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First Eigenvalue of Nonsingular Mixed Unicyclic Graphs with Fixed Number

of Branch Vertices

Chen Ouyang and Bo Zhou*

Abstract. Mixed graphs are graphs whose edges may be directed or undirected. The

first eigenvalue of a mixed graph is the least nonzero eigenvalue of its Laplacian ma-

trix. We determine the unique mixed graphs with minimum first eigenvalue over all

nonsingular mixed unicyclic graphs with fixed number of branch vertices, and the

unique graph with minimum least signless Laplacian eigenvalue over all nonbipartite

unicyclic graphs with fixed number of branch vertices.

1. Introduction

A mixed graph is a graph whose edges may be directed or undirected. This concept

generalizes both the classical approach of orienting all edges and the unoriented approach,

see, e.g., [2, 10]. Let G be a mixed graph with vertex set V (G) = {v1, . . . , vn} and

edge set E(G). Then G is obtainable from an undirected graph by assigning arbitrary

orientations (two possible directions) to some of its edges. This undirected graph is called

the underlying graph of G, denoted by G̃. For e ∈ E(G), the sign of e, denoted by

sgnG(e) (or sgn(e) simply), is defined as sgnG(e) = −1 if e is oriented and sgnG(e) = 1

otherwise. The adjacency matrix A(G) of G is defined as the n×n matrix (aij) such that

aij = sgn(vi, vj) if (vi, vj) ∈ E(G), and aij = 0 otherwise. For each v ∈ V (G), the degree

of v in G, denoted by dG(v) (or d(v) simply), is the number of neighbors of v in G̃. The

matrix L(G) = A(G) + D(G) is the Laplacian matrix of G, where D(G) is the degree

diagonal matrix of G whose diagonal entries are vertex degrees of G.

Since L(G) is symmetric and positive semi-definite, the eigenvalues of L(G) are all

nonnegative real numbers. The first eigenvalue of G is the least nonzero eigenvalue of

L(G), denoted by λ(G).

Let
−→
G be the all-oriented graph obtained from G by assigning to each unoriented edge

of G an arbitrary orientation. Note that L(
−→
G) is the classical Laplacian matrix of G̃.
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A mixed graph G is singular (or nonsingular) if L(G) is singular (or nonsingular). A

cycle is nonsingular if and only if it has odd number of unoriented edges, see [1, Lemma 1].

A signature matrix is a diagonal matrix with ±1 along its diagonal. Let S be a

signature matrix of order n. Then STL(G)S is the Laplacian matrix of a mixed graph,

denoted by SG, which has the same underlying graph with G. Obviously, L(G) and L(SG)

have the same spectrum and the singularity of each cycle in G and SG is unchanged.

Lemma 1.1. [1,15] Let G be a connected mixed graph. Then the following statements are

equivalent:

(a) G is singular;

(b) G does not contain a nonsingular cycle;

(c) there exists a signature matrix S such that STL(G)S = L(
−→
G).

Suppose G is connected. If G is singular, then by Lemma 1.1, L(G) and L(
−→
G) have the

same spectrum, and hence the first eigenvalue of G is equal to the algebraic connectivity of

G̃ [8]. Suppose that G is nonsingular. By Lemma 1.1, G contains at least one nonsingular

cycle, and thus G has a spanning nonsingular unicyclic subgraph. Therefore, it is natural

to study the first eigenvalue of a nonsingular mixed unicylic graph.

Fan [5] studied the problems on minimizing and maximizing the first eigenvalue over

all nonsingular mixed unicyclic graphs with fixed girth. Up to a signature matrix, Fan et

al. [7] determined the unique graphs with minimum first eigenvalue over all nonsingular

mixed unicyclic graphs with fixed girth. Liu et al. [13] considered the same question for

mixed graphs with fixed number of pendant vertices, and determined the unique graph

with the minimum first eigenvalue. More results on the eigenvalues of L(G) and related

topics may be found in [4, 6, 12,15].

