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On the r-th Root Partition Function

Ya-Li Li and Yong-Gao Chen*

Abstract. The well known partition function p(n) has a long research history, where
p(n) denotes the number of solutions of the equation n = a; + - - - 4+ a; with integers
1 <a; <--- < ag. In this paper, we investigate a new partition function. For any real
number 7 > 1, let p,.(n) be the number of solutions of the equation n = | y/ai|+---+
| v/ay | with integers 1 < a1 < --- < ag, where |2| denotes the greatest integer not
exceeding x. In this paper, it is proved that exp(c;n’/"t1)) < p,.(n) < exp(con™/ " +1)
for two positive constants ¢; and ¢y (depending only 7).

1. Introduction

Let f(n) be a real valued arithmetic function and ¢¢(n) be the number of solutions to the

equation
(1.1) n=|f(a1)] + [f(a2)] + -+ [f(ax)]
with integers 1 < a; < --- < ai, where || denotes the greatest integer not exceeding x.

We call (1.1)) a f-partition of n and q¢(n) the f-partition function. For f(n) = {/n (where
{/n stands for n'/7), let p,(n) = g;(n), where r is a positive real number. That is, p,(n)

is the number of solutions to the equation

(1.2) n=|vai] +-+ | ar)

with integers 1 < a; < --- < a,. We call (1.2)) an r-th root partition of n and p,(n) the
r-th root partition function. It is known that, when r = 2, there exist two explicit positive

constants ¢} and ¢, such that

exp(c’ln2/3) < p2(n) < exp(c’Qn2/3)

for all integers n > 1 (see [1] and [2]).

In this paper, the following results are proved.
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Theorem 1.1. Let f(n) be a real valued arithmetic function and
o

(1.3) w(z) =1+ qu(n)z”, 0<z<l.
n=1

Suppose that the series in (1.3) is convergent. Then

[e.e]

w(z) = [ -2,

n=1

where A¢(n) = #{m: | f(m)] =n}.

Theorem 1.2. For any real number r > 1, there exist two explicit positive constants ci

and co (depending only r) such that
exp(c1n”/ D) < p,(n) < exp(ean™ D)
for all integers n > 1.

Theorem is mentioned in [2]. We believe that the f-partition will bring extensive
study as p(n).

Throughout this paper, the numbers n, k, m, etc. are positive integers.

2. Proof of Theorem

In this section, we shall prove Theorem
A partition b of n is

with integers 1 < b; < --- < b. Now we consider the f-partitions of n corresponding to

(2.1)
n=[fla)] + [fla2)] +---+ [flar)]

with integers 1 < a3 < --- < ag such that by = [f(ai)],...,060 = |[f(a;, )], where
i1,19,...,1k is a permutation of 1,2,... k.
For a partition b of n, it is possible that there is more than one vector (aj,as,...,ax)

corresponding to b. Fix a partition b of n. If m occurs h,, times in the partition b of n,

then there exist some integers j; < j2 < - < jp,, such that

Lf(aj )] = [flap)] = = [ flag,,)] =m.
Then aj,aj,,...,a;, € {t:[f(t)] =m} are integers which are subjected to 1 < a;, <
aj, <--- < aj, . So the number of vectors (aj,aj,,... ,ajhm) corresponding to b is equal

to the number of nonnegative integral solutions to the equation

(2.2) Tyt T2+ + TA(m) = hum.
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Let R(Af(m), hy,) denote the number of nonnegative integral solutions to (2.2). If h,, # 0
and Ay(m) = 0, let R(Ag(m),hyn) = 0. If hyy = Ap(m) = 0, let R(Ag(m), hy) = 1.

Hence

gr(n) = > T RAs(m), hp),

beP(n)m=1
where P(n) is the set of all partitions of n. It is clear that hy + 2hy + -+ + nh, = n.

Therefore,

1+ gpn)2" =1+ > | > [ RAfm), hm) | 2"
n=1 n=1

be P(n) m=1

=1 Z Z ﬁ R(A¢(m), hpp) Shi+2hattnhn

n=1 \beP(n) m=1

=1+ Z Z H R(Af(m)v hm)zmhm

n=1 \beP(n)m=1

=11 [ D0 R(As(m), hm)zm
m=1 \ hm=0

oo oo o0 o0
SIL (X Y 3 nlrrtae)

m=1 \t;1=012=0  ta;(m)=0

oo ) oo oo
T SR S
m=1 \t1=0 t2=0 tAf(m):O
S)
= JJ@—zm)-2sm,
m=1

This completes the proof of Theorem

3. Proof of Theorem

All constants ¢; depend only on . In this section f(z) = v/z. Then ¢¢(n) = pr(n). For

any real number r > 1, let

That is, g-(n) = A¢(n).
Lemma 3.1. Let r be a real number with r > 1. Then

pr(n) 2 pr(n=1) +gr(n) (n 2 2), pp(n) 2n+1(n=1).
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Proof. If n — 1 = L\/ J + -+ U/akJ is an r-th root partition of n — 1, then n =
L’“ aoJ + LT alJ L? akJ (ap = 1) is an r-th root partition of n. Since n = L{/EJ
(n" <b <(n+ )’”) are g,(n) r-th root partitions of n which can not be obtained from

any r-th root partition of n — 1, we have
pr(n) Zpr(n—1) +g:(n) (n=2).
It follows from p,(1) > 2 and g,(n) > 1 that
pr(n) >pr(n—1)+1>-->p(1)+n—-1>n+1. O

Lemma 3.2. Let0< z<1andr > 1. Then

c4z
1_27«—2” 1—2)

where c3 and ¢4 are two explicit positive constants.

