann domain over a separable Banach space E and f be a

meromorphic function on D with values in a Banach space F . Then the set

Zmf :=
{
x∗ ∈ F ′ : Dm

f = Dm
x∗f

}
is dense in F ′.

For the proof of Theorem 4.1 we need the following lemmas.

Lemma 4.2. Let D be an open set in a Banach space E and S an analytic set in D with

codimS ≥ 2. Then every meromorphic function f on D \S with values in a Banach space

F can be extended meromorphically to D.

Proof. Given f : D \ S → F a meromorphic function.

(i) First consider the case where F = C. Let f0 : (D \ S) \ I(f) → CP1 be the

holomorphic function defined by f , where CP1 is the complex projective space. Then f is

defined uniquely by the analytic set Γ(f) in (D \ S)× CP1 given by

Γ(f) := Cl(D\S)×CP1

{
(z, f0(z)) ∈ (D \ S)× CP1

}
.

By the Remmert-Stein-Ramis theorem [21], ClD×CP1 Γ(f) is an analytic set in D × CP1

defining a meromorphic extension of f to D.

(ii) Now assume that F is an arbitrary Banach space. By (i) for every x∗ ∈ F ′, the

meromorphic function x∗f on D \ S can be extended to a meromorphic function x̂∗f on

D. On the other hand, by the Remmert-Stein-Ramis theorem [21], V = Cl[P (f)] is an

analytic set in D. We can assume that V 6= ∅ and hence codimV = 1.



Cross Theorems for Separately (·,W )-meromorphic Functions 1025

Fix z0 ∈ S. Take a neighbourhood W of z0 in D such that

W ∩ V = Z(σ)

where Z(σ) is the zero-set of a holomorphic function σ on W .

For each pair (k, n) we put

A(k,n) :=
{
x∗ ∈ F ′ : σnx̂∗f ∈ H(z0 + Uk)

}
where Uk =

{
x ∈ E : ‖z‖ < 1

k

}
.

By the factoriality of the local ring OE,z0 of germs of holomorphic functions at z0 [17],

we can find holomorphic functions g and β on z0 + Uk for some k such that

x̂∗f
∣∣∣
z0+Uk

=
g

β

and gy, the germ of g at y, is prime with respect to βy for all y ∈ z0 + Uk. This implies

that

P (x̂∗f) ∩ (z0 + Uk) = Z(β) ⊆ V ∩ (z0 + Uk) = Z(σ) ∩ (z0 + Uk).

Hence there exist i, n and γ ∈ H(z0 + Ui) such that

σn
∣∣
z0+Ui

= γβ
∣∣
z0+Ui

.

We prove that the sets A(k,n) are closed. Let
{
x∗p
}
⊂ A(k,n) and x∗p → x∗ in F ′. Then{

σnx̂∗pf
}
⊂ H(z0 +Uk) and this sequence converges to σnx̂∗f in H((z0 +Uk) \ V ). Since

codimV = 1, by the maximum principle, it follows that
{
σnx̂∗pf

}
converges to σnx̂∗f in

H(z0 + Uk). This means that x∗ ∈ A(k,n) and hence A(k,n) is closed in F ′.

Using the Baire theorem to F ′ =
⋃

(k,n)A(k,n) we can find (k, n) such that σnx̂∗f is

holomorphic on z0 + Uk for all x∗ ∈ F ′. Thus σnf is holomorphic at z0 and hence f is

meromorphic at z0. The lemma is proved.

Lemma 4.3. Let D be an open set in a Banach space E and S an analytic set in D with

codimS = 1. Assume that G is an open subset of D such that every irreducible branch of

S meets G. Then every meromorphic function f on (D \ S) ∪G with values in a Banach

space F can be extended meromorphically to D.

Proof. It suffices to show that f can be meromorphically extended to every z ∈ ∂G ∩ S.

Given z0 ∈ ∂G ∩ S. By Lemma 4.2 we can assume that z0 ∈ R(S), the regular locus of

S, and z0 = 0 ∈ E. Take a neighbourhood U of z0 of the form ∆ × V , where ∆ is the

open unit disc in C and V is connected neighbourhood of zero in a Banach space such

that R(S) ∩ U = 0× V . Consider the Laurent expansion of f in ∆× V at (0, 0)

f(t, z) =
+∞∑

k=−∞
ak(z)t

k
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where ak are holomorphic functions on V .

