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Restricted Stirling Permutations

David Callan, Shi-Mei Ma and Toufik Mansour*

Abstract. In this paper, we study the generating functions for the number of pattern

restricted Stirling permutations with a given number of plateaus, descents and ascents.

Properties of the generating functions, including symmetric properties and explicit

formulas are studied. Combinatorial explanations are given for some equidistributions.

1. Introduction and main results

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}. A

permutation σ = σ1σ2 · · ·σn ∈ Sn is said to contain another permutation τ = τ1τ2 · · · τk ∈
Sk as a pattern if σ has a subsequence order-isomorphic to τ , where n ≥ k. If there is

no such subsequence, then we say that σ avoids the pattern τ . Pattern avoidance was

first studied by Knuth [15] and he found that, for τ ∈ S3, the number of permutations

in Sn avoiding τ is given by the nth Catalan number. Later, Simion and Schmidt [25]

determined the number of permutations in Sn simultaneously avoiding any given set of

patterns τ ∈ S3. From then on, there has been a large literature devoted to this topic,

see [4, 11] for instance.

Stirling permutations were introduced by Gessel and Stanley [9]. A Stirling permu-

tation of order n is a permutation σ of the multiset {1, 1, 2, 2, . . . , n, n} such that every

element between the two occurrences of i is greater than i for each i ∈ [n]. Denote by Qn
the set of Stirling permutations of order n. Let σ = σ1σ2 · · ·σ2n−1σ2n ∈ Qn. Throughout

this paper, we always let

des(σ) = # {i | 1 ≤ i ≤ 2n− 1 and σi > σi+1} ,

asc(σ) = # {i | 1 ≤ i ≤ 2n− 1 and σi < σi+1} ,

plat(σ) = # {i | 1 ≤ i ≤ 2n− 1 and σi = σi+1}

denote the number of descents, ascents and plateaus of σ, respectively. Then the equations

Cn(x) =
∑
σ∈Qn

xdes(σ)+1 =

n∑
i=1

C(n, k)xk
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define the second-order Eulerian polynomials Cn(x) and the second-order Eulerian num-

bers C(n, k). Let asc(σ) + 1 and des(σ) + 1 be the number of augmented ascents and

augmented descents of σ, respectively, that is, the number of ascents and descents when

σ is augmented with a 0 at the start and end. Bóna [3, Proposition 1] proved that the

augmented ascents, augmented descents and plateaus are equidistributed over the set Qn.

Let

Cn(p, q, r) =
∑
σ∈Qn

pplat(σ)qdes(σ)rasc(σ).

Janson [13, Theorem 2.1] discovered that the trivariate generating function qrCn(p, q, r)

is symmetric in p, q, r, which implies Bóna’s equidistributed result.

The notion of pattern avoidance can be extended to Stirling permutations in a straight-

forward way. We say that σ ∈ Qn contains the pattern τ = τ1τ2 · · · τk if for some

1 ≤ i1 < i2 < · · · < ik ≤ 2n, we have σis < σit whenever τs < τt. A Stirling permu-

tation is said to avoid any pattern it does not contain. Let Qn(τ) be the set of Stirling

permutations of order n avoiding the pattern τ . Recently, Kuba and Panholzer [16] ob-

tained enumerative formulas for Stirling permutations avoiding a set of patterns of length

three. For example, it follows from [16, Theorem 1] that

#Qn(213) =
1

2n+ 1

(
3n

n

)
,

#Qn(123) = Qn(132) =

n∑
j=0

(
n
j

)(
n+j−1
n−j

)
n+ 1− j

.

We denote the generating function for the number of Stirling permutations of order n

according to the number plateaus, descents and ascents by

Cn,τ (p, q, r) =
∑

σ∈Qn(τ)

pplat(σ)qdes(σ)rasc(σ).

We now present the three main results of this paper.

Theorem 1.1. For n ≥ 1, the generating function qrCn,213(p, q, r) is symmetric in p, q,

r. Furthermore, the number of Stirling permutations in Qn(213) with exactly m ascents,

d descents and k plateaus is given by

(1.1)

 1
n

(
n

m+1

)(
n
d+1

)(
n
k

)
if 2n− 1 = m+ d+ k,

0 otherwise.

Moreover,

(1.2)
∑

σ∈Qn(213)

pplat(σ) =
1

n

n−1∑
i=0

(
n

i

)(
2n

n− 1− i

)
pn−i.
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Theorem 1.2. For n ≥ 1, the generating function qCn,123(p, q, r) is symmetric in p, q.

Furthermore,

(1.3)
∑

σ∈Qn(123)

pplat(σ) =
1

n+ 1

n∑
j=0

(
n+ 1

j

)(
2n− j
n+ j

)
pn−j .

The symmetric properties of qrCn,213(p, q, r) and qCn,123(p, q, r) lead to the following

corollary.

Corollary 1.3. For all n ≥ 0,

(1.4)
∑

σ∈Qn(123)

qdes(σ)+1 =
∑

σ∈Qn(123)

qplat(σ)

and

(1.5)
∑

σ∈Qn(213)

qasc(σ)+1 =
∑

σ∈Qn(213)

qdes(σ)+1 =
∑

σ∈Qn(213)

qplat(σ).

Theorem 1.4. For n ≥ 0, ∑
σ∈Qn(132)

qplat(σ) =
∑

σ∈Qn(123)

qplat(σ).