Proof. 1t is known that the Gamma function has the following property

nlnt
I'(t) = 1 .
(*) noo t(t+ 1) - (t +n)

Hence

nln”

F(T):Tglnéor(r+1)---(r+n)

, (n —1)nm—t
1m .
n%oor(r—|-1)...(r+n_2)

Thus there exist two explicit positive constants c3 and ¢4 (depending only on ) such that

< (n— 1)t <
C Cq4.
ST+ (rn-2)

That is,
r(r+1)---(r+n-—2) Snr_lS647“(7'—1—1)---(7“—1—71—2)
(n—1)! (n—1)!

Here and later, we consider r(r 4+ 1)---(r+mn —2) as 1 if n = 1. Since

C3

z (=) (=r—=1)---(—r —n+1) "
(1—Z)T_ZT§] n! (=2)
_ir(r—kl)---(r—i—n—1)Zn+l
= n!
_ir(r+1)---(r+n—2)zn
— (n—1)!
it follows that -
3z el n c4z
— < O
(1—2)7"_Zn S ST
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Lemma 3.3. Let r be a real number with r > 1. Then
(r—1)n""t < g.(n) <r2'n" 1.
Proof. Since

gr(n)=#{k:n"<k<n+1)}=#{k:[n"]<k<[(n+1)]},
it follows that
gr(n) =[(n+1)"]=[n"]=(n+1)"—n"+A,

where |A| < 1 and [x] denotes the least integer not less than x. By the Lagrange mean

value theorem, we have
gr(n) = TgTil +A

for some real number ¢ € (n,n + 1). Then,
(r—Dn" '<m™ ' —1l<g)<rin+) 1 +1<2r(n+1)"<r2nt O

Lemma 3.4. We have

C52

=2

where c5 and cg are two explicit positive constants.

Cez
(1—=2)"

(3.1) <logw(z) < 0<z<1,

Proof. Tt follows from Theorem |1.1] that (noting that A¢(n) = g,(n) for f(z) = /)

o0

w(z) = [J@— 2",
n=1
Thus
(3.2) logw(z Zgr )log(1 — 2").
By Lemma E 3land (3.2]), we have
o oo
(3.3) log w(z) > Zgr(n)z" > (r—1) Z n 12",
n=1 n=1
o
(3.4) logw(z) < —r2" Z n"1log(1 — ™).
n=1

By Lemma and (3.3)), we obtain the lower bound of (3.1).



550 Ya-Li Li and Yong-Gao Chen

Now we prove the upper bound of (3.1)) by (3.4). By Lemma

Therefore, in combination with (3.4)) we obtain the upper bound of (3.1)). O

Proof of Theorem [1.2 For f(x) = v/x, we have q¢(n) = p,(n). Since

x
logx > ——
x

for any real number z € (0,1) and using Lemma it follows from (1.3|) that, for
0 < z <1, we have
z Ce

toalpr(m)=") S logwle) < oy < S Togay

That is,
C6

2r=1(—log 2)"

We choose z; = exp(—n~/+D). Then z; > e~! and

log pr(n) < —nlog z.

i —nlogz = CQTLT/(T+1),

. log pr(n) <
(35) 08P () < o

where ¢3 = cge" ! + 1. Thus, we have proved the upper bound in Theorem
We will use this upper bound to give a lower bound of logp,(n). For 0 < z < 1, by

Lemma and (3.5)), we have
n—1 o0
w(z) =14+ Zpr(k)zk + Zpr(k)zk
k=1 k=n

< npr(n) + Z exp(Cri/(T+1))2k.
k=n
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We choose 25 = exp (—(r + 1)can™/("+1D). Then

exp (czkr/(rﬂ)) zg/(rﬂ) = exp (CQ (k:r/(rﬂ) — kn_l/(“rl))) <1, k>n.

Thus, by Lemma [3.1] and co > 1, we have

znr/(r+1)

kr/(r+1) 2
(22 < npr + Z = npr(n) + W

exp (—corn™/ (r+1)
1 — exp (—corn=1/ (1))
exp (—cor (n/(+D) — p=1/(+D))
exp (corn= /(1)) — 1

e B r/r+1) o —1/(r+1)
< npp(n) + 02rn exp ( cor (n n ))

< npy(n) + C;n <npy(n) +n = (n+1)p.(n) < pr(n)?

= npr (n) +

= Npr (’I’L) +

Since logx < x — 1 for any real number = € (0,1) and using Lemma it follows that

1 C522 C522
1 > — 1 > > > r/(r+1)
ng?’(n) - 2 ng('zQ) - 2(1 _ ZQ)T - ( lOgZQ)T Zcn 9

where
cs exp(—(r + 1)cg)

2(r +1)7ch
Thus, we have proved the lower bound in Theorem This completes the proof. O

c1 =
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