Since f is meromorphic on G and z0 ∈ ∂G, we can find a non-empty open subset W

of V such that f is meromorphic on ∆×W . This yields that there exists k0 such that

ak(z) = 0 for every z ∈W and every k < k0.

By the connectedness of V we have

ak = 0 for every k < k0.

Thus f is meromorphic at z0.

Now we can prove Theorem 4.1 as follows.

Proof of Theorem 4.1. Given f : D → F a meromorphic function, where D is a Riemann

domain over separable Banach space E and F is a Banach space. Put

D0 = D \ P (f) and f0 = f
∣∣
D0 .

By the Hirschowitz’s result in [9] it suffices to consider the case where there exists x∗0 ∈
Zh(f0) \ Zm(f). Since

(D0)hf0 = (D0)hx∗0f and Dm
f \ (D0)hf0 = P (f̂),

by the local biholomorphicity of the canonical map Dm
f → Dm

x∗0f
, it follows that Dm

f is

contained in Dm
x∗0f

as an open set. We first have the following relations

Dm
x∗0f
\Dm

f = P (x̂∗0f) \ P (f̂) and P (f̂) ⊆ P (x̂∗0f).

Indeed, let z ∈ Dm
x∗0f
\Dmf , but z /∈ P (x̂∗0f) \ P (f̂). Then

z ∈ (D0)hx∗0f0 = (D0)hf0 ⊆ D
m
f

which is impossible.

The inverse inclusion is trivial. The second relation follows from that

(D0)hf0 = (D0)x∗0f0 .

Let z0 ∈ ∂R(P (f̂)), the boundary of R(P (f̂)) in R(P (x̂∗0f)). We may assume that z0 =

0 ∈ E. Take a neighbourhood U of z0 of the form ∆ × V , where ∆ is the open unit disc

in C and V is a connected neighbourhood of zero in a Banach space. As in Lemma 4.3,

consider the Laurent expansion of f̂ in ∆× V at (0, 0)

f̂(t, z) =
+∞∑

k=−∞
ak(z)t

k
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where ak are holomorphic functions on V .

Since z0 ∈ ∂R(P (f)) we can find a non-empty open subset W of V such that f̂ is

meromorphic on ∆×W . As in Lemma 4.3 we infer that for some k0 we have

ak = 0 for every k < k0.

Hence f̂ is meromorphic at z0.

Thus we can write

P (x̂∗0f) \ ClDm
x∗0f

(P (f̂)) =

⋃
j≥1

Xj

 ∪ S(P (x̂∗0f))

where Xj are irreducible branches and S(P (x̂∗0f)) is the singular locus of P (x̂∗0f). Since

codimP (x̂∗0f) ≥ 2, by Lemma 4.2, we have

P (x̂∗0f) \ ClDm
x∗0f

(P (f̂)) =
⋃
j≥1

Xj .

For each j ≥ 1 take zj ∈ R(Xj) and write in a neighbourhood Uj of zj of the form ∆× Vj
as in Lemma 4.3 the Laurent expansion of f̂ at (0, 0)

f(t, z) =
+∞∑

k=−∞
ajk(z)t

k.

We may assume that

ajk 6= 0 for every k < 0 and j ≥ 1.

Put

Aj =
{
x∗ ∈ F ′ : x∗(ajk) 6= 0 for every k < 0

}
,

Gkj =
{
x∗ ∈ F ′ : x∗(ajk) 6= 0

}
.

Obviously, Gkj is open for every k < 0 and j ≥ 1. Moreover, Gkj is dense in F ′. Indeed, in

the converse case we can find x∗1 ∈ F ′ and ε > 0 such that

(x∗1 − x∗)(a
j
k) = 0 for every x∗ ∈ F ′ with ‖x∗‖ < ε.

Then ajk = 0 which is impossible. By the Baire theorem

T =
⋂
j≥1

Aj =
⋂
k<0
j≥1

Gkj

is dense in F ′.



1028 Thai Thuan Quang and Lien Vuong Lam

For each x∗ ∈ T consider the continuous linear map Θx∗ : F → C2 given by (x∗0, x
∗).

Then the set

Zx∗ =
{
y∗ ∈ C2 : Dm

y∗Θx∗f
= Dm

Θx∗f

}
is dense in C2. Then the set

Z := {y∗Θx∗ : y∗ ∈ Zx∗ , x∗ ∈ T}

is dense in F ′. Indeed, given x∗ ∈ F ′ and ε > 0. Take x∗1 ∈ T such that ‖x∗ − x∗1‖ < ε.