Moreover, the number of 132-avoiding Stirling permutations of order n with exactly d

descents is given by (
n−1
d

)
n+ 1

n+1∑
j=0

(
n+ 1

j

)(
j

d+ 1− j

)
.

2. Analytic proofs of the main theorems

In this section, we present analytic proofs of Theorems 1.1, 1.2 and 1.4. More precisely,

we find explicit formulas for the generating function
∑

n≥0Cn,τ (p, q, r)xn for τ ∈ S3.

Since the reversal operation (σ1σ2 · · ·σ2n 7→ σ2n · · ·σ2σ1) preserves the set of Stirling

permutations, we only need to consider the three cases, τ = 123, τ = 132, τ = 213. For

the latter case, we use the block decompositions technique (for instance, see [22]), while

for the former two cases, we use the kernel method (for instance, see [12]).

2.1. The case 213

Define

C213(x, p, q, r) =
∑
n≥0

∑
σ∈Qn(213)

xnpplat(σ)qdes(σ)rasc(σ).

Note that each nonempty Stirling permutation σ that avoids 213 can be represented as

σ′1σ′′1σ′′′ such that
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• each letter of σ′ is greater than each letter of σ′′;

• each letter of σ′′ is greater than each letter of σ′′′;

• σ′, σ′′, σ′′′ are Stirling permutations that avoid 213.

Hence, by considering the 8 possibilities where one of σ′, σ′′, σ′′′ is empty or not, we obtain

that the generating function C213(x, p, q, r) satisfies

C213(x, p, q, r) = 1 + xp+ x(pr + qr + pq)(C213(x, p, q, r)− 1)

+ xqr(r + p+ q)(C213(x, p, q, r)− 1)2 + xq2r2(C213(x, p, q, r)− 1)3,

which leads to the following result.

Theorem 2.1. The generating function f = C213(x, p, q, r)− 1 satisfies

f = xp+ x(pr + qr + pq)f + xqr(r + p+ q)f2 + xq2r2f3.

Proof of Theorem 1.1. Theorem 2.1 shows that the generating function

g = qr(C213(x, p, q, r)− 1)

satisfies g = x(p+ g)(q + g)(r + g). Thus, the generating function g is symmetric in p, q,

r. Moreover, by Lagrange Inversion Formula, we obtain that the coefficient of xn in g is

given by

[xn]g =
1

n
[yn−1](p+ y)n(q + y)n(r + y)n

=
1

n

n∑
i=0

n∑
j=0

(
n

i

)(
n

j

)(
n

i+ j + 1

)
qn−irn−jpi+j+1,

which completes the proof of (1.1).

If we let g = C213(x, p, 1, 1), then Theorem 2.1 gives g = 1 + x(p− 1 + g)g2. Thus, by

Lagrange Inversion Formula, we obtain that the coefficient of xn in g is given by

[xn]g =
1

n
[yn−1](p+ y)n(y + 1)2n =

1

n

n−1∑
i=0

(
n

i

)(
2n

n− 1− i

)
pn−i.

Hence, the number of Stirling permutations in Qn(213) with exactly k plateaus is given

by 1
n

(
n
k

)(
2n
k−1

)
, which completes the proof.
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2.2. The case 123

For short notation, we define f(n) = Cn,123(p, q, r). Conditioning on the initial entries of

permutations, we define

f(n | i1i2 · · · is) =
∑

σ=i1i2···isσ′∈Qn(123)

xnpplat(σ)qdes(σ)rasc(σ).

Lemma 2.2. For all n ≥ 2,

f(n)− pqf(n− 1) =

n∑
i=1

f(n | ii) + q(r − p)
n−1∑
i=1

f(n− 1 | ii).

Proof. Clearly, f(n) =
∑n

i=1 f(n | i), and f(n | i) = f(n | ii) + f(n | inn) (when i < n).

Thus, we obtain

(2.1) f(n) =
n∑
i=1

f(n | ii) +
n−1∑
i=1

f(n | inn).

On the other hand, for all n ≥ 2, we have

f(n | inn) = f(n | inni) + f(n | inn(n− 1)(n− 1))

= qrf(n− 1 | ii) + pqf(n− 1 | i(n− 1)(n− 1)),
(2.2)

which, by (2.1) and (2.2), implies the required result.

Lemma 2.3. For 1 ≤ i ≤ n− 2 and n ≥ 4,

f(n | ii)− 2pqf(n− 1 | ii) + p2q2f(n− 2 | ii)

= pq
i−1∑
j=1

f(n− 1 | jj) + pq(pr + qr − 2pq)
i−1∑
j=1

f(n− 2 | jj)

+ p2q2(r − p)(r − q)
i−1∑
j=1

f(n− 3 | jj).

Moreover, f(n |nn) = pqf(n−1) and f(n | (n−1)(n−1)) = pqf(n−1)+p2q(r−q)f(n−2).

Proof. By definition, we have f(n |nn) = pqf(n− 1). Thus,

f(n | (n− 1)(n− 1)) =
n−2∑
j=1

f(n | (n− 1)(n− 1)j) + f(n | (n− 1)(n− 1)nn),

which implies

f(n | (n− 1)(n− 1)) = pq
n−2∑
j=1

f(n− 1 | j) + prf(n− 1 | (n− 1)(n− 1))

= pqf(n− 1) + p2q(r − q)f(n− 2).
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Now, let 1 ≤ i ≤ n− 2, then

f(n | ii) =
i−1∑
j=1

f(n | iij) + f(n | iinn) = pq
i−1∑
j=1

f(n− 1 | j) + f(n | iinn).

