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On the r-th Root Partition Function

Ya-Li Li and Yong-Gao Chen*

Abstract. The well known partition function p(n) has a long research history, where

p(n) denotes the number of solutions of the equation n = a1 + · · ·+ ak with integers

1 ≤ a1 ≤ · · · ≤ ak. In this paper, we investigate a new partition function. For any real

number r > 1, let pr(n) be the number of solutions of the equation n = b r
√
a1c+ · · ·+

b r
√
akc with integers 1 ≤ a1 ≤ · · · ≤ ak, where bxc denotes the greatest integer not

exceeding x. In this paper, it is proved that exp(c1n
r/(r+1)) ≤ pr(n) ≤ exp(c2n

r/(r+1))

for two positive constants c1 and c2 (depending only r).

1. Introduction

Let f(n) be a real valued arithmetic function and qf (n) be the number of solutions to the

equation

(1.1) n = bf(a1)c+ bf(a2)c+ · · ·+ bf(ak)c

with integers 1 ≤ a1 ≤ · · · ≤ ak, where bxc denotes the greatest integer not exceeding x.

We call (1.1) a f -partition of n and qf (n) the f -partition function. For f(n) = r
√
n (where

r
√
n stands for n1/r), let pr(n) = qf (n), where r is a positive real number. That is, pr(n)

is the number of solutions to the equation

(1.2) n = b r
√
a1c+ · · ·+ b r

√
akc

with integers 1 ≤ a1 ≤ · · · ≤ ak. We call (1.2) an r-th root partition of n and pr(n) the

r-th root partition function. It is known that, when r = 2, there exist two explicit positive

constants c′1 and c′2 such that

exp(c′1n
2/3) ≤ p2(n) ≤ exp(c′2n

2/3)

for all integers n ≥ 1 (see [1] and [2]).

In this paper, the following results are proved.
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Theorem 1.1. Let f(n) be a real valued arithmetic function and

(1.3) w(z) = 1 +

∞∑
n=1

qf (n)zn, 0 < z < 1.

Suppose that the series in (1.3) is convergent. Then

w(z) =
∞∏
n=1

(1− zn)−∆f (n),

where ∆f (n) = # {m : bf(m)c = n}.

Theorem 1.2. For any real number r > 1, there exist two explicit positive constants c1

and c2 (depending only r) such that

exp(c1n
r/(r+1)) ≤ pr(n) ≤ exp(c2n

r/(r+1))

for all integers n ≥ 1.

Theorem 1.2 is mentioned in [2]. We believe that the f -partition will bring extensive

study as p(n).

Throughout this paper, the numbers n, k,m, etc. are positive integers.

2. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.

A partition b of n is

(2.1) n = b1 + b2 + · · ·+ bk

with integers 1 ≤ b1 ≤ · · · ≤ bk. Now we consider the f -partitions of n corresponding to

(2.1)

n = bf(a1)c+ bf(a2)c+ · · ·+ bf(ak)c

with integers 1 ≤ a1 ≤ · · · ≤ ak such that b1 = bf(ai1)c , . . . , bk = bf(aik)c, where

i1, i2, . . . , ik is a permutation of 1, 2, . . . , k.

For a partition b of n, it is possible that there is more than one vector (a1, a2, . . . , ak)

corresponding to b. Fix a partition b of n. If m occurs hm times in the partition b of n,

then there exist some integers j1 < j2 < · · · < jhm such that

bf(aj1)c = bf(aj2)c = · · · =
⌊
f(ajhm )

⌋
= m.

Then aj1 , aj2 , . . . , ajhm ∈ {t : bf(t)c = m} are integers which are subjected to 1 ≤ aj1 ≤
aj2 ≤ · · · ≤ ajhm . So the number of vectors (aj1 , aj2 , . . . , ajhm ) corresponding to b is equal

to the number of nonnegative integral solutions to the equation

(2.2) x1 + x2 + · · ·+ x∆f (m) = hm.
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Let R(∆f (m), hm) denote the number of nonnegative integral solutions to (2.2). If hm 6= 0

and ∆f (m) = 0, let R(∆f (m), hm) = 0. If hm = ∆f (m) = 0, let R(∆f (m), hm) = 1.

Hence

qf (n) =
∑

b∈P (n)

n∏
m=1

R(∆f (m), hm),

where P (n) is the set of all partitions of n. It is clear that h1 + 2h2 + · · · + nhn = n.