Since Zx∗1 is dense in C2, there exists y = (a, b) ∈ Zx∗1 such that

|a|+ |b− 1| < ε

3(‖x∗0‖+ ‖x∗‖+ 1)

with |b| < 1. Then∥∥y∗Θx∗1
− x∗

∥∥ = ‖ax∗0 + bx∗1 − x∗‖

≤ |a| ‖x∗0‖+ |b| ‖x∗1 − x∗‖+ |b− 1| ‖x∗0‖ < ε.

Since Dm
Θx∗f

⊆ Dm
x∗0f

, by Lemma 4.3, Θx∗f is not meromorphic at every point belonging

to
⋃
j≥1Xj , we infer that

Dm
y∗Θx∗f

= Dm
Θx∗f

= Dm
f

for all y∗Θx∗ ∈ Z. Theorem 4.1 is proved.

Now, using Theorem 4.1 we prove the following result.

Theorem 4.4. Let f : D → F be a meromorphic function, where D is a Riemann domain

over a Banach space E with a Schauder basis and F is a sequentially complete space. Then

f can be extended meromorphically to D̂, the envelope of holomorphy of D.

Proof. As in the proof of Theorem 3.2, it suffices to consider the space F is Fréchet.

Given f : D → F a meromorphic function as in Theorem 4.4. Cover D by a sequence

of open sets Uj such that for every j ≥ 1 there exist bounded holomorphic functions hj

and σj on Uj for which f
∣∣
Uj

=
hj
σj

. Since F is a Fréchet space there exists a sequence

εj ↘ 0 such that

B = conv
⋃
j≥1

εjhj(Uj)

is bounded. It is easy to see that in the fact f is a meromorphic function on D with

values in the canonical Banach space FB generated by B. From Theorem 4.1 and from

the pseudoconvexity of the domain of existence of a scalar meromorphic function [2] it

follows that Dm
f is pseudoconvex. Since E has a Schauder basis, Dm

f is a domain of

holomorphy [21]. This implies that f can be meromorphically extended to D̂.
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5. A generalization of the Kazarian theorem

In [13] Kazarian proved that if f is a separately meromorphic function on a 2-fold cross

X := X(E,F ;D,G) = (D × F ) ∪ (E × G) where D ⊂ Cn, G ⊂ Cm are domains and

E ⊂ D, F ⊂ G are pluriregular compact sets then there exists a meromorphic function f̃

on

X̂ = {(z, w) ∈ D ×G : ω(z, E,D) + ω(w,F,G) < 1}

such that f̃ = f on X.

The following theorem is a generalization of this result for the class of separately

(·,W )-meromorphic functions.

Theorem 5.1. Let D1 ⊂ Cn1, D2 ⊂ Cn2 be domains and A1 ⊂ D1, A2 ⊂ D2 be locally

pluriregular compact subsets. Let F be a sequentially complete locally convex space, W be

a separating subset of F ′ and f : X = X(A1, A2;D1, D2)→ F be a function such that

(i) for every a1 ∈ A1, fa1 ∈MW (D2, F );

(ii) for every a2 ∈ A2, fa2 ∈MW (D1, F )

where fa1(w) := f(a1, w) for all w ∈ D2 and fa2(z) := f(z, a2) for all z ∈ D1. Then f is

extended meromorphically to

X̂ = {(z1, z2) ∈ D1 ×D2 : ω(z1, A1, D1) + ω(z2, A2, D2) < 1} .

Some lemmas in the previous section and the following proposition will be used to

prove the theorem.

Proposition 5.2. Let f : X → F be as in the Theorem 5.1. Then there exist open subsets

D0
1 ⊂ D1, D0

2 ⊂ D2 and non-pluripolar compact sets A0
1 ⊂ A1 ∩D0

1, A0
2 ⊂ A2 ∩D0

2 such

that

f
∣∣
X0 : X0 := (D0

1 ×A0
2) ∪ (A0

1 ×D0
2)→ F

is separately holomorphic.