Similarly,

f(n | iinn) = pqf(n− 1 | ii(n− 1)(n− 1)) + p2qr

i−1∑
j=1

f(n− 2 | j),

which implies

f(n | iinn)− pqf(n | ii(n− 1)(n− 1)) = p2qr
i−1∑
j=1

f(n− 2 | j).

Thus,

(2.3) f(n | ii)− pqf(n− 1 | ii) = pq

i−1∑
j=1

f(n− 1 | j) + p2q(r − p)
i−1∑
j=1

f(n− 2 | j).

On the other hand, by Lemma 2.2, we have that

i−1∑
j=1

f(n | j)− pq
i−1∑
j=1

f(n− 1 | j) =

i−1∑
j=1

f(n | jj) + q(r − p)
i−1∑
j=1

f(n− 1 | jj).

Hence, by using (2.3), we complete the proof.

Define Ln(v) =
∑n

i=1 f(n | ii)vi−1. We now present the following result.

Proposition 2.4. For all n ≥ 4,

Ln(v)− 2pqLn−1(v) + p2q2Ln−2(v)

= pqf(n− 1)vn−2(1 + v) + p2(rq − 3q2)f(n− 2)vn−2 + p2q2f(n− 2)vn−2

+
pqv

1− v
(Ln−1(v)− vn−3Ln−1(1)) +

pq(qr + pr − 2pq)v

1− v
(Ln−2(v)− vn−3Ln−2(1))

+
p2q2(r − p)(r − q)v

1− v
(Ln−3(v)− vn−3Ln−3(1)),

and

f(n)− pqf(n− 1) = Ln(1) + q(r − p)Ln−1(1),

where L1(v) = p, L2(v) = p2(r+ qv), L3(v) = p3qr+ p2qr(2p+ q)v+ p2q(pr+ qr+ pq)v2,

f(0) = 1, f(1) = p and f(2) = p(pq + pr + qr).

Proof. The initial conditions can be obtained from the definitions. The recurrence relation

for Ln(v) is obtained by multiplying the recurrence relation for f(n | ii) in Lemma 2.3 by

vi−1 and summing over i = 1, 2, . . . , n − 2. The recurrence relation for f(n) follows

immediately from Lemma 2.2.
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Define L(x; v) =
∑

n≥1 Ln(v)xn and let F (x) = C123(x, p, q, r) (for short notation).

By multiplying the first recurrence in Proposition 2.4 by xn and summing over n ≥ 4, we

obtain

L(x; v)− L1(v)x− L2(v)x2 − L3(v)x3 − 2pqx(L(x, v)− L1(v)x− L2(v)x2)

+ p2q2x2(L(x, v)− L1(v)x)

= pqx(F (xv)− 1− f(1)xv − f(2)x2v2) +
pqx

v
(F (xv)− 1− f(1)xv − f(2)x2v2)

+ p2q(r − q)x2(F (xv)− 1− f(1)xv)− p2q2x2(F (xv)− 1− f(1)xv)

+
pqvx

1− v

[
L(x, v)− L1(v)x− L2(v)x2 − 1

v2
(L(xv, 1)− L1(1)xv − L2(1)x2v2)

]
+
pq(qr + pr − 2pq)x2v

1− v

[
L(x, v)− L1(v)x− 1

v
(L(xv, 1)− L1(1)xv)

]
+
p2q2(r − p)(r − q)x3v

1− v
(L(x, v)− L(xv, 1)),

which, by several simple algebraic operations, implies(
(1− pqx)2 − pqxv(1− (p− r)qx)(1− p(q − r)x)

1− v

)
L(x; v)

= px(1− pqx)(1 + xp(r − q))− pqx(1 + pxv(r − q))(1 + qxv(r − p))
v(1− v)

L(xv; 1)

+
pqx(1 + v + pxv(r − 2q))

v
(F (xv)− 1).

(2.4)

By multiplying the second recurrence in Proposition 2.4 by xn and summing over n ≥ 2,

we obtain

(2.5) (1− pqx)(F (x)− 1) = (1 + q(r − p)x)L(x; 1).

By finding L(x; 1) from (2.5) and using it to simplify (2.4), we obtain the following result.

Theorem 2.5. The generating function C123(x, p, q, r) is given by

C123(x, p, q, r) = 1 +
1 + q(r − p)x

1− pqx
L(x; 1),

where the generating function L(x; v) satisfies(
(1− pqx)2 − pqxv(1− (p− r)qx)(1− p(q − r)x)

1− v

)
L(x; v)

=
px(1− pqx)(1 + xp(r − q))(1− v(1− q))

1− v
[1− (1− q)v − qvF (xv)] .

Theorem 2.5 gives(
(1− pqx/v)2 − pqx(1− (p− r)qx/v)(1− p(q − r)x/v)

1− v

)
L(x/v; v)

=
px/v(1− pqx/v)(1 + xp(r − q)/v)(1− v(1− q))

1− v
[1− (1− q)v − qvF (x)] ,

(2.6)
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where F (x) = 1 + (1+q(r−p)x)
1−pqx L(x; 1) = C123(x, p, q, r). This type of functional equation

can be solved systematically using the kernel method (see [12] and references therein). In

order to do that, we define

K(v) = (1− pqx/v)2 − pqx(1− (p− r)qx/v)(1− p(q − r)x/v)

1− v
.