An ordinary graph G is a mixed graph with no edge oriented. In this case, L(G) is just

the signless Laplacian matrix of G = G̃, and λ(G) is the least signless Laplacian eigenvalue

of G if G is a connected non-bipartite graph [3]. Let G be a connected non-bipartite graph

on n ≥ 3 vertices. Cardoso et al. [3] showed that the minimum value of λ(G) is attained

solely by the unicyclic graph obtained from a triangle by attaching a path at one of its

terminal vertices.

A vertex of a graph is a branch vertex (or branching vertex) if its degree is at least

three. The branch vertices are often used to analyze graph structures. A tree with at

most one branch vertex is called a spider [11]. The problem of generating spanning trees

with minimum number of branch vertices was introduced by Gargano et al. [9] and has

been studied over the past decade, see, e.g. [14].

In this paper, we determine in Theorem 3.7 the unique mixed graphs (up to a signature

matrix) with minimum first eigenvalue in the class of all nonsingular mixed unicyclic
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graphs with n ≥ 5 vertices and k branch vertices for k = 1, . . . , bn2 c. We determine in

Corollary 3.8 the unique graph with minimum least signless Laplacian eigenvalue in the

class of all nonbipartite unicyclic graphs with n ≥ 5 vertices and k branch vertices for

k = 1, . . . , bn2 c.

2. Preliminaries

Let G be a mixed graph with V (G) = {v1, . . . , vn}. For v ∈ V (G), let NG(v) be the set of

neighbors of v in G. A first eigenvector of G is an eigenvector of L(G) corresponding to

λ(G). A column vector x = (xv1 , . . . , xvn)> ∈ Rn can be considered as a function defined

on V (G) which maps vertex vi to xvi , i.e., x(vi) = xvi for i = 1, . . . , n. One can find that

xTL(G)x =
∑

(u,v)∈E(G)

(xu + sgn(u, v)xv)
2,

and λ is an eigenvalue of G with eigenvector x if and only if x 6= 0 and

(λ− dG(v))xv =
∑

u∈NG(v)

sgn(u, v)xu,

which is called the eigenequation (of G) at v. Moreover, if G is nonsingular, then for a

nonzero vector x ∈ Rn,

λ(G) ≤ xTL(G)x

xTx

with equality if and only if x is a first eigenvector of G.

Let U be the set of mixed unicyclic graphs with all edges oriented except an (arbitrary)

edge on the (unique) cycle. By Lemma 1.1 and [1, Lemma 1], a mixed unicyclic graph

with unique cycle C is nonsingular if and only if C has odd number of unoriented edges.

Thus each mixed unicyclic graph in U is nonsingular.

Lemma 2.1. [5] Let G be a connected mixed graph and G0 a spanning nonsingular uni-

cyclic subgraph of G. Then there exists a signature matrix S such that STL(G)S = L(SG)

and SG0 ∈ U .

By Lemma 2.1, to study the spectrum of L(G) for a nonsingular unicyclic graph G, it

suffices to study the spectrum of L(SG) with SG ∈ U .

Lemma 2.2. [7] Let G ∈ U and let x be a first eigenvector of G. Then there exists a

signature matrix S such that SG ∈ U and Sx is a nonnegative first eigenvector of SG.

A path which starts from w in a mixed graph is a path from w to some other vertex.

Lemma 2.3. [5, 7] Let G be a mixed graph in U with n vertices and let x ∈ Rn be a first

eigenvector of G. Then the following statements are true:
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(i) There exists a vertex u on the cycle of G such that xu 6= 0;

(ii) There exists at most one vertex v on the cycle of G such that xv = 0;

(iii) For each vertex w on the cycle with d(w) ≥ 3, every path P which starts from w and

contains no vertices of the cycle except w has the property that the entries of x at

the vertices of P form an increasing (decreasing, zero, respectively) sequence along

this path if xw > 0 (xw < 0, xw = 0, respectively).

Let In be the unit matrix of order n.

Lemma 2.4. Let G,G′ ∈ U with G̃ = G̃′ and let x be a first eigenvector of G. Suppose

that (v1, vg) is the unique unoriented edge of G′. Then there exists a signature matrix S

such that L(G′) = L(SG) and (Sx)v1 = xv1.