Proof. Recall that if S is a pluripolar closed set in D1 ×D2 then the sets

S1 := {z ∈ A1 : {z} ×D2 ⊂ S}

S2 := {w ∈ A2 : D1 × {w} ⊂ S}

are pluripolar. Since A1\S1 and A2\S2 are non-pluripolar, by Bedford and Taylor [3] there

exist locally pluriregular points z0 ∈ A1 \ S1 and w0 ∈ A2 \ S2 for A1 and A2 respectively.

Choose a ∈ D1 and b ∈ D2 such that (a,w0) /∈ S and (z0, b) /∈ S. Let r > 0 be sufficiently

small such that
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Z0 := (B(a, r)× (B(w0, r) ∩A2)) ∪ ((B(z0, r) ∩A1)×B(b, r)) ⊂ X \ S.

Note that A0
1 := B(z0, r) ∩A1 and A0

2 := B(w0, r) ∩A2 are non-pluripolar.

It remains to show that f is separately holomorphic on Z0. Given z1 ∈ A0
1. By the

hypothesis, u ◦ fz1 has a meromorphic extension û ◦ fz1 on D0
2 := B(b, r) such that

û ◦ fz1
∣∣∣
D0

2\I(û◦fz1 )
= u ◦ fz1

∣∣∣
D0

2\I(û◦fz1 )
for all u ∈W.

Thus û ◦ fz1
∣∣∣
D0

2\I(û◦fz1 )
and hence, û ◦ fz1 is holomorphic on D0

2, because

codim I(û ◦ fz1) ≥ 2 and {z1} × (D0
2 \ I(û ◦ fz1)) ⊂ X \ S.

Since A0
2 is non-pluripolar, by [5, Theorem 2.2], the function f̂z1 is holomorphic on D0

2.

Similarly, f̂w1 is holomorphic on D0
1 = B(a, r) for w1 ∈ A0

2.

Proof of Theorem 5.1. From Proposition 5.2 there exists X0 ⊂ X such that f
∣∣
X0 is sepa-

rately holomorphic. In the case where A0
1 and A0

2 are locally pluriregular (then A0
1 = (A0

1)∗

and A0
2 = (A0

2)∗), by Quang and Dai [19, Theorem 4.5], the function f extends holomorphi-

cally to the neighbourhood X̂0 =
{

(z1, z2) ∈ D1 ×D2 : ω(z1, A
0
1, D

0
1) + ω(z2, A

0
2, D

0
2) < 1

}
of X0.

By Corollary 3.5, the function f extends holomorphically to an open neighbourhood

U∗ × G0
2 of {z∗} × A0

2 for all z∗ ∈ HA0
1

=
{
z ∈ A0

1 : z is a locally pluripolar point of A0
1

}
,

where U∗ ⊂ D0
1 and A0

2 ⊂ G0
2 ⊂ D0

2. Let E1 ⊂ A1 ∩U∗ be an arbitrary compact set. Then

by the hypothesis, for each z∗ ∈ A1 \ S1 the function u ◦ fz∗ is meromorphic on D2 for

all u ∈ W . Because f is holomorphic on U∗ × G0
2 by Lemma 3.7, f has a meromorphic

extension f̂ to a neighbourhood of HE1 × D2. That means for each relatively compact

domain D′2 ⊂ D2 with A2 ⊂ D′2 there exists a neighbourhood UE1 of HE1 such that f̂ is

meromorphic on UE1 ×D′2.

Now, we prove that

f̂
∣∣
[(A1\S1)∩UE1

]×D′2
= f

∣∣
[(A1\S1)∩UE1

]×D′2
.

Indeed, fix a w∗ ∈ A2 \ S2. The functions f̂w∗ and fw∗ are meromorphic on UHE1
⊂ D1

and coincide on the non-pluripolar set HE1 . By the unique theorem, f̂w∗ = fw∗ on UE1 .

Now, we fix z∗ ∈ (A1 ∩ UE1) \ S1. Then, the meromorphic functions f̂z∗ and fz∗ on D′2
coincide on the non-pluripolar set A2 \ S2. This implies that f̂z∗ = fz∗ on D′2. Since z∗ is

arbitrary we have

f̂ = f on [(A1 \ S1) ∩ UE1 ]×D′2.
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Thus, for each fix w∗ ∈ A2 \ S2 the function u ◦ f̂w∗ is meromorphic on D1 for all

u ∈ W . Again by Lemma 3.7, f̂ has a meromorphic extension f̃ on a neighbourhood of

D1 ×HA2 . That means for each relatively compact domain D′1 ⊂ D1 with A1 ⊂ D′1 there

exists a neighbourhood UA2 of HA2 such that f̃ is meromorphic on D′1 × UA2 .