So, if we assume that v = v0 = v0(x, p, q, r) in Theorem 2.5 (we shall show that v0 is the

solution) such that K(v0) = 0, then (2.6) gives

(2.7)
px/v0(1− pqx/v0)(1 + xp(r − q)/v0)(1− v0(1− q))

1− v0
[1− (1− q)v0 − qv0F (x)] = 0,

which implies

(2.8) F (x) = C123(x, p, q, r) = 1 +
1− v0

qv0
,

where v0 satisfies K(v0) = 0, that is,

−p2q2x2(1− x(r − q)(r − p)) + pqx(2 + x((p+ q)r − pq))v0 − (1 + pqx)v2
0 + v3

0 = 0.

If we set f = qC123(x, p, q, r)− q + 1, then f = q + 1−v0
v0
− q + 1 = 1

v0
, which implies

−p2q2x2(1− x(r − q)(r − p))f3 + pqx(2 + x((p+ q)r − pq))f2 − (1 + pqx)f + 1 = 0.

Hence, we can state the following result.

Theorem 2.6. The generating function f = qC123(x, p, q, r)− q + 1 satisfies

f = 1 + pqx(−1 + (2 + x(pr + qr − pq))f − pqx(1− x(p− r)(q − r))f2)f.

Proof of Theorem 1.2. Let f = q(C123(x, p, q, r) − 1) + 1. Then, Theorem 2.6 can be

written as

f =
1− p2q2x2(1− x(r − q)(r − p))f3

1 + pqx− pqx(2 + x(qr + pr − pq))f
,

which shows that the generating function f is symmetric in p, q.

Now, assume that g = xC123(x, p, 1, 1). Then, Theorem 2.6 gives that the generating

function g satisfies

(2.9) g =
x(1− pg + pg2)

(1− pg)2
.

Then, by Lagrange Inversion Formula, we have that the coefficient of xn in g is given by

[xn]g =
[yn−1]

n

n∑
j=0

(
n

j

)
pjy2j

(1− py)n+j
,
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which implies

[xn]g =
[yn−1]

n

n∑
j=0

∑
i≥0

(
n

j

)(
n− 1 + j + i

i

)
pj+iy2j+i

=
1

n

n∑
j=0

(
n

j

)(
2n− 2− j
n− 1− 2j

)
pn−1−j .

Hence, by the fact that C123(x, p, 1, 1) = g/x, we obtain that the generating function for

the number of Stirling permutations of length n that avoid 123 according to the number

plateaus is given by 1
n+1

∑n
j=0

(
n+1
j

)(
2n−j
n+j

)
pn−j . Moreover, the number of Stirling permu-

tations of length n that avoid 123 with exactly k plateaus is given by 1
n+1

(
n+1
k+1

)(
n+k
2n−k

)
,

which proves (1.3).

2.3. The case 132

Define g(n) = Cn,132(p, q, r) and again use the notation

g(n | i1i2 · · · is) =
∑

σ=i1i2···isσ′∈Qn(132)

xnpplat(σ)qdes(σ)rasc(σ).

Lemma 2.7. For all n ≥ 2,

g(n)− prg(n− 1) =
n∑
i=1

g(n | ii) + r(q − p)
n−1∑
i=1

g(n− 1 | ii).

Proof. Clearly, g(n) =
∑n

i=1 g(n | i), where g(n | i) = g(n | ii) + g(n | i(i + 1)). Thus, we

obtain

(2.10) g(n) =
n∑
i=1

g(n | ii) +
n−1∑
i=1

g(n | i(i+ 1)).

On the other hand, by definition, for all n ≥ 2, we have

g(n | i(i+ 1)) = g(n | i(i+ 1)(i+ 1))

= g(n | i(i+ 1)(i+ 1)i) + g(n | i(i+ 1)(i+ 1)(i+ 2))

= qrg(n− 1 | ii) + prg(n− 1 | i(i+ 1)),

(2.11)

which, by (2.10) and (2.11), implies the required result.

Lemma 2.8. For 1 ≤ i ≤ n− 1 and n ≥ 3,

g(n | ii)− 2prg(n− 1 | ii) = pq
i−1∑
j=1

g(n− 1 | jj) + pqr(q − p)
i−1∑
j=1

g(n− 2 | jj)

− p2r2g(n− 2 | ii)

with g(n |nn) = pqg(n− 1).
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Proof. By the definition g(n |nn) = pqg(n− 1). Let 1 ≤ i ≤ n− 1, then

g(n | ii) =

i−1∑
j=1

g(n | iij) + g(n | ii(i+ 1)(i+ 1)) = pq

i−1∑
j=1

g(n− 1 | j) + prg(n− 1 | ii),

which, by g(n | i) = g(n | ii) + g(n | i(i+ 1)), implies

g(n | ii) = pq

i−1∑
j=1

g(n− 1 | jj) + pq

i−1∑
j=1

g(n− 1 | j(j + 1)) + prg(n− 1 | ii).

Thus, by (2.11), we obtain

g(n | ii)− prg(n− 1 | ii) = pq
i−1∑
j=1

g(n− 1 | jj) + pqr(q − p)
i−1∑
j=1

g(n− 2 | jj)

+ prg(n− 1 | ii)− p2r2g(n− 2 | ii),

as required.