Proof. Let V (G) = V (G′) = {v1, . . . , vn} and Cg = v1 · · · vgv1 be the unique cycle of

G. If (v1, vg) is also the unique unoriented edge of G, then L(G′) = L(G) = L(SG) for

S = In. Suppose that (vi, vi+1) is the unique unoriented edge of G, where 1 ≤ i ≤ g − 1.

Let G1 and G2 be the two components of G − (v1, vg) − (vi, vi+1) with v1 ∈ V (G1). Let

S = diag(sv1 , . . . , svn) such that sv = 1 if v ∈ V (G1) and sv = −1 if v ∈ V (G2). Since

L(SG) = STL(G)S, we have sgnSG(u, v) = susv sgnG(u, v). Then

sgnSG(v1, vg) = sv1svg sgnG(v1, vg) = 1 = sgnG′(v1, vg),

sgnSG(vi, vi+1) = svisvi+1 sgnG(vi, vi+1) = −1 = sgnG′(vi, vi+1),

and for (u, v) ∈ E(G1) ∪ E(G2),

sgnSG(u, v) = susv sgnG(u, v) = −1 = sgnG′(u, v).

Thus L(G′) = L(SG). Since Sv1v1 = 1, we have (Sx)v1 = xv1 .

For vertex-disjoint nontrivial connected mixed graphs G1 and G2 with u ∈ V (G1) and

v ∈ V (G2), G1uvG2 be the mixed graph obtained from G1 and G2 by identifying u and v.

Lemma 2.5. [13] Let G1 and G2 be two vertex-disjoint mixed graphs, where G1 ∈ U
with u, v ∈ V (G1), and G2 is an all-oriented nontrivial tree with w ∈ V (G2). Let G

(G′, respectively) be the mixed graph obtained from G1 and G2 by identifying vertex u

(v, respectively) in G1 with vertex w in G2, see Figure 2.1. Let x be a nonnegative first

eigenvector of G. If xu ≤ xv, then

λ(G) ≥ λ(G′)

with equality if and only if xu = xv and dG2(w)xw =
∑

z∈NG2
(w) xz.



First Eigenvalue of Nonsingular Mixed Unicyclic Graphs with Fixed Number of Branch Vertices 983

&%
'$su sv

G1��
��

wG2

G

&%
'$su sv

G1 ��
��
w G2

G′

Figure 2.1: The mixed graphs G and G′ in Lemma 2.5.

For mixed graphs G and G′ in Lemma 2.5, we say that G′ is obtained from G by

moving G2 from u to v.

3. Mixed graphs minimizing the first eigenvalue

For a signature matrix S and a mixed graph G, S̃G = G̃, and thus a vertex in SG and G

have the same degree.

Let UM(n, k) be the set of nonsingular mixed unicyclic graphs of order n with k

branch vertices, where n ≥ 4 and 1 ≤ k ≤ bn2 c. Let G be a mixed graph in UM(n, k) with

minimum first eigenvalue. Let UM(n, k) = UM(n, k) ∩ U . By Lemmas 2.1 and 2.2, up

to a signature matrix, we may assume that G ∈ U and that x is a unit nonnegative first

eigenvector of G. Then G ∈ UM(n, k).

It is shown in [5] that λ(G) ≤ 3
n , and thus λ(G) < 1, which will be used in our proof.

Let Cg = v1 · · · vgv1 be the unique cycle of G. For v ∈ V (G), let d(v, Cg) be the

length of a shortest path connecting v and some vertex on Cg. Note that d(v, Cg) = 0 if

v ∈ V (Cg).

A pendant path of G is a path, in which one terminal vertex is a branch vertex, the

other terminal vertex is a pendant vertex, and each internal vertex (if any exists) is of

degree two in G.

Lemma 3.1. For i = 1, . . . , g, let Ti be the component of G−E(Cg) containing vi. Suppose

that xvi = 0 for some i. Then

(i) Ti ∼= K1, or

(ii) Ti ∼= K2 and all vertices on the cycle are branch vertices.

