TAIWANESE JOURNAL OF MATHEMATICS

Vol. 20, No. 3, pp. 545-551, June 2016

DOI: 10.11650/tjm.20.2016.6812

This paper is available online at http://journal.tms.org.tw

On the r-th Root Partition Function

Ya-Li Li and Yong-Gao Chen*

Abstract. The well known partition function p(n) has a long research history, where p(n) denotes the number of solutions of the equation $n = a_1 + \cdots + a_k$ with integers $1 \le a_1 \le \cdots \le a_k$. In this paper, we investigate a new partition function. For any real number r > 1, let $p_r(n)$ be the number of solutions of the equation $n = \lfloor \sqrt[r]{a_1} \rfloor + \cdots + \lfloor \sqrt[r]{a_k} \rfloor$ with integers $1 \le a_1 \le \cdots \le a_k$, where $\lfloor x \rfloor$ denotes the greatest integer not exceeding x. In this paper, it is proved that $\exp(c_1 n^{r/(r+1)}) \le p_r(n) \le \exp(c_2 n^{r/(r+1)})$ for two positive constants c_1 and c_2 (depending only r).

1. Introduction

Let f(n) be a real valued arithmetic function and $q_f(n)$ be the number of solutions to the equation

$$(1.1) n = \lfloor f(a_1) \rfloor + \lfloor f(a_2) \rfloor + \dots + \lfloor f(a_k) \rfloor$$

with integers $1 \leq a_1 \leq \cdots \leq a_k$, where $\lfloor x \rfloor$ denotes the greatest integer not exceeding x. We call (1.1) a f-partition of n and $q_f(n)$ the f-partition function. For $f(n) = \sqrt[r]{n}$ (where $\sqrt[r]{n}$ stands for $n^{1/r}$), let $p_r(n) = q_f(n)$, where r is a positive real number. That is, $p_r(n)$ is the number of solutions to the equation

$$(1.2) n = |\sqrt[r]{a_1}| + \dots + |\sqrt[r]{a_k}|$$

with integers $1 \leq a_1 \leq \cdots \leq a_k$. We call (1.2) an r-th root partition of n and $p_r(n)$ the r-th root partition function. It is known that, when r = 2, there exist two explicit positive constants c'_1 and c'_2 such that

$$\exp(c_1' n^{2/3}) \le p_2(n) \le \exp(c_2' n^{2/3})$$

for all integers $n \geq 1$ (see [1] and [2]).

In this paper, the following results are proved.

Received September 17, 2015, accepted December 29, 2015.

Communicated by Yu-Ru Liu.

2010 Mathematics Subject Classification. 11P81, 11P82, 11P83, 05A17.

Key words and phrases. r-th root partition, Partition function.

This work was supported by the National Natural Science Foundation of China (No. 11371195) and PAPD.

*Corresponding author.

Theorem 1.1. Let f(n) be a real valued arithmetic function and

(1.3)
$$w(z) = 1 + \sum_{n=1}^{\infty} q_f(n)z^n, \quad 0 < z < 1.$$

Suppose that the series in (1.3) is convergent. Then

$$w(z) = \prod_{n=1}^{\infty} (1 - z^n)^{-\Delta_f(n)},$$

where $\Delta_f(n) = \#\{m : \lfloor f(m) \rfloor = n\}.$

Theorem 1.2. For any real number r > 1, there exist two explicit positive constants c_1 and c_2 (depending only r) such that

$$\exp(c_1 n^{r/(r+1)}) \le p_r(n) \le \exp(c_2 n^{r/(r+1)})$$

for all integers $n \geq 1$.

Theorem 1.2 is mentioned in [2]. We believe that the f-partition will bring extensive study as p(n).

Throughout this paper, the numbers n, k, m, etc. are positive integers.

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.

A partition \boldsymbol{b} of n is

$$(2.1) n = b_1 + b_2 + \dots + b_k$$

with integers $1 \leq b_1 \leq \cdots \leq b_k$. Now we consider the f-partitions of n corresponding to (2.1)

$$n = \lfloor f(a_1) \rfloor + \lfloor f(a_2) \rfloor + \dots + \lfloor f(a_k) \rfloor$$

with integers $1 \leq a_1 \leq \cdots \leq a_k$ such that $b_1 = \lfloor f(a_{i_1}) \rfloor, \ldots, b_k = \lfloor f(a_{i_k}) \rfloor$, where i_1, i_2, \ldots, i_k is a permutation of $1, 2, \ldots, k$.