Now, because f̃ is meromorphic on a neighbourhood of D1×HA2 , for each fix z∗ ∈ A1\
S1 the function u◦f̃z∗ is meromorphic onD2. Using the same argument as above, we deduce

that f̃ has a meromorphic extension (we use the same denote f̃) on a neighbourhood of

(D1 × HA2) ∪ (HA1 × D2). But, by locally pluriregularity of A1, A2 we have HA1 = A1

and HA2 = A2. Thus, the function f extends meromorphically to a neighbourhood of

(D1 ×A2) ∪ (A1 ×D2).

The theorem is proved.

Theorem 5.3. Let D be an open in Cn and A1, A2 be non-pluripolar compact sets in

D and Cm respectively. Let F be a sequentially complete locally convex space, W be a

separating subset of F ′ and f : X = X(A1, A2;D,Cm)→ F be a function such that

(i) for every a1 ∈ A1, fa1 ∈MW (D,F ),

(ii) for every a2 ∈ A2, fa2 ∈MW (Cm, F ).

Then f can be extended meromorphically to D × Cm.

Proof. Put

HA1 = {z ∈ A1 : A1 not thin at z} ∪
{
z ∈ A1 : A1 ∩B(z, r) is not pluripolar

}
and

HA2 = {w ∈ A2 : A2 not thin at w} ∪
{
w ∈ A2 : A2 ∩B(w, r) is not pluripolar

}
.

Since if A1 is locally pluriregular at z, then z is not thin for A1 and since every non-

pluripolar set contains a pluriregular point, it follows that A1\HA1 is pluripolar. Similarly,

A2 \HA2 is also pluripolar. Then by N. T. Van and Zeriahi [16] we have

Ĥ = D × Cm where H = (D ×HA2) ∪ (HA1 × Cm).

By the same argument as in the proof of Theorem 5.1, f can be extended to a meromorphic

function on a neighbourhood Z of H. Since Ẑ ⊃ Ĥ = D × Cm it follows that f has a

meromorphic extension on D × Cm.
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6. Cross theorems for (·,W )-meromorphic functions with pluripolar singularities

In this section we shall consider an extension of the cross theorem for separately mero-

morphic functions with pluripolar singularities of Jarnicki and Pflug in [10] to the case of

separately (·,W )-meromorphic functions.

In order to do that we need some results on the extension of separately (·,W )-

holomorphic functions.

First of all, we generalize the extension theorem for separately holomorphic functions

with singularities which was proved in [11] to separately (F,W )-holomorphic functions.

Theorem 6.1. Let Dj ⊂ Ckj be a pseudoconvex domain, let Aj ⊂ Dj be a locally

pluriregular set, kj ∈ N, j = 1, 2, and let U be an open neighbourhood of 2-fold cross

X := X(A1, A2;D1, D2). Let M ⊂ U be a relatively closed subset of U such that

Σ1 := Σ1(A1, A2;M) =
{
z2 ∈ A2 : M(·,z2) is not pluripolar

}
,

Σ2 := Σ2(A1, A2;M) =
{
z1 ∈ A1 : M(z1,·) is not pluripolar

}
are pluripolar. Put

X ′ := T(A1, A2;D1, D2; Σ1,Σ2) = X(A1 \ Σ2, A2 \ Σ1;D1, D2).

Let F be a sequentially complete locally convex space and let W ⊂ F ′ be a subspace which

determines boundedness in F .

Then there exists a relatively closed pluripolar subset M̂ ⊂ X̂ such that

(1) M̂ ∩X ′ ⊂M ;

(2) for every f ∈ HW,∞
s (X ′ \M,F ) there is exactly one f̂ ∈ H∞(X̂ \ M̂, F ) with f̂ = f

on X ′ \M ;

(3) M̂ is singular with respect to the family
{
f̂ : f ∈ HW,∞

s (X ′ \M,F )
}

;

(4) X̂ \ M̂ is a pseudoconvex domain.

Proof. For each z ∈ A1 \ Σ2 and w ∈ A2 \ Σ1 we write

D1 \M(·,w) =
⋃
α∈I

(D1 \M(·,w))α and D2 \M(z,·) =
⋃
β∈J

(D2 \M(z,·))β

where (D1 \M(·,w))α∈I and (D2 \M(z,·))β∈J are connected components of D1 \M(·,w) and

D2 \M(z,·) respectively.