Proof. Suppose that Ti � K1. We need only to show that Ti ∼= K2 and all vertices on the

cycle are branch vertices.

Obviously, vi is a branch vertex. By Lemma 2.3(ii), for each vj ∈ V (Cg) with j 6= i, we

have xvj > 0 = xvi . Suppose that vj is not a branch vertex for some j 6= i. Let G′ be the

mixed graph obtained from G by moving Ti from vi to vj . Obviously, G′ ∈ UM(n, k). By

Lemma 2.5, λ(G′) < λ(G), a contradiction. Thus each vj with j 6= i is a branch vertex.



984 Chen Ouyang and Bo Zhou

Suppose that Ti is not a star with center vi. Then there exists a vertex w ∈ V (Ti) ∩
N(vi) such that d(w) ≥ 2. Let Tw be the component of G− (vi, w) containing w. Let G′′

be the mixed graph obtained from G by moving Tw from w to a pendant vertex v in some

Tj with j 6= i. Obviously, G′′ ∈ UM(n, k). By Lemma 2.3(iii), xv > xvj > 0 = xvi = xw

for j 6= i. By Lemma 2.5, λ(G′′) < λ(G), a contradiction. Thus Ti is a star with center

vi. Now suppose that Ti � K2. Then there are at least two distinct pendant vertices

at vi. Let z be one such pendant vertex. Let G∗ be the mixed graph obtained from G

by removing (vi, z) and adding (vj , z) for some j 6= i. Obviously, G∗ ∈ UM(n, k). By

Lemma 2.5, λ(G∗) < λ(G), a contradiction. It follows that Ti ∼= K2.

Lemma 3.2. The degree of each branch vertex in G is three.

Proof. Suppose that v ∈ V (G) with dG(v) ≥ 4. Let Tv be the component of G − E(Cg)

containing v, and w′ a pendant vertex of Tv. One can easily find a path P connecting w′

and v in Tv, and a vertex w ∈ N(v)\V (P ) such that d(w,Cg) > d(v, Cg). Suppose without

loss of generality that d(w,Cg) = d(w, vi). By Lemma 3.1, xvi > 0. By Lemma 2.3(iii),

x′w > xv > 0. Let G′ = G − (v, w) + (w′, w) with (w′, w) being oriented. Obviously,

G′ ∈ UM(n, k). By Lemma 2.5, λ(G′) < λ(G), a contradiction.

Lemma 3.3. If there are branch vertices outside the cycle, then all the branch vertices

outside the cycle lie on a path which contains a unique vertex on the cycle as a terminal

vertex, and they induce a path.

Proof. Let u and v be two distinct branch vertices not on the cycle of G. By Lemmas 3.1

and 2.3(iii), xu, xv > 0. Suppose without loss of generality that xu ≥ xv. Let v′ ∈ NG(v)

with d(v′, Cg) < d(v, Cg), and Tv be the component of G− v′ containing v.

Suppose that u /∈ V (Tv). Let P = u · · ·w be a shortest path connecting u and a

pendant vertex w (not passing v) such that d(z, Cg) > d(u,Cg) for z ∈ V (P ) \ {u}. By

Lemma 2.3(iii), xw > xu ≥ xv. Let G′ be the mixed graph obtained from G by moving Tv

from v to w. Obviously, G′ ∈ UM(n, k). By Lemma 2.5, λ(G′) < λ(G), a contradiction.

It follows that u ∈ V (Tv). Let u1, . . . , us be all the branch vertices outside the cycle such

that xu1 ≤ · · · ≤ xus . Then u1, . . . , us lie on a path P which contains a unique vertex, say

w on the cycle as a terminal vertex such that d(w, ui) < d(w, ui+1) for i = 1, . . . , s − 1.

By Lemma 3.2, all these vertices are of degree 3. Suppose that they do not induce a path.

Then for some i with i = 1, . . . , s−1, the neighbor z of ui in the sub-path of P between ui

and ui+1 is of degree 2. Let G′′ be the mixed graph obtained from G by moving a pendant

path from ui to z. Obviously, G′′ ∈ UM(n, k). By Lemmas 3.1 and 2.3(iii), xz > xui > 0.

