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On Gated Sets in Graphs

Manoj Changat, Iztok Peterin* and Abisha Ramachandran

Abstract. A subset K of vertices of a graph G is gated if for every vertex x ∈ V (G)

there exists a gate v ∈ K which is on a shortest path between x and any vertex u of K.

We give a characterization of gated sets in an arbitrary graph G and several necessary

conditions. This characterization yields very nice results in the case of weakly modular

graphs, which are also presented. We also show that the trees are precisely the graphs

which present a convex geometry with respect to the gated convexity.

1. Introduction

The notion of the gate in a graph, which plays an important role in metric graph theory,

was first introduced by Goldman and Witzgall [16]. General properties of gated sets are

that every gated set is also geodesic convex (see [14]), that a map which maps a vertex to

its gate in a gated set is a weak retraction (see Lemma 16.2 in [17]), that the intersection of

two gated sets yields a gated set again (see Lemma 16.3 in [17]) and that the family of gated

sets has the Helly property (see Corollary 16.3 in [17]). However the majority of results

about gated sets is concerned with special graph classes related to metric properties. The

origin of these families of graphs is the well-known class of median graphs, where gated

sets coincide with geodesic convex sets (see Lemma 12.5 in [17]). The same holds also

for modular graphs which are a bipartite generalization of median graphs. However, all

other generalizations of median graphs connected with gated sets are non-bipartite. They

are quasi-median graphs [5, 19], pseudo-median graphs [4], weakly median graphs [3],

pre-median graphs [12], fiber-complemented graphs [12], weakly modular graphs [6, 13],

cage-amalgamation graphs [9], absolute C-median graphs [6] and bucolic graphs [7].

The structure of all these classes has a strong relation with gated sets. All of them can

be built either by expansion procedures or amalgamation, with the exception of absolute

C-median graphs (for which this is a conjecture). In an expansion procedure every graph

of the class under observation can be built if we start in a graph which is elementary (i.e.,

its only gated sets are singletons and the whole vertex set) and then expand it with some
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rules over a gated set. These rules and elementary graphs are different with respect to

the graph class with which we are dealing. Similarly we can build every graph of the class

under observation from the gated amalgamations of Cartesian products of its elementary

graphs.

In this work, we present a characterization of gated sets for general graphs together

with several necessary conditions (see Section 3). The tools for this characterization

are related to the triangle and the quadrangle property which define the class of weakly

modular graphs. Hence it is no surprise that gated sets behave very nicely in weakly

modular graphs (see Section 4) and also in pre-median graphs, weakly median graphs,

quasi-median graphs and pseudo-median graphs, which all have weakly modular graphs

as their superclass. In particular, two conditions, each of them characteristic for gated

sets in weakly modular graphs, are the same as conditions which are characteristic for

convex sets in partial cubes (another bipartite generalization of median graphs) and one

of them even for all bipartite graphs (see the Convexity lemma in [18]).

In [15] Farber and Jamison study the problem from the abstract convexity theory,

which is sometimes referred to as Minkowski-Krein-Milman property or convex geome-

try property. In the case of monophonic convexity exactly chordal graphs are convex

geometries, while in the geodesic convexity these are precisely Ptolemaic graphs (i.e.,

distance-hereditary chordal graphs). In a similar way, totally balanced hypergraphs and

strongly chordal graphs have been characterized as convex geometries of some particu-

lar (hyper)graph convexities [15]. For the Steiner convexity it was shown that precisely

3-fan-free chordal graphs are convex geometry with respect to this convexity [10]. Re-

cently, in [2], the so-called toll convexity was introduced on a special kind of walks and

it was shown that exactly interval graphs are convex geometries with respect to the toll

convexity.

2. Preliminaries

In this paper, we consider only finite, connected, undirected graphs G without loops and

multiple edges. A u, v-path path P of G is a u, v-shortest path or a geodesic if it is of the

smallest length (where the length of a path dG(u, v) is the number of its edges). A chord

of a path P is an edge joining two non-consecutive vertices of P . A path is induced (or

chordless or monophonic) if it has no chord. If all pairs of vertices of a subgraph H of

G which are adjacent in G are also adjacent in H, then H is an induced subgraph. For

K ⊂ V (G) we denote by 〈K〉 the subgraph of G induced by vertices of K. A subgraph H

of G is isometric if dH(u, v) = dG(u, v) for every pair u, v ∈ V (H).

The geodesic interval between vertices u and v in G, denoted as I(u, v), is the set of

all vertices lying on a shortest path between u and v. A geodesic convex set in G is a
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set which contains I(u, v) for each pair u, v ∈ V (G). Let K be a subset of vertices in

G, and let u be a vertex of G. A gate for u in K is a vertex x in K such that x lies

in I(u,w), for each vertex w in K. Clearly, if u has a gate in K, then it is unique and

it is the vertex in K closest to u. Trivially, a vertex in K is its own gate. A subset K

of V (G) is called gated, if every vertex v of G has the gate pK(v) in K. For a gated set

K we call the map pK : V (G) → K which maps a vertex to its gate in K the gate map.

The gate map is a weak retraction, see Lemma 16.2 in [17]. In particular this means that

d〈K〉(pk(v), pk(u)) ≤ dG(u, v) for any pair u, v ∈ V (G). Tardif [20] proposed the term

prefiber for gated sets because of their role in the Cartesian product of graphs.