For each z0 ∈ A1 \ Σ2 and w0 ∈ A2 \ Σ1 put

fz0(w) := f(z0, w) for all w ∈ D2,

fw0(z) := f(z, w0) for all z ∈ D1.
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By the hypothesis f ∈ HW,∞
s (X ′ \M,F ) for each z ∈ A1 \ Σ2 and w ∈ A2 \ Σ1 we have

u ◦ fz ∈ H∞(D2 \M(z,·)) and u ◦ fw ∈ H∞(D1 \M(·,w)).

Since Aj is locally pluriregular and Σi is pluripolar, the set Aj \ Σi (i, j = 1, 2, i 6= j)

is non-pluripolar, hence, is of uniqueness. Then, by [5, Theorem 2.2], for each z ∈ A1 \Σ2

and w ∈ A2 \ Σ1 we have

fz,β ∈ H∞((D2 \M(z,·))β, F ) and fw,α ∈ H∞((D1 \M(·,w))α, F )

for all α ∈ I and β ∈ J , where fz,β = fz
∣∣
(D2\M(z,·))β

and fw,α = fw
∣∣
(D1\M(·,w))α

. Because

(D1 \M(·,w))α and (D2 \M(z,·))β are connected components of D1 \M(·,w) and D2 \M(z,·)

respectively, the families {fz,β}β∈J and {fw,α}α∈I define functions

fz ∈ H∞(D2 \M(z,·), F ) and fw ∈ H∞(D1 \M(·,w), F )

respectively.

Now, let ϕ ∈ F ′ be an arbitrary continuous linear form on F . Consider the separately

holomorphic function

ϕ ◦ f : X ′ \M → C.

By a result of Jarnicki and Pflug [10, Theorem 1.1] there exists a relatively closed pluripolar

subset M̂ ⊂ X̂ ′ such that

(1) M̂ ∩X ′ ⊂M ;

(2’) there is exactly one ϕ̂ ◦ f ∈ H∞(X̂ ′ \ M̂) with ϕ̂ ◦ f = ϕ ◦ f on X ′ \M ;

(3’) M̂ is singular with respect to the family
{
ϕ̂ ◦ f : ϕ ◦ f ∈ HW,∞

s (X ′ \M)
}

;

(4) X̂ \ M̂ is a pseudoconvex domain.

Note that, since Σ1, Σ2 are pluripolar, we have X̂ ′ = X̂.

By the identity principle we can define the mapping

T : F ′bor → H(X̂ \ M̂),

given by

T (ϕ)(z) = ϕ̂ ◦ f(z), z ∈ X̂ \ M̂, ϕ ∈ F ′bor,

where F ′bor is F ′ equipped with the bornological topology associated with the strong

topology β.

By the uniqueness of extensions ϕ̂ ◦ f and by using the identity principle, it follows

that T is linear and has the closed graph. Hence, in view of the closed graph theorem of

Grothendieck [7, Introduction, Theoreme B] we derive that T is continuous.
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Now we can define the map f̂ : X̂ \ M̂ → [F ′bor]
′
β by the formula

f̂(z)(ϕ) = T (ϕ)(z), z ∈ X̂ \ M̂, ϕ ∈ F ′bor.

For each ϕ ∈ F ′bor we have

f̂(z)(ϕ) = T (ϕ)(z) = (ϕ̂ ◦ f)(z), z ∈ X̂ \ M̂

and hence, we deduce that f̂ : X̂ \ M̂ → [F ′bor]
′
β is holomorphic.

Since (ϕ ◦ f̂)(z) = f̂(z)(ϕ) = (ϕ̂ ◦ f)(z) = (ϕ ◦ f)(z) for all z ∈ X ′ \M and for all

ϕ ∈ F ′, we have f̂ = f on the non-pluripolar set X ′ \M . Thus, (2) is proved.

However, F is a closed subspace of [F ′bor]
′
β, by the identity principle it follows that

f̂ : X̂ \ M̂ → F is holomorphic.

Obviously, (3’) implies (3). The theorem is proved.