By Lemma 2.5, λ(G′′) < λ(G), a contradiction. Thus all these branch vertices induce a

path.
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Lemma 3.4. For k ≥ 2, each pendant path is of length one in G.

Proof. Suppose that Q = uw1w2 · · ·wt is a pendant path with length at least two, where

d(u) = 3 and t ≥ 2. Let v be another branch vertex and v · · · z a pendant path with z being

a pendant vertex, where z 6= wt. Let G′ be the mixed graph obtained from G by deleting

(wt−1, wt) and adding an oriented edge (z, wt). Let G′′ be the mixed graph obtained

from G by moving the path v · · · z from v to wt−1. Obviously, G′, G′′ ∈ UM(n, k). If

xwt−1 ≤ xv, then by Lemma 2.3(iii), xz > xwt−1 , and thus by Lemma 2.5, λ(G′) < λ(G), a

contradiction. If xwt−1 > xv, then by Lemma 2.5, λ(G′′) < λ(G), also a contradiction.

Lemma 3.5. Suppose that k ≥ 3 and there is at least one branch vertex outside the cycle.

If there are at least two branch vertices on the cycle, then no vertex outside the cycle is of

degree 2.

Proof. Let u and v be two branch vertices on the cycle. By contradiction, suppose that w1

is a vertex of degree 2 outside Cg such that d(w1, Cg) is as small as possible. By Lemma 3.3,

there is exactly one path P of length at least 2, which contains all branch vertices outside

Cg and a unique vertex, say v on Cg as a terminal vertex. By Lemma 3.4, w1 ∈ V (P ),

and (v, w1) ∈ E(G). Let P = vw1 · · ·wl, where wl is a pendant vertex. Let u′ be the

pendant neighbor of u. Let G′ = G − (w1, w2) + (u,w2) and G′′ = G − (u, u′) + (u′, w1)

with (u,w2) and (u′, w1) being oriented in G′ and G′′, respectively. Obviously, G′, G′′ ∈
UM(n, k). If xu > xw1 , then by Lemma 2.5, λ(G′) < λ(G), a contradiction. If xu < xw1 ,

then by Lemma 2.5, λ(G′′) < λ(G), also a contradiction. Suppose that xu = xw1 . By

Lemma 2.3(i), xu > 0, and thus by Lemma 2.3(iii), xu < xu′ . By Lemma 2.5, λ(G′′) <

λ(G), a contradiction.

Lemma 3.6. g = 3.

Proof. Suppose that g ≥ 4.

Let Ti be the component of G − E(Cg) containing vi for i = 1, . . . , g. If there are

branch vertices outside the cycle, then by Lemma 3.3, all these branch vertices lie on a

path which contains a unique vertex, say v1 on the cycle as a terminal vertex, and they

induce a path.

For any i and j with i 6= j such that d(vi) > d(vj) = 2, we have xvi > xvj . Otherwise,

xvi ≤ xvj . Let G∗ be the mixed graph obtained from G by moving Ti from vi to vj .

Obviously, G∗ ∈ UM(n, k). By Lemma 2.5, λ(G∗) < λ(G), a contradiction.

Case 1. v1 is the only branch vertex on the cycle.

For i 6= 1, xv1 > xvi ≥ 0. Note that λ(G) < 1. If (v1, v2) is unoriented, then by

eigenequation at v2, we have xv2 =
xv1−xv3
λ(G)−2 < 0, a contradiction. Thus (v1, v2) is oriented.

Similarly, (v1, vg) is oriented.
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Suppose without loss of generality that xvg ≤ xv2 . Let G′ = G − (v1, vg) + (v2, vg),

where (v2, vg) is oriented. Obviously, G′ ∈ UM(n, k) with girth g − 1. Then

λ(G)− λ(G′) ≥ xTL(G)x− xTL(G′)x = (xv1 − xvg)2 − (xv2 − xvg)2

= (xv1 + xv2 − 2xvg)(xv1 − xv2) > 0,

a contradiction. Hence g = 3.