For a partition \boldsymbol{b} of n, it is possible that there is more than one vector (a_1, a_2, \ldots, a_k) corresponding to \boldsymbol{b} . Fix a partition \boldsymbol{b} of n. If m occurs h_m times in the partition \boldsymbol{b} of n, then there exist some integers $j_1 < j_2 < \cdots < j_{h_m}$ such that

$$\lfloor f(a_{j_1}) \rfloor = \lfloor f(a_{j_2}) \rfloor = \cdots = \lfloor f(a_{j_{h_m}}) \rfloor = m.$$

Then $a_{j_1}, a_{j_2}, \ldots, a_{j_{h_m}} \in \{t : \lfloor f(t) \rfloor = m\}$ are integers which are subjected to $1 \le a_{j_1} \le a_{j_2} \le \cdots \le a_{j_{h_m}}$. So the number of vectors $(a_{j_1}, a_{j_2}, \ldots, a_{j_{h_m}})$ corresponding to \boldsymbol{b} is equal to the number of nonnegative integral solutions to the equation

$$(2.2) x_1 + x_2 + \dots + x_{\Delta_f(m)} = h_m.$$

Let $R(\Delta_f(m), h_m)$ denote the number of nonnegative integral solutions to (2.2). If $h_m \neq 0$ and $\Delta_f(m) = 0$, let $R(\Delta_f(m), h_m) = 0$. If $h_m = \Delta_f(m) = 0$, let $R(\Delta_f(m), h_m) = 1$. Hence

$$q_f(n) = \sum_{\mathbf{b} \in P(n)} \prod_{m=1}^n R(\Delta_f(m), h_m),$$

where P(n) is the set of all partitions of n. It is clear that $h_1 + 2h_2 + \cdots + nh_n = n$. Therefore,

$$1 + \sum_{n=1}^{\infty} q_f(n) z^n = 1 + \sum_{n=1}^{\infty} \left(\sum_{\mathbf{b} \in P(n)} \prod_{m=1}^n R(\Delta_f(m), h_m) \right) z^n$$

$$= 1 + \sum_{n=1}^{\infty} \left(\sum_{\mathbf{b} \in P(n)} \prod_{m=1}^n R(\Delta_f(m), h_m) \right) z^{h_1 + 2h_2 + \dots + nh_n}$$

$$= 1 + \sum_{n=1}^{\infty} \left(\sum_{\mathbf{b} \in P(n)} \prod_{m=1}^n R(\Delta_f(m), h_m) z^{mh_m} \right)$$

$$= \prod_{m=1}^{\infty} \left(\sum_{h_m = 0}^{\infty} R(\Delta_f(m), h_m) z^{mh_m} \right)$$

$$= \prod_{m=1}^{\infty} \left(\sum_{t_1 = 0}^{\infty} \sum_{t_2 = 0}^{\infty} \dots \sum_{t_{\Delta_f(m)} = 0}^{\infty} z^{m \left(t_1 + t_2 + \dots + t_{\Delta_f(m)}\right)} \right)$$

$$= \prod_{m=1}^{\infty} \left(\sum_{t_1 = 0}^{\infty} z^{t_1 m} \sum_{t_2 = 0}^{\infty} z^{t_2 m} \dots \sum_{t_{\Delta_f(m)} = 0}^{\infty} z^{t_{\Delta_f(m)} m} \right)$$

$$= \prod_{m=1}^{\infty} (1 - z^m)^{-\Delta_f(m)}.$$

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

All constants c_i depend only on r. In this section $f(x) = \sqrt[r]{x}$. Then $q_f(n) = p_r(n)$. For any real number r > 1, let

$$g_r(n) = \# \left\{ k : \left\lfloor \sqrt[r]{k} \right\rfloor = n \right\}.$$

That is, $g_r(n) = \Delta_f(n)$.

Lemma 3.1. Let r be a real number with r > 1. Then

$$p_r(n) \ge p_r(n-1) + q_r(n) \ (n \ge 2), \quad p_r(n) \ge n+1 \ (n \ge 1).$$

Proof. If $n-1 = \lfloor \sqrt[r]{a_1} \rfloor + \cdots + \lfloor \sqrt[r]{a_k} \rfloor$ is an r-th root partition of n-1, then $n = \lfloor \sqrt[r]{a_0} \rfloor + \lfloor \sqrt[r]{a_1} \rfloor + \cdots + \lfloor \sqrt[r]{a_k} \rfloor$ ($a_0 = 1$) is an r-th root partition of n. Since $n = \lfloor \sqrt[r]{b_1} \rfloor$ ($n^r \le b_1 < (n+1)^r$) are $g_r(n)$ r-th root partitions of n which can not be obtained from any r-th root partition of n-1, we have

$$p_r(n) \ge p_r(n-1) + g_r(n) \quad (n \ge 2).$$

It follows from $p_r(1) \geq 2$ and $g_r(n) \geq 1$ that

$$p_r(n) \ge p_r(n-1) + 1 \ge \dots \ge p_r(1) + n - 1 \ge n + 1.$$

Lemma 3.2. Let 0 < z < 1 and r > 1. Then

$$\frac{c_3 z}{(1-z)^r} \le \sum_{n=1}^{\infty} n^{r-1} z^n \le \frac{c_4 z}{(1-z)^r},$$

where c_3 and c_4 are two explicit positive constants.