Therefore,

1 +
∞∑
n=1

qf (n)zn = 1 +
∞∑
n=1

 ∑
b∈P (n)

n∏
m=1

R(∆f (m), hm)

 zn

= 1 +
∞∑
n=1

 ∑
b∈P (n)

n∏
m=1

R(∆f (m), hm)

 zh1+2h2+···+nhn

= 1 +
∞∑
n=1

 ∑
b∈P (n)

n∏
m=1

R(∆f (m), hm)zmhm


=

∞∏
m=1

 ∞∑
hm=0

R(∆f (m), hm)zmhm


=

∞∏
m=1

 ∞∑
t1=0

∞∑
t2=0

· · ·
∞∑

t∆f (m)=0

z
m
(
t1+t2+···+t∆f (m)

)
=
∞∏

m=1

 ∞∑
t1=0

zt1m
∞∑

t2=0

zt2m · · ·
∞∑

t∆f (m)=0

z
t∆f (m)m


=
∞∏

m=1

(1− zm)−∆f (m).

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

All constants ci depend only on r. In this section f(x) = r
√
x. Then qf (n) = pr(n). For

any real number r > 1, let

gr(n) = #
{
k :
⌊

r
√
k
⌋

= n
}
.

That is, gr(n) = ∆f (n).

Lemma 3.1. Let r be a real number with r > 1. Then

pr(n) ≥ pr(n− 1) + gr(n) (n ≥ 2), pr(n) ≥ n+ 1 (n ≥ 1).
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Proof. If n − 1 =
⌊

r
√
a1

⌋
+ · · · +

⌊
r
√
ak
⌋

is an r-th root partition of n − 1, then n =⌊
r
√
a0

⌋
+
⌊

r
√
a1

⌋
+ · · · +

⌊
r
√
ak
⌋

(a0 = 1) is an r-th root partition of n. Since n =
⌊

r
√
b1
⌋

(nr ≤ b1 < (n + 1)r) are gr(n) r-th root partitions of n which can not be obtained from

any r-th root partition of n− 1, we have

pr(n) ≥ pr(n− 1) + gr(n) (n ≥ 2).

It follows from pr(1) ≥ 2 and gr(n) ≥ 1 that

pr(n) ≥ pr(n− 1) + 1 ≥ · · · ≥ pr(1) + n− 1 ≥ n+ 1.

Lemma 3.2. Let 0 < z < 1 and r > 1. Then

c3z

(1− z)r
≤
∞∑
n=1

nr−1zn ≤ c4z

(1− z)r
,

where c3 and c4 are two explicit positive constants.

Proof. It is known that the Gamma function has the following property

Γ(t) = lim
n→∞

n!nt

t(t+ 1) · · · (t+ n)
.

Hence

Γ(r) = lim
n→∞

n!nr

r(r + 1) · · · (r + n)

= lim
n→∞

(n− 1)!nr−1

r(r + 1) · · · (r + n− 2)
.

Thus there exist two explicit positive constants c3 and c4 (depending only on r) such that

c3 ≤
(n− 1)!nr−1

r(r + 1) · · · (r + n− 2)
≤ c4.

That is,

c3
r(r + 1) · · · (r + n− 2)

(n− 1)!
≤ nr−1 ≤ c4

r(r + 1) · · · (r + n− 2)

(n− 1)!
.

Here and later, we consider r(r + 1) · · · (r + n− 2) as 1 if n = 1. Since

z

(1− z)r
= z

∞∑
n=0

(−r)(−r − 1) · · · (−r − n+ 1)

n!
(−z)n

=

∞∑
n=0

r(r + 1) · · · (r + n− 1)

n!
zn+1

=
∞∑
n=1

r(r + 1) · · · (r + n− 2)

(n− 1)!
zn,

it follows that
c3z

(1− z)r
≤
∞∑
n=1

nr−1zn ≤ c4z

(1− z)r
.
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Lemma 3.3. Let r be a real number with r > 1. Then

(r − 1)nr−1 < gr(n) < r2rnr−1.

Proof. Since

gr(n) = # {k : nr ≤ k < (n+ 1)r} = # {k : dnre ≤ k < d(n+ 1)re} ,

it follows that

gr(n) = d(n+ 1)re − dnre = (n+ 1)r − nr + ∆,

where |∆| < 1 and dxe denotes the least integer not less than x. By the Lagrange mean

value theorem, we have

gr(n) = rξr−1 + ∆

for some real number ξ ∈ (n, n+ 1). Then,

(r − 1)nr−1 ≤ rnr−1 − 1 < gr(n) < r(n+ 1)r−1 + 1 < 2r(n+ 1)r−1 ≤ r2rnr−1.