Theorem 6.2. Let Dj be a Riemann domain over Ckj , let Aj ⊂ Dj be a locally pluriregular

set, kj ∈ N, and let Σj ⊂ Σ0
j ⊂ Ai be such that Σ0

j is pluripolar, i, j = 1, 2, i 6= j. Consider

2-fold crosses

X := X(A1, A2;D1, D2),

T := T(A1, A2;D1, D2; Σ1,Σ2) = X(A1 \ Σ2, A2 \ Σ1;D1, D2),

T 0 := T(A1, A2;D1, D2; Σ0
1,Σ

0
2) = X(A1 \ Σ0

2, A2 \ Σ0
1;D1, D2)

and the center of T 0

c(T 0) := T 0 ∩A1 ×A2 = (A1 ×A2) \ (Σ0
2 × Σ0

1).

Let M ⊂ T be relatively closed satisfying

(a) for any a1 ∈ A1 \ Σ2, a2 ∈ A2 \ Σ1 the fibers M(a1,·), M(·,a2) are closed in D2 and

D1 respectively;

(b) for any a1 ∈ A1 \Σ0
2, a2 ∈ A2 \Σ0

1 the fibers M(a1,·), M(·,a2) are pluripolar in D2 and

D1 respectively.

Let F be a sequentially complete locally convex space and let W ⊂ F ′ be a subspace which

determines boundedness in F and let

f ∈

H
W,∞
s (X \M,F ) if Σ1 = Σ2 = ∅,

HW,∞,c
s (T \M,F ) otherwise.

Then there exist T ′ := T(A1, A2;D1, D2; Σ′1,Σ
′
2) with Σ0

j ⊂ Σ′j ⊂ Ai, Σ′j pluripolar, i, j =

1, 2 and a relatively closed pluripolar set M̂ ⊂ X̂ such that
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(1) M̂ ∩ (c(T 0) ∪ T ′) ⊂M ;

(2) there exists an f̂ ∈ H∞(X̂ \ M̂, F ) with f̂ = f on (c(T 0) ∪ T ′) \M ;

(3) f̂(X̂ \ M̂) ⊂ f(T \M).

Proof. It is sufficient to prove for the case HW,∞,c
s (T \M,F ) because the remain can be

proved in a similar way.

Because T 0 ⊂ T we can consider 0f := f
∣∣
T 0\M . By f ∈ HW,∞,c

s (T \M,F ), for each

ai ∈ Ai \ Σj (i 6= j), the functions u ◦ 0fa1 and u ◦ 0fa2 admit holomorphic extensions

f̂a1 ∈ H∞(D2 \M(a1,·)) and f̂a2 ∈ H∞(D1 \M(·,a2)) respectively. Since Σ0
i is pluripolar

and Aj is locally pluriregular (i, j = 1, 2), the sets Aj \ Σ0
i are non-pluripolar. Then,

by [5, Theorem 2.2] and similar arguments as in the proof of Theorem 6.1 the functions
0fa1 , 0fa2 admit (unique) holomorphic extensions f̂a1 ∈ H∞(D2 \M(a1,·), F ) and f̂a2 ∈
H∞(D1 \M(·,a2), F ) respectively. Thus, by the uniqueness of holomorphic extensions we

have

ϕ ◦ f ∈ HW,∞,c
s (T \M), ∀ϕ ∈ F ′.

Now, by [12, Theorem 10.2.9] there exist T ′ := T(A1, A2;D1, D2; Σ′1,Σ
′
2) with Σ0

j ⊂ Σ′j ⊂
Ai, Σ′j pluripolar, i, j = 1, 2, and a relatively closed pluripolar set M̂ ⊂ X̂ such that

(1) M̂ ∩ (c(T 0) ∪ T ′) ⊂M ;

(2’) there exists a ϕ̂ ◦ f ∈ H∞(X̂ \ M̂) with ϕ̂ ◦ f = ϕ ◦ f on (c(T 0) ∪ T ′) \M for all

ϕ ∈ F ′;

(3’) ϕ̂ ◦ f(X̂ \ M̂) ⊂ ϕ ◦ f(T \M).

By the identity principle we can define the mapping

T : F ′bor → H(X̂ \ M̂),

given by

T (ϕ)(z) = ϕ̂ ◦ f(z), z ∈ X̂ \ M̂, ϕ ∈ F ′bor,

where F ′bor is F ′ equipped with the bornological topology associated with the strong

topology β.

From now, the proof of (2) runs as in the last part in the proof of Theorem 6.1. Because

F ′ is separating, from (3’) we obtain (3).