Proof. It is known that the Gamma function has the following property

$$\Gamma(t) = \lim_{n \to \infty} \frac{n! n^t}{t(t+1)\cdots(t+n)}.$$

Hence

$$\Gamma(r) = \lim_{n \to \infty} \frac{n! n^r}{r(r+1)\cdots(r+n)}$$
$$= \lim_{n \to \infty} \frac{(n-1)! n^{r-1}}{r(r+1)\cdots(r+n-2)}.$$

Thus there exist two explicit positive constants c_3 and c_4 (depending only on r) such that

$$c_3 \le \frac{(n-1)!n^{r-1}}{r(r+1)\cdots(r+n-2)} \le c_4.$$

That is,

$$c_3 \frac{r(r+1)\cdots(r+n-2)}{(n-1)!} \le n^{r-1} \le c_4 \frac{r(r+1)\cdots(r+n-2)}{(n-1)!}.$$

Here and later, we consider $r(r+1)\cdots(r+n-2)$ as 1 if n=1. Since

$$\frac{z}{(1-z)^r} = z \sum_{n=0}^{\infty} \frac{(-r)(-r-1)\cdots(-r-n+1)}{n!} (-z)^n$$

$$= \sum_{n=0}^{\infty} \frac{r(r+1)\cdots(r+n-1)}{n!} z^{n+1}$$

$$= \sum_{n=1}^{\infty} \frac{r(r+1)\cdots(r+n-2)}{(n-1)!} z^n,$$

it follows that

$$\frac{c_3 z}{(1-z)^r} \le \sum_{n=1}^{\infty} n^{r-1} z^n \le \frac{c_4 z}{(1-z)^r}.$$

Lemma 3.3. Let r be a real number with r > 1. Then

$$(r-1)n^{r-1} < g_r(n) < r2^r n^{r-1}.$$

Proof. Since

$$g_r(n) = \#\{k : n^r \le k < (n+1)^r\} = \#\{k : \lceil n^r \rceil \le k < \lceil (n+1)^r \rceil\},$$

it follows that

$$g_r(n) = \lceil (n+1)^r \rceil - \lceil n^r \rceil = (n+1)^r - n^r + \Delta,$$

where $|\Delta| < 1$ and $\lceil x \rceil$ denotes the least integer not less than x. By the Lagrange mean value theorem, we have

$$g_r(n) = r\xi^{r-1} + \Delta$$

for some real number $\xi \in (n, n+1)$. Then,

$$(r-1)n^{r-1} < rn^{r-1} - 1 < q_r(n) < r(n+1)^{r-1} + 1 < 2r(n+1)^{r-1} < r2^rn^{r-1}$$
.

Lemma 3.4. We have

(3.1)
$$\frac{c_5 z}{(1-z)^r} < \log w(z) < \frac{c_6 z}{(1-z)^r}, \quad 0 < z < 1,$$

where c_5 and c_6 are two explicit positive constants.

Proof. It follows from Theorem 1.1 that (noting that $\Delta_f(n) = g_r(n)$ for $f(x) = \sqrt[r]{x}$)

$$w(z) = \prod_{n=1}^{\infty} (1 - z^n)^{-g_r(n)}.$$

Thus

(3.2)
$$\log w(z) = -\sum_{n=1}^{\infty} g_r(n) \log(1 - z^n).$$

By Lemma 3.3 and (3.2), we have

(3.3)
$$\log w(z) > \sum_{n=1}^{\infty} g_r(n) z^n > (r-1) \sum_{n=1}^{\infty} n^{r-1} z^n,$$

(3.4)
$$\log w(z) < -r2^r \sum_{n=1}^{\infty} n^{r-1} \log(1 - z^n).$$

By Lemma 3.2 and (3.3), we obtain the lower bound of (3.1).