Lemma 3.4. We have

(3.1)
c5z

(1− z)r
< logw(z) <

c6z

(1− z)r
, 0 < z < 1,

where c5 and c6 are two explicit positive constants.

Proof. It follows from Theorem 1.1 that (noting that ∆f (n) = gr(n) for f(x) = r
√
x)

w(z) =

∞∏
n=1

(1− zn)−gr(n).

Thus

(3.2) logw(z) = −
∞∑
n=1

gr(n) log(1− zn).

By Lemma 3.3 and (3.2), we have

logw(z) >
∞∑
n=1

gr(n)zn > (r − 1)
∞∑
n=1

nr−1zn,(3.3)

logw(z) < −r2r
∞∑
n=1

nr−1 log(1− zn).(3.4)

By Lemma 3.2 and (3.3), we obtain the lower bound of (3.1).
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Now we prove the upper bound of (3.1) by (3.4). By Lemma 3.2,

−
∞∑
n=1

nr−1 log(1− zn) =
∞∑
n=1

nr−1
∞∑
k=1

zkn

k

=
∞∑
k=1

1

k

∞∑
n=1

nr−1zkn

< c4

∞∑
k=1

1

k

zk

(1− zk)r

=
c4

(1− z)r
∞∑
k=1

1

k

zk

(1 + z + · · ·+ zk−1)r

<
c4z

(1− z)r
∞∑
k=1

1

k

zk−1

1 + z + · · ·+ zk−1

<
c4z

(1− z)r
∞∑
k=1

1

k2

=
π2

6

c4z

(1− z)r
.

Therefore, in combination with (3.4) we obtain the upper bound of (3.1).

Proof of Theorem 1.2. For f(x) = r
√
x, we have qf (n) = pr(n). Since

log x >
x− 1

x

for any real number x ∈ (0, 1) and using Lemma 3.4, it follows from (1.3) that, for

0 < z < 1, we have

log(pr(n)zn) ≤ logw(z) ≤ c6
z

(1− z)r
<

c6

zr−1(− log z)r
.

That is,

log pr(n) ≤ c6

zr−1(− log z)r
− n log z.

We choose z1 = exp(−n−1/(r+1)). Then z1 ≥ e−1 and

(3.5) log pr(n) ≤ c6

e−r+1(− log z1)r
− n log z1 = c2n

r/(r+1),

where c2 = c6e
r−1 + 1. Thus, we have proved the upper bound in Theorem 1.2.

We will use this upper bound to give a lower bound of log pr(n). For 0 < z < 1, by

Lemma 3.1 and (3.5), we have

w(z) = 1 +
n−1∑
k=1

pr(k)zk +
∞∑
k=n

pr(k)zk

≤ npr(n) +
∞∑
k=n

exp(c2k
r/(r+1))zk.
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We choose z2 = exp
(
−(r + 1)c2n

−1/(r+1)
)
. Then

exp
(
c2k

r/(r+1)
)
z
k/(r+1)
2 = exp

(
c2

(
kr/(r+1) − kn−1/(r+1)

))
≤ 1, k ≥ n.

Thus, by Lemma 3.1 and c2 > 1, we have

w(z2) ≤ npr(n) +
∞∑
k=n

z
kr/(r+1)
2 = npr(n) +

z
nr/(r+1)
2

1− zr/(r+1)
2

= npr(n) +
exp

(
−c2rn

r/(r+1)
)

1− exp
(
−c2rn−1/(r+1)

)
= npr(n) +

exp
(
−c2r

(
nr/(r+1) − n−1/(r+1)

))
exp

(
c2rn−1/(r+1)

)
− 1

< npr(n) +
1

c2r
n1/(r+1) exp

(
−c2r

(
nr/(r+1) − n−1/(r+1)

))
< npr(n) +

1

c2r
n < npr(n) + n = (n+ 1)pr(n) ≤ pr(n)2.

Since log x < x− 1 for any real number x ∈ (0, 1) and using Lemma 3.4, it follows that

log pr(n) ≥ 1

2
logw(z2) ≥ c5z2

2(1− z2)r
≥ c5z2

2(− log z2)r
≥ c1n

r/(r+1),

where

c1 =
c5 exp(−(r + 1)c2)

2(r + 1)rcr2
.

Thus, we have proved the lower bound in Theorem 1.2. This completes the proof.
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