Proposition 2.9. Define Ln(v) =
∑n

i=1 g(n | ii)vi−1. For all n ≥ 3,

Ln(v)− pqvn−1g(n− 1)− 2prLn−1(v)

=
pqv

1− v
(Ln−1(v)− vn−2Ln−1(1))

+
pqr(q − p)v

1− v
(Ln−2(v)− vn−2Ln−2(1))− p2r2Ln−2(v)

and

g(n)− prg(n− 1) = Ln(1) + r(q − p)Ln−1(1),

where L1(v) = p and L2(v) = p2(r + qv), g(0) = 1, g(1) = p and g(2) = p(pr + qr + pq).

Proof. The initial conditions can be obtained from the definitions. By Lemma 2.7, we

have g(n)− prg(n− 1) = Ln(1) + r(q− p)Ln−1(1). By multiplying the recurrence relation

in statement of Lemma 2.8 by vi−1 and summing over i = 1, 2, . . . , n − 1, we obtain the

recurrence relation for Ln(v).

Define L(x; v) =
∑

n≥1 Ln(v)xn and let F (x) = C132(x, p, q, r) (for short notation). By

multiplying the recurrences in Proposition 2.9 by xn and summing over n ≥ 3, we obtain(
(1− prx)2 − pqvx(1 + r(q − p)x)

1− v

)
L(x; v)

= px(1− prx) + pqx(F (xv)− 1)− pqx

1− v
(1 + r(q − p)vx)L(xv; 1)

and

(1− prx)F (x) = (1 + r(q − p)x)L(x; 1) + 1− prx.

Hence, we can state the following result.
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Theorem 2.10. The generating function C132(x, p, q, r) is given by

C132(x, p, q, r) = 1 +
1 + r(q − p)x

1− prx
L(x; 1),

where the generating function L(x; v) satisfies(
(1− prx)2 − pqvx(1 + r(q − p)x)

1− v

)
L(x; v)

= px(1− prx)− pqxv(1− prx)(1 + (q − p)rxv)

(1− prxv)(1− v)
L(xv; 1).

Theorem 2.10 gives(
(1− prx/v)2 − pqx(1 + r(q − p)x/v)

1− v

)
L(x/v; v)

= px(1− prx/v)/v − pqx(1− prx/v)(1 + (q − p)rx)

(1− prx)(1− v)
L(x; 1),

(2.12)

where 1 + 1+(q−p)rx
1−prx L(x; 1) = C132(x, p, q, r). This type of functional equation can be

solved systematically using the kernel method (see [12] and references therein). In order

to do that, we define

K(v) = (1− prx/v)2 − pqx(1 + r(q − p)x/v)

1− v
.

So, if we assume that v = v0 = v0(x, p, q, r) in (2.12) (we shall show that v0 is the solution)

such that K(v0) = 0, then (2.12) gives

L(x, 1) =
1− v0

qv0

1− prx
1 + (q − p)rx

and

C132(x, p, q, r) = 1 +
1− v0

qv0
,

where v0 satisfies

−p2r2x2 + rpx(prx− pqx+ q2x+ 2)v0 − (1 + 2prx+ pqx)v2
0 + v3

0 = 0.

So f = qC132(x, p, q, r)− q + 1 = 1
v0

, which implies

−p2r2x2f3 + rpx(prx− pqx+ q2x+ 2)f2 − (1 + 2prx+ pqx)f + 1 = 0.

Hence, we can state the following result.

Theorem 2.11. The generating function f = qC132(x, p, q, r)− q + 1 satisfies

f = 1 + px
(
q − 2r + r(2 + (pr − pq + q2)x)f − pr2xf2

)
f.
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Proof of Theorem 1.4. Let h = xC132(x, p, 1, 1). Then, Theorem 2.11 gives

h =
x(1− ph+ ph2)

(1− ph)2
,

which, by (2.9), proves that the number of 132-avoiding Stirling permutations of order n

with exactly k plateaus is the same as the number of 123-avoiding Stirling permutations

of order n with exactly k plateaus.

If we set h = x(qC132(x, 1, q, 1)− q + 1), then Theorem 2.11 gives

h =
x((1− h)2 + qh(1− h) + q2h2)

(1− h)2
.

Then, by Lagrange Inversion Formula, we have that the coefficient of xn in h is given by

[xn]h =
1

n
[yn−1]

(
1 + q

y

1− y
+ q2 y2

(1− y)2

)n
,

which implies

[xn]h =
1

n

n∑
j=0

j∑
i=0

(
n

j

)(
j

i

)(
n− 2

j + i− 1

)
qj+i.

Thus, the number of 132-avoiding Stirling permutations of order n with exactly d descents

is given by

[xn+1qd+1]h =

(
n−1
d

)
n+ 1

n+1∑
j=0

(
n+ 1

j

)(
j

d+ 1− j

)
,

as required.

Finally, we note that the generating function h = xC132(x, 1, 1, r) satisfies (see Theo-

rem 2.11)

h =
x(1 + (1− 2r)h+ rh2)

(1− rh)2
,

which, by Lagrange Inversion Formula, implies that the coefficient of xn in h is given by

[xn]h =
1

n
[yn−1]

∑
`≥0

n∑
j=0

j∑
i=0

(
n

j

)(
j

i

)(
2n− 1 + `

`

)
ri+`(1− 2r)j−iyj+i+`.