Case 2. There are at least two branch vertices and at least one vertex of degree 2 on the

cycle.

There exist branch vertices u and v and a path Q = uw1 · · ·wtv in the cycle such that

d(wi) = 2 for i = 1, . . . , t, where t ≥ 1. Then xv > xwi .

Suppose that Q is all-oriented. Suppose without loss of generality that xu ≥ xv. If

(u, v) ∈ E(G), then by letting G′ = G− (u, v) + (v, w1) with (v, w1) being unoriented, we

have G′ ∈ UM(n, k) with girth g − 1, and

λ(G)− λ(G′) ≥ xTL(G)x− xTL(G′)x = (xu + xv)
2 − (xv + xw1)2

= (xu + 2xv + xw1)(xu − xw1) > 0,

a contradiction. If (u, v) /∈ E(G), then by letting G′′ = G − (u,w1) + (u, v) with (u, v)

being oriented, we have G′′ ∈ UM(n, k) with girth g − t for g − t ≥ 3, and

λ(G)− λ(G′′) ≥ xTL(G)x− xTL(G′′)x = (xu − xw1)2 − (xu − xv)2

= (2xu − xv − xw1)(xv − xw1) > 0,

a contradiction.

Suppose that Q has an unoriented edge. If there exists a vertex of degree 2 outside Q

on the cycle, then we may find another path connecting two branch vertices in the cycle

with all internal vertices of degree 2 such that the edges of this path are all-oriented and

thus by similar argument as above, we arrive at a contradiction.

Now suppose that each vertex on the cycle but not on Q is branch vertex. Suppose

first that t ≥ 2. If (u,w1) is unoriented, then by the eigenequation at w1, we have

xw1 =
xu−xw2
λ(G)−2 < 0, a contradiction. Thus (u,w1) is oriented.

Let v′ /∈ V (Cg) be a neighbor of v, and let G′ = G− (u,w1) + (v, w1)− (v, v′) + (u, v′),

where (v, w1) and (u, v′) are oriented. Obviously, G′ ∈ UM(n, k) with girth t + 1 for

3 ≤ t+ 1 < g. By Lemma 2.3(iii), xv′ > xv > xw1 . We have

λ(G)− λ(G′) ≥ xTL(G)x− xTL(G′)x

= (xu − xw1)2 − (xv − xw1)2 + (xv′ − xv)2 − (xv′ − xu)2

= (xu + xv − 2xw1)(xu − xv) + (2xv′ − xu − xv)(xu − xv)

= (2xv′ − 2xw1)(xu − xv)

≥ 0.
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If λ(G) = λ(G′), then xu = xv and x is also a first eigenvector of G′. But by applying

Lemma 2.3(iii) to G′, we have xv > xu. Thus λ(G) > λ(G′), a contradiction.

Next suppose that t = 1. Then v has a branch neighbor w different from u. Let w′

be the neighbor of w outside the cycle. Then xw > xw1 ≥ 0, and thus by Lemma 2.3(iii),

xw′ > xw. Since Q = uw1v has an unoriented edge, we have sgn(v, w1) = − sgn(u,w1),

and by the eigenequation at w1, sgn(u,w1)(xu − xv) = (λ(G) − 2)xw1 ≤ 0. If xu > xv,

then sgn(u,w1) = −1, and thus (u,w1) is oriented. If xu = xv, then one of (u,w1), (w1, v),

say (u,w1) is oriented.

Let u′ be a neighbor of u outside the cycle. By Lemma 2.3(iii), xu′ > xu ≥ xv. If

xw < xu, then by letting G′ = G − (u,w1) + (w,w1) − (w,w′) + (u,w′) with (w,w1) and

(u,w′) being oriented, we have G′ ∈ UM(n, k) with girth 3, and

λ(G)− λ(G′) ≥ xTL(G)x− xTL(G′)x = (xu − xw)(2xw′ − 2xw1) > 0,

a contradiction.