From this theorem, as in [12] (see Theorem 10.2.9 implies Theorem 10.2.12) we get the

following.
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Theorem 6.3. Assume that Dj , Aj ,Σj ,Σ
0
j , X, T, T0 and function f are as in Theorem 6.2

where M ⊂ T is analytic in the sense that M = T ∩ S where S ⊂ U is an analytic subset

of an open neighbourhood U ⊂ X̂ of T with codimS ≥ 1. Then there exist an analytic set

M̂ ⊂ X̂ and an open neighbourhood U0 ⊂ U of T such that

(1) M̂ ∩ U0 ⊂ S;

(2) there exists an f̂ ∈ H∞(X̂ \ M̂, F ) with f̂ = f on T \M ;

(3) M̂ is singular with respect to f ;

(4) if U = X̂ then M̂ is the union of all one codimensional components of S;

(5) f̂(X̂ \ M̂) ⊂ f(T \M).

Now we prove the cross theorem for separately (·,W )-meromorphic functions with

pluripolar singularities.

Theorem 6.4. Let Aj , Dj , X,M, M̂ and F,W be as in Theorem 6.1. Let S ⊂ X \M be

relatively closed and let f : (X \M)\S → F be a separately (F,W )-meromorphic function

on X \M , (i.e., f ∈MW
s (X \M,F )) such that

Σ1(S) := Σ1(A1, A2;S) =
{
z2 ∈ A2 : S(·,z2) is not pluripolar

}
,

Σ2(S) := Σ2(A1, A2;S) =
{
z1 ∈ A1 : S(z1,·) is not pluripolar

}
are pluripolar. Put Qf = M ∪ S. Then there exists exactly one f̂ ∈ M(X̂ \ M̂, F ) such

that

(i) f̂ ∈ H(X̂ \ Q̂f , F ), where the set Q̂f is constructed via Theorem 6.1 (in the same

way as M̂ for M), (note that M̂ ⊂ Q̂f );

(ii) f̂ = f on X ′f \Qf , where

X ′f := T(A1, A2;D1, D2; Σ1(Qf ),Σ2(Qf )).

Proof. Fix a function f ∈ MW
s (X \ M,F ) ∩ HW

s (X \ Qf , F ). By Theorem 6.1 there

exists exactly one f̂ ∈ H(X̂ \ Q̂f , F ) with f̂ = f on X ′f \ Qf . It remains to prove that

f̂ ∈M(X̂ \ M̂, F ).

By Theorem 6.3 it is sufficient to prove that f̂ ∈M(Ω\M̂, F ) where Ω ⊂ X̂ is an open

neighbourhood of X ′f . Consequently, by virtue of Theorem 4.4 the function f̂ extends to

X̂ \ M̂ .

Fix a1 ∈ A1 \ Σ2(Qf ). Take a2 ∈ D2 \ (Qf )(a1,·) and let r > 0 be such that ∆r(a) ⊂
X̂ \Q̂f , where a = (a1, a2). Take a D′2 ⊂ D2 \M̂(a1,·). We may assume that ∆r(a1)×D′2 ⊂
X̂ \M̂ and ∆r(a2) ⊂ D′2. By the Rothstein theorem (Theorem 3.1) with A := A1∩∆r(a1)

we get an open set Ωa ⊃ A×D′2 such that f̂ extends meromorphically to Ωa. The proof

of Theorem 6.4 is complete.
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Math. Soc. 16 (1955), 140 pp. http://dx.doi.org/10.1090/memo/0016

[8] L. M. Hai, N. V. Khue and N. T. Nga, Weak meromorphic functions, Colloq. Math.

64 (1993), 65–70.

[9] A. Hirschowitz, Prolongement analytique en dimension infinie, Ann. Inst. Fourier 22

(1972), no. 2, 255–292. http://dx.doi.org/10.5802/aif.419

[10] M. Jarnicki and P. Pflug, An extension theorem for separately meromorphic functions

with pluripolar singularities, Kyushu J. Math. 57 (2003), no. 2, 291–302.

http://dx.doi.org/10.2206/kyushujm.57.291

[11] , An extension theorem for separately holomorphic functions with pluripolar

singularities, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1251–1267.

http://dx.doi.org/10.1090/S0002-9947-02-03193-8

[12] , Separately Analytic Functions, EMS Tracts in Mathematics 16, European
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Alex Meril ed., Editor, Renne, (1991), 183–194.
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