Thus, the generating function for the number of 132-avoiding Stirling permutations of

order n according to the number of ascents is given by

[xn+1]h =
1

n+ 1

n+1∑
j=0

j∑
i=0

(
n+ 1

j

)(
j

i

)(
3n+ 1− j − i

2n+ 1

)
rn−1−j(1− 2r)j−i.
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3. Some combinatorial explanations

3.1. The case 213

The symmetry of qrCn,213(p, q, r) in p, q and r follows from a natural bijection ϕ : Qn(213)

7→ Tn−1, where Tn is the set of n-edge ternary trees. To define ϕ, recall that each nonempty

Stirling 213-avoider σ is uniquely expressible as σ′1σ′′1σ′′′ with σ′ > σ′′ > σ′′′ and σ′, σ′′,

σ′′′ all 213-avoiders. We define ϕ recursively in 8 cases according as each of σ′, σ′′, σ′′′ is

empty or not. First, ϕ(11) = ε, the empty ternary tree (one vertex, no edges). The other

7 cases are treated schematically below.

It is clear, by induction, that ϕ is a bijection. Now let A, P , D denote the statistics

that count augmented ascents, plateaus, and augmented descents respectively in a Stirling

permutation, and let L, V , R denote the statistics that count left, vertical, and right

edges respectively in a ternary tree. For σ ∈ Qn(213) and τ = ϕ(σ), it is easy to show by

induction that

L(τ) = n−A(σ), V (τ) = n− P (σ), R(τ) = n−D(σ).

(For the base case n = 1, A, P , D all have the value 1 on 11 ∈ Q1 and L, V , R all have

the value 0 on the empty tree.) Clearly, L, V , R have a symmetric joint distribution on

Tn−1. Hence, A, P , D likewise have a symmetric joint distribution on Qn(213).

3.2. The case 123

To explain the symmetry of qCn,123(p, q, r) in p and q, we give a bijection from Qn(123)

to a suitable set An, together with an involution on An that obviously interchanges the

statistics corresponding to “number of augmented descents” and “number of plateaus.”

A permutation p ∈ Sn determines a composition c(p) of n: the distances between suc-

cessive left-to-right (LR for short) minima in p0 (= p with an appended 0). A composition

c = (c1, c2, . . . , ck) determines a set of integer sequences S(c) := {(s1, s2, . . . , sk) : 1 ≤ si ≤
ci for all i}. Set An = {(p, s) : p ∈ Sn(123), s ∈ S(c(p))}. There is an obvious involution

on An : (p, s) 7→ (p, c(p) + 1 − s). For example, p = (4, 6, 5, 2, 1, 3) has LR minima 4, 2, 1

and c(p) = (3, 1, 2) and the involution sends (p, (3, 1, 1)) to (p, (1, 1, 2)).

A Stirling permutation σ ∈ Qn determines a permutation p(σ) ∈ Sn given by the first

occurrences of the letters in σ.
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Now we define a mapping ψ : Qn 7→ An. Given σ ∈ Qn, let m1, . . . ,mk denote the

successive LR minima in p(σ), and let si be the number of distinct letters in the subword

of σ bounded by the two occurrences of mi. Set s = (s1, s2, . . . , sk), and ψ(σ) = (p(σ), s).

Then the restriction ψ|Qn(123) is the desired bijection from Qn(123) to An.

To show this works, let us consider an example. Let σ ∈ Qn(123) and so, consequently,

p(σ) ∈ Sn(123), and suppose p(σ) =

11 12 7 10 9 4 3 1 8 6 5 2,

where we have inserted some space before each LR minimum. The spaces divide p(σ) into

segments whose lengths form c(p(σ)). Since p(σ) avoids 123, the non-initial entries of all

the segments are decreasing left to right. The Stirling property then forces a plateau at

each non-initial entry of a long segment (length ≥ 2) and at each short segment (length

= 1):

11 12 12 7 10 10 9 9 4 4 3 3 1 8 8 6 6 5 5 2 2.

As for each initial entry (= LR minimum) m, its second appearance must occur in its own

segment (otherwise, m. . . x . . .m appears with x < m) and it cannot split a plateau, but

is otherwise unrestricted. Thus, for example, the second 7 may occur right after the first

7 (and 77 contains 1 distinct entry) or after the last 10 (and 7 10 10 7 contains 2 distinct

entries) or after the last 9 (and 7 10 10 9 9 7 contains 3 distinct entries). In general, the

number of choices to place the second occurrence of a LR minimum mi is the length ci of

its segment. The validity of the bijection is now clear.

Next, there is a plateau at each short segment, at each non-initial entry in a long

segment and for each instance of si = 1 (which means mi contributes a plateau). So the

number of plateaus corresponds to n −#segments + |{i : si = 1}|. Similarly, there is an

augmented descent after the plateau generated by each short segment, after the plateau

generated by each non-initial entry in a long segment and for each instance of si = ci

(which means the second occurrence of mi starts an additional augmented descent). So

the number of augmented descents corresponds to n − #segments + |{i : si = ci}|. The

involution on An clearly interchanges these statistics.

3.3. A further bijection

We now use An as an intermediate construct to give a bijection from Qn(123) to a more

appealing class of objects, denoted Fn, which we now define. A favorite-child (FC) ordered

tree is an (unlabeled) ordered tree in which each parent (non-leaf) vertex has a distin-

guished child edge or, more picturesquely, a designated favorite child. Let Fn denote the

set of n-edge FC ordered trees. It is convenient to introduce what we call the left-path

labeling of the vertices in an ordered tree, defined recursively as follows.
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• Place label 0 on the root.