Suppose that xw ≥ xu. Let G′ = G− (v, w) + (u, v)− (u, u′) + (u′, w) with (u, v) and

(u′, w) being oriented. Then G′ ∈ UM(n, k) with girth 3, and

λ(G)− λ(G′) ≥ xTL(G)x− xTL(G′)x = (xw − xu)(2xu′ − 2xv) ≥ 0.

If λ(G) = λ(G′), then xw = xu and x is also a first eigenvector of G′. But by applying

Lemma 2.3(iii) to G′, we have xw > xu. It follows that λ(G) > λ(G′), also a contradiction.

Thus g = 3.

Case 3. Each vertex on the cycle is a branch vertex.

By our choice of v1 and by Lemma 3.4, Ti ∼= K2 for i 6= 1. For i = 2, . . . , g, let ui be

the unique pendant neighbor of vi. Let λ = λ(G).

Subcase 3.1. T1 � K2.

Suppose that λ is not a simple eigenvalue. We may find two linearly independent first

eigenvectors x′ and x′′ of G. If T1 � K2, then for the first eigenvector x∗ = x′′v1x
′ − x′v1x

′′,

x∗v1 = 0, which, together with Lemma 2.2, implies that for some signature matrix S, the

nonnegative first eigenvector Sx∗ have zero entry at v1, a contradiction to Lemma 3.1.

Thus λ is simple.

Since T1 � K2, we have by Lemma 3.1 that xv1 > 0. Let G′ be a mixed graph in U such

that G̃′ = G̃ and (v1, vg) is the unique unoriented edge of G′. Obviously, G′ ∈ UM(n, k).

By Lemma 2.4, there exists a signature matrix S such that L(G′) = L(SG). Let x′ = Sx.

Then x′v1 > 0 and it is easy to see that x′ is a first eigenvector of G′.

Define y ∈ Rn as yvi = −x′vg+2−i
, yui = −x′ug+2−i

for i = 2, . . . , g, and yv = x′v
otherwise. It is easy to check by the eigenequations that y is a first eigenvector of G′.

Since L(G′) = L(SG) = STL(G)S, λ is also a simple first eigenvalue of L(G′), and thus

y = x′. Then x′vi = −x′vg+2−i
, which implies that x′ 6= x and thus S 6= In.
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By the eigenequations at v1 and u2 of SG, we have

(λ− 3)x′v1 = −x′v2 + x′vg − x
′
u1 and (λ− 1)x′u2 = −x′v2 .

Let a = x′v2 = −x′vg and b =
x′u1
x′v1

. Note that x′v1 > 0 and S 6= In. By the argument

of Lemma 2.4, we have Svgvg = −1, which implies that a = −x′vg = xvg ≥ 0. By

Lemma 2.3(ii) and (iii), a > 0 and b > 1. Then x′v1 = 2a
3−λ−b > 0 and thus 3− λ− b > 0.

Let G′′ = G′ − (v1, vg) + (v2, vg)− (u2, v2) + (u2, v1), where (v2, vg) is unoriented and

(u2, v1) is oriented. Obviously, G′′ ∈ UM(n, k) with girth g − 1. We have

λ− λ(G′′) ≥ x′TL(G′)x′ − x′TL(G′′)x′

= (x′v1 + x′vg)2 − (x′v2 + x′vg)2 + (x′u2 − x
′
v2)2 − (x′u2 − x

′
v1)2

= (x′v1 − a)2 +

(
a

1− λ
− a
)2

−
(

a

1− λ
− x′v1

)2

= 2a(x′v1 − a)
λ

1− λ

= 2a

(
2a

3− λ− b
− a
)

λ

1− λ

= 2λa2
(b+ λ− 1)

(1− λ)(3− λ− b)
> 0,

a contradiction. Thus g = 3.

Subcase 3.2. T1 ∼= K2.

Let u1 be the unique pendant neighbor of v1. Considering the symmetry of G̃, we may

assume that (v1, vg) is the unique unoriented edge of G. Define y ∈ Rn as yvi = xvg+1−i

and yui = xug+1−i for i = 1, . . . , g. It is easy to check that y is a first eigenvectors of G.