Now we prove the upper bound of (3.1) by (3.4). By Lemma 3.2,

$$-\sum_{n=1}^{\infty} n^{r-1} \log(1-z^n) = \sum_{n=1}^{\infty} n^{r-1} \sum_{k=1}^{\infty} \frac{z^{kn}}{k}$$

$$= \sum_{k=1}^{\infty} \frac{1}{k} \sum_{n=1}^{\infty} n^{r-1} z^{kn}$$

$$< c_4 \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^k}{(1-z^k)^r}$$

$$= \frac{c_4}{(1-z)^r} \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^k}{(1+z+\cdots+z^{k-1})^r}$$

$$< \frac{c_4 z}{(1-z)^r} \sum_{k=1}^{\infty} \frac{1}{k} \frac{z^{k-1}}{1+z+\cdots+z^{k-1}}$$

$$< \frac{c_4 z}{(1-z)^r} \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$= \frac{\pi^2}{6} \frac{c_4 z}{(1-z)^r}.$$

Therefore, in combination with (3.4) we obtain the upper bound of (3.1).

Proof of Theorem 1.2. For $f(x) = \sqrt[r]{x}$, we have $q_f(n) = p_r(n)$. Since

$$\log x > \frac{x-1}{r}$$

for any real number $x \in (0,1)$ and using Lemma 3.4, it follows from (1.3) that, for 0 < z < 1, we have

$$\log(p_r(n)z^n) \le \log w(z) \le c_6 \frac{z}{(1-z)^r} < \frac{c_6}{z^{r-1}(-\log z)^r}.$$

That is,

$$\log p_r(n) \le \frac{c_6}{z^{r-1}(-\log z)^r} - n\log z.$$

We choose $z_1 = \exp(-n^{-1/(r+1)})$. Then $z_1 \ge e^{-1}$ and

(3.5)
$$\log p_r(n) \le \frac{c_6}{e^{-r+1}(-\log z_1)^r} - n\log z_1 = c_2 n^{r/(r+1)},$$

where $c_2 = c_6 e^{r-1} + 1$. Thus, we have proved the upper bound in Theorem 1.2.

We will use this upper bound to give a lower bound of $\log p_r(n)$. For 0 < z < 1, by Lemma 3.1 and (3.5), we have

$$w(z) = 1 + \sum_{k=1}^{n-1} p_r(k) z^k + \sum_{k=n}^{\infty} p_r(k) z^k$$

$$\leq n p_r(n) + \sum_{k=n}^{\infty} \exp(c_2 k^{r/(r+1)}) z^k.$$

We choose $z_2 = \exp(-(r+1)c_2n^{-1/(r+1)})$. Then

$$\exp\left(c_2 k^{r/(r+1)}\right) z_2^{k/(r+1)} = \exp\left(c_2 \left(k^{r/(r+1)} - k n^{-1/(r+1)}\right)\right) \le 1, \quad k \ge n.$$

Thus, by Lemma 3.1 and $c_2 > 1$, we have

$$w(z_2) \le np_r(n) + \sum_{k=n}^{\infty} z_2^{kr/(r+1)} = np_r(n) + \frac{z_2^{nr/(r+1)}}{1 - z_2^{r/(r+1)}}$$

$$= np_r(n) + \frac{\exp\left(-c_2rn^{r/(r+1)}\right)}{1 - \exp\left(-c_2rn^{-1/(r+1)}\right)}$$

$$= np_r(n) + \frac{\exp\left(-c_2r\left(n^{r/(r+1)} - n^{-1/(r+1)}\right)\right)}{\exp\left(c_2rn^{-1/(r+1)}\right) - 1}$$

$$< np_r(n) + \frac{1}{c_2r}n^{1/(r+1)}\exp\left(-c_2r\left(n^{r/(r+1)} - n^{-1/(r+1)}\right)\right)$$

$$< np_r(n) + \frac{1}{c_2r}n < np_r(n) + n = (n+1)p_r(n) \le p_r(n)^2.$$

Since $\log x < x - 1$ for any real number $x \in (0,1)$ and using Lemma 3.4, it follows that

$$\log p_r(n) \ge \frac{1}{2} \log w(z_2) \ge \frac{c_5 z_2}{2(1 - z_2)^r} \ge \frac{c_5 z_2}{2(-\log z_2)^r} \ge c_1 n^{r/(r+1)},$$

where

$$c_1 = \frac{c_5 \exp(-(r+1)c_2)}{2(r+1)^r c_2^r}.$$

Thus, we have proved the lower bound in Theorem 1.2. This completes the proof.

Acknowledgments

In the proof of the upper bound of (3.1), we use an idea of R. Balasubramanian for r = 2. We would like to thank R. Balasubramanian for allowing us to use his idea.

References

- [1] R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), no. 2, 139–143. http://dx.doi.org/10.1515/integ.2011.012
- [2] Y.-G. Chen and Y.-L. Li, On the square-root partition function, C. R. Math. Acad. Sci. Paris **353** (2015), no. 4, 287–290. http://dx.doi.org/10.1016/j.crma.2015.01.013

Ya-Li Li and Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, P. R. China

E-mail address: 605494383@qq.com, ygchen@njnu.edu.cn