• Take the smallest labeled vertex v with an unlabeled child (initially v = 0). Succes-

sively label the vertices in the leftmost path from each unlabeled child of v (taken

left to right) with the smallest unused label.

• Repeat until all vertices are labeled.

Figure 3.1: Left: left path labeling – first pass; Right: final result.

For the ordered tree pictured in Figure 3.1 above, the labels generated from v = 0 are

shown on the left, the second pass uses v = 6, and the full left-path labeling is shown on

the right.

There are several known bijections from 321-avoiding permutations to Dyck paths,

equivalently, under reversal of permutations and the “glove” identification of Dyck paths

and ordered trees, from 123-avoiding permutations to ordered trees. (See [7, 8] for two

surveys of these bijections.) Here, though, we need an apparently new one. Define

ρ : Sn(123) 7→ On, the set of n-edge ordered trees, as follows. Given p ∈ Sn(123), split p

into segments, each starting at a LR minimum of p. Form a tree on the vertex set [0, n] by,

for each segment, joining all its entries to m− 1 where m is the first entry of the segment,

as illustrated by example below (the LR minimum segments are underlined).

15 16 12 9 14 13 8 7 11 4 3 1 10 6 5 2

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

14 11 8 7 6 3 2 0

These edges clearly form a tree; root it at 0. Then order the edges so that the children

of each parent vertex are increasing left to right. (The result for this example is the

tree shown in the right of Figure 3.1). Finally, erase all the labels to get the desired

ordered tree. To reverse the map, label the vertices of the tree in left-path order. The LR

minima can then be retrieved: take the leftmost child of each parent vertex. The length

of the segment containing a LR minimum v can also easily be retrieved as the family size
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(number of children) of the parent of v. A 123-avoiding permutation is determined by its

LR minima and their locations (all other entries decrease left to right), and so the original

permutation can be recovered.

The efficacy of this bijection is that it takes the lengths of the LR minimum segments

(visited right to left) to the family sizes of the parent vertices (visited in left-path order).

A bijection from An to Fn is now clear: for (p, s) ∈ An, use ρ(p) as the underlying ordered

tree and use s to designate the favorite child of each parent vertex. The involution on An
that establishes the equidistribution of descents and plateaus in Qn(123) then becomes

“reverse the age ranking of each favorite child”, i.e., change it from i-th (say) oldest to

i-th youngest.

3.4. Cases 123 and 132

To see why plateaus have the same distribution on Qn(123) and Qn(132), observe that, by

considerations entirely analogous to those for the map ψ|Qn(123) in Section 3.2, ψ|Qn(132)

is also a bijection, this time from Qn(132) to An, and it also carries “number of plateaus”

to n−#segments + |{i : si = 1}|.

4. Further results

In this section we consider Stirling permutations that avoid 213 and another pattern

(motivated by the study of avoiding two patterns 132, τ in permutations, see [21] and

references therein). Let Qn(τ1, τ2) denote the set of Stirling permutations of order n that

avoid the patterns τ1 and τ2. For a pattern τ , we define

Fτ = Fτ (x, p, q, r) =
∑
n≥0

xn
∑

σ∈Qn(213,τ)

pplat(σ)qdes(σ)rasc(σ).

For patterns τ = (τ1, . . . , τk) and τ ′ = (τ ′1, . . . , τ
′
k′), let τ ⊕ τ ′ denote their “disjoint

concatenation” (τ1, . . . , τk,m + τ ′1, . . . ,m + τ ′k′), where m is the largest letter of τ . Thus

11⊕ 121 = 11232.

Theorem 4.1. Let τ = 1 ⊕ τ ′ where τ ′ is some pattern. Then, the generating function

Fτ (x, p, q, r) is given by

Fτ (x, p, q, r) = 1 +
xp+ xr(p+ q)(Fτ ′(x, p, q, r)− 1) + xqr2(Fτ ′(x, p, q, r)− 1)2

1− xpq − xqr(1 + p)(Fτ ′(x, p, q, r)− 1)− xq2r2(Fτ ′(x, p, q, r)− 1)2
.

Proof. Let us write an equation for the generating function Fτ (x, p, q, r). Note that

each nonempty Stirling permutation σ that avoids both 213 and τ can be represented

as σ′1σ′′1σ′′′ such that

• each letter of σ′ is greater than each letter of σ′′;
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• each letter of σ′′ is greater than each letter of σ′′′;

• σ′ is a Stirling permutation that avoids both 213 and τ ;

• σ′′, σ′′′ are Stirling permutations that avoid both 213 and τ ′.

Hence, by considering the 8 possibilities of either one of σ′, σ′′, σ′′′ is empty or not, we

obtain that the generating function Fτ (x, p, q, r) satisfies

Fτ (x, p, q, r) = 1 + xp+ xpq(Fτ − 1) + x(p+ q)r(Fτ ′ − 1) + xqr(1 + p)(Fτ − 1)(Fτ ′ − 1)

+ xr2q(Fτ ′ − 1)2 + xq2r2(Fτ − 1)(Fτ ′ − 1)2,

which, by solving for Fτ (x, p, q, r)− 1, implies the required result.

Example 4.2. Let τ = 122 = 1⊕τ ′ with τ ′ = 11. Clearly, Fτ ′ = 1 since it is very difficult

for a Stirling permutation to avoid a repeated letter. Thus, Theorem 4.1 gives

F122 = F122(x, p, q, r) = 1 +
xp

1− xpq
= 1 +

∑
j≥0

xj+1pj+1qj = 1 +
∑
j≥1

xjpjqj−1.