Let z = x + y. Then z is also a first eigenvector of G and for each i, zvi = xvi + yvi =

yvg+1−i + xvg+1−i = zvg+1−i .

Let G′ = G − (v1, v2) + (v1, vg−1) − (ug−1, vg−1) + (ug−1, v2), where (v1, vg−1) and

(ug−1, v2) are oriented. Then G′ ∈ UM(n, k) with girth 3. Since zv2 = zvg−1 , we have

λ− λ(G′) ≥ zTL(G)z − zTL(G′)z

= (zv1 − zv2)2 − (zv1 − zvg−1)2 + (zug−1 − zvg−1)2 − (zug−1 − zv2)2

= 0,

and equality implies that z is also a first eigenvector of G′. This is impossible, because

applying Lemma 2.3(iii) to G′, we have zvg−1 < zv2 . Hence λ > λ(G′), a contradiction.

Thus g = 3.
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For k = 1, . . . , bn2 c, let ∆k
n be a mixed graph in UM(n, k) such that the underlying

graph ∆̃k
n is an n-vertex unicyclic graph with girth 3 and k branch vertices (all of degree

three) as displayed in Figure 3.1.

1 ≤ k ≤ n
2
− 1

@
@
�
�

s sssppppsss ss ppppss s


k − 1
branch
vertices

k = n−1
2

with odd n ≥ 5

@
@
�
�

s ss�
�s
ss ss ppppss
s


k − 2
branch
vertices

k = n
2

with even n ≥ 6

@
@
�
�

s ss @@s�
�s
ss ss ppppss
s


k − 3
branch
vertices

Figure 3.1: The graph ∆̃k
n, where (n, k) = (4, 1), or n ≥ 5 and 1 ≤ k ≤ bn

2
c.

Theorem 3.7. Let G ∈ UM(n, k), where (n, k) = (4, 1), or n ≥ 5 and 1 ≤ k ≤ bn2 c.
Then λ(G) ≥ λ(∆k

n) with equality if and only if, up to a signature matrix, G ∼= ∆k
n.

Proof. Let G be a mixed graph in UM(n, k) with minimum first eigenvalue. By the

discussion at the beginning of Section 3, up to a signature matrix, G ∈ UM(n, k), and by

Lemmas 3.2–3.6, we have:

(i) the degree of each branch vertex is 3;

(ii) all branch vertices outside Cg (if any exists) induce a path;

(iii) for k ≥ 2, the length of each pendant path is 1;

(iv) for k ≥ 3, if there is at least one branch vertex outside Cg, and there is at least 2

branch vertices on the cycle, then no vertex outside Cg is of degree 2;

(v) the girth G is 3.

From (i), (ii) and (iii), we find that besides k branch vertices of degree 3, G has k pendant

vertices and n−2k vertices of degree 2. If k = 1, then from (i) and (v), the only one branch

vertex is of degree 3 and the length of the unique cycle is 3, and thus, up to a signature

matrix, G ∼= ∆1
n. If k ≥ 2, then by considering the number of vertices of degree 2, and

from (i)–(v), up to a signature matrix, G ∼= ∆k
n.

Recall that for a connected nonbipartite graph G on n ≥ 3 vertices, λ(G) ≥ λ(∆̃1
n)

with equality if and only if G ∼= ∆̃1
n, see [3].
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Corollary 3.8. Let G be a nonbipartite unicyclic graph with n vertices and k branch

vertices, where (n, k) = (4, 1), or n ≥ 5 and 1 ≤ k ≤ bn2 c. Then λn(G) ≥ λn(∆̃k
n) with

equality if and only if G ∼= ∆̃k
n.

Proof. By Lemma 1.1, G and ∆̃k
n are nonsingular mixed graphs. By Lemma 2.1, there

exist signature matrices S1, S2 such that S1G, S2∆̃k
n ∈ UM(n, k). By Theorem 3.7, we

have λ(G) = λ(S1G) ≥ λ(∆k
n) = λ(∆̃k

n) with equality if and only if S1G ∼= S2∆̃k
n, i.e.,

G ∼= ∆̃k
n.
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