For τ = 1233 = 1⊕ 122, Theorem 4.1 gives

F1233 − 1 =
xp+ xr(p+ q)(F122 − 1) + xqr2(F122 − 1)2

1− xpq − xqr(1 + p)(F122 − 1)− xq2r2(F122 − 1)2
.

In particular, F1233(x, 1, 1, 1) = (1−x)2

1−3x+x2
, that is, the number of Stirling permutations

of Qn(213, 1233) is given by the 2n-th Fibonacci number (the n-th Fibonacci number is

defined by a0 = 0, a1 = 1 and an = an−1 + an−2). Applying Theorem 4.1 repeatedly, we

obtain

F12344(x, 1, 1, 1) =
(1− 3x+ x2)2

1− 7x+ 15x2 − 12x3 + 5x4 − x5

and

F123455(x, 1, 1, 1)

=
(1− 7x+ 15x2 − 12x3 + 5x4 − x5)2

(1− x)(1− 14x+ 77x2 − 215x3 + 332x4 − 295x5 + 157x6 − 51x7 + 10x8 − x9)
.

By Theorem 4.1, we obtain that the generating function F123···k(k+1)(k+1)(x, p, q, r) is

a rational function.

Theorem 4.3. Let τ = 11 ⊕ τ ′ where τ ′ is some pattern. Then, the generating function

Fτ (x, p, q, r) is given by

Fτ =
−b−

√
b2 − 4ac

2a
,
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where

a = qrx(1 + qr(Fτ ′ − 1)),

b = −1− qx(r − p)− qrx(2qr − p− r)(Fτ ′ − 1),

c = 1 + xp(1− q) + rx(p+ q2r − qp− qr)(Fτ ′ − 1).

Proof. Let us write an equation for the generating function Fτ (x, p, q, r). Note that

each nonempty Stirling permutation σ that avoids both 213 and τ can be represented

as σ′1σ′′1σ′′′ such that

• each letter of σ′ is greater than each letter of σ′′;

• each letter of σ′′ is greater than each letter of σ′′′;

• σ′, σ′′ are Stirling permutations that avoid both 213 and τ ;

• σ′′′ is a Stirling permutation that avoids both 213 and τ ′.

Hence, by considering the 8 possibilities of either one of σ′, σ′′, σ′′′ is empty or not, we

obtain that the generating function Fτ (x, p, q, r) satisfies

Fτ (x, p, q, r) = 1 + xp+ x(p+ r)q(Fτ − 1) + xpr(Fτ ′ − 1) + xqr(Fτ − 1)2

+ xqr(p+ r)(Fτ − 1)(Fτ ′ − 1) + xq2r2(Fτ ′ − 1)(Fτ − 1)2,

which, by solving for Fτ (x, p, q, r)− 1, implies the required result.

Example 4.4. Let τ = 1122 = 11⊕ 11. Since F11 = 1, Theorem 4.3 gives

F1122(x, p, q, r)

=
1− xqp+ xqr −

√
x2q2p2 − 2xqp+ 2x2q2pr + 1− 2xqr + x2q2r2 − 4x2qrp

2qrx
,

which leads to F1122(x, 1, 1, 1) = C(x), where C(x) = 1−
√

1−4x
2x is the generating function

for the Catalan numbers.

Using Theorem 4.3 once more, we have

F112233(x, 1, 1, 1) =
1−

√
2
√

1− 4x− 1

1−
√

1− 4x
= C(xC(x))

and

F11223344(x, 1, 1, 1) = C(xC(xC(x))).

By induction on k, we obtain that F1122···kk(x, 1, 1, 1) = C(xC(xC(x · · ·C(xC(x))))),

where C is used exactly k − 1 times.
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As a final example, let us count the occurrences of the pattern 122 in Qn(213) (mo-

tivated by the study of counting occurrences of the pattern 12 · · · k in a 132-avoiding

permutation, for example see [20, 23]). To do so, we denote the number occurrences of

the pattern 122 in σ by 122(σ). We define R(x, p, z) to be the generating function for the

number of Stirling permutations of Qn(213) according to the occurrences of plateaus and

occurrences of the pattern 122, namely,

R(x, p, z) =
∑
n≥0

xn
∑

σ∈Qn(213)

pplat(σ)z122(σ).

By the 8 possibilities of block decompositions in the proof of Theorem 4.1, we obtain

R(x, p, z) = 1 + xpR(x, p, z)R(x, pz2, z) + xR(x, p, z)(R(x, pz, z)− 1)R(x, pz2, z),

which implies

R(x, p, z) =
1

1− x(R(x, pz, z)− 1 + p)R(x, pz2, z)
.

The first terms of the generating function R(x, p, z) are 1, px, p(pz2 + z + p), p(p2z6 +

2pz3 + p2z4 + pz4 + z2 + pz2 + 2p2z2 + 2pz+ p2) and p(p3 + 7p2z3 + 3pz2 + 2pz3 + 2p2z2 +

3p3z4 + 3p3z2 + 3p2z + 3p2z4 + 3p3z6 + 4pz4 + pz6 + z3 + 2p2z6 + 4p2z7 + 5p2z5 + p3z10 +

2p3z8 + p2z8 + 2pz5 + p2z9 + p3z12).
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