A convexity on a non-empty set X is a family Γ of subsets of X containing X as well as

the empty set ∅ such that Γ is closed under arbitrary intersections and nested unions. The

members of Γ are called convex sets. If X is finite, then the nested union property follows

trivially and the definition of convexity just reduces to the condition that the intersection

of convex sets is convex and both X and ∅ are convex. As already mentioned in the

introduction, this holds for gated sets. Hence the family of gated sets in a graph G forms

a convexity on V (G) called the gated convexity. An interval function R : X × X → 2X

on a non-empty set X has the property that x, y ∈ R(x, y) and R(x, y) = R(y, x), and

R-convex sets are defined as the sets S such that R(x, y) ⊆ S for any x, y ∈ S. The family

of R convex sets form a convexity on X known as the interval convexity, see Calder [11].

Hence the family of all geodesic convex sets in a graph also forms an interval convexity.

Geodesic convex sets form probably the most natural convexity and therefore we will

call them simply convex sets. It is interesting to note that the gated convexity is also

an interval convexity generated by the pre-fiber interval function defined by FI(u, v) =

{w : I(u,w) ∩ I(w, v) = {w}}. For more about general convexities see the book [21].

A vertex s from a convex set S is an extreme vertex of S, if S − {s} is also convex. A

graph G is called a convex geometry with respect to a given convexity, if any convex set of

G is the convex hull of its extreme vertices. An alternative definition of convex geometries,

using the so-called anti-exchange axiom is also often used (cf. [1], where convex geometries

are studied in the context of lattices).

A graph G satisfies the triangle property if for any edge uv and any vertex x with

dG(u, x) = dG(v, x) = ` ≥ 2, there exists a common neighbor y of u and v with dG(x, y) =

` − 1. See the left part of Figure 2.1 for the triangle property. A graph G satisfies the

quadrangle property if, for any vertices u, v, w and x, where dG(u, x) = dG(v, x) = ` =

dG(x,w) − 1 and w is a common neighbor of u and v, there exists a common neighbor

y of u and v with dG(x, y) = ` − 1. See the right part of Figure 2.1 for the quadrangle

property. A graph G is weakly modular if it satisfies both the triangle and the quadrangle

property.
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Figure 2.1: Triangle property (left) and quadrangle property (right).

3. Gated sets in graphs

We start with a characterization of gated sets in an arbitrary graphG. For this we need two

new tools which are in a way generalizations of the triangle and the quadrangle property.

Let G be a graph and K a subset of V (G). We say that the odd cycle property is satisfied

for K if for every u, v ∈ K such that uv ∈ E(G) and for every x ∈ V (G) −K for which

dG(u, x) = dG(v, x) = `, there exists a y ∈ K such that dG(x, y) < ` and y is on a shortest

x, u-path and on a shortest x, v-path. See the left part of Figure 3.1 for the odd cycle

property. Note that a shortest y, u-path in G, a shortest y, v-path in G and uv contains an

odd cycle, which justifies the name. Also y need not be the gate for x in K, but the gate

of x in K, if it exists, always witnesses the odd cycle property. Similarly we say that the

even cycle property is satisfied for K if for every u, v ∈ K such that d〈K〉(u, v) = 2 with a

common neighbor w ∈ K and for every x ∈ V (G)−K for which dG(u, x) = dG(v, x) = `

and dG(x,w) = ` + 1, there exists a y ∈ K such that dG(x, y) < ` and y is on a shortest

x, u-path and on a shortest x, v-path. See the right part of Figure 3.1 for the even cycle

property. Similar as in the case of the odd cycle property a shortest y, u-path in G, a

shortest y, v-path in G and the path uwv in 〈K〉 contains an even cycle. Again y need

not be the gate for x in K, but the gate of x in K, if it exists, always witnesses the even

cycle property.
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Figure 3.1: The odd cycle property (left) and the even cycle property (right).

These two definitions are not direct generalizations of the triangle property and the

quadrangle property. To obtain such generalizations we need to set K = V (G) in the
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definitions of both odd and even cycle properties. In addition we need a demand that

y 6= x, otherwise everything is satisfied by nothing. While graphs which witnesses both

such properties may be worthy of independent treatment, we need here the existence of

such an odd and an even cycle in 〈K〉 to ensure that K is gated as shown by Theorem 3.2.

Before this theorem we need additional result, which may be of independent interest.

Lemma 3.1. Let G be a graph and let K ⊆ V (G) induce a connected subgraph of G. If

the odd cycle property and the even cycle property holds for K, then 〈K〉 is an isometric

subgraph of G.

Proof. Suppose that 〈K〉 is not an isometric subgraph of G. Let a, b ∈ K be such that

dG(a, b) < d〈K〉(a, b). (Notice that d〈K〉(a, b) exists, since 〈K〉 is connected.) Among all

such pairs of vertices we may choose a and b such that dG(a, b) + d〈K〉(a, b) is minimum.

Let P = x0x1 · · ·xs, x0 = a and xs = b, be a shortest a, b-path in G and let Q = y0y1 · · · yt,
y0 = b and yt = a be a shortest a, b-path in 〈K〉. Clearly 1 < s < t and we can choose

such a notation that a and b are the only vertices of K on P . In particular x1 /∈ K.

Suppose first that there exists an index `, 0 < ` < t, such that dG(x1, y`) = dG(x1, y`+1).

If the odd cycle property holds for x1, y` and y`+1, then there exists a u ∈ K which is on

a shortest x1, y`-path R and on a shortest x1, y`+1-path R′ in G. Suppose that R is of

length r. Clearly, also R′ is of length r. We have

dG(a, u) + d〈K〉(a, u) ≤ r + 1 + t− `− 1 ≤ (s− 1 + `) + t− `

= s+ t− 1 < dG(a, b) + d〈K〉(a, b).

By the choice of a and b this implies that d〈K〉(a, u) = dG(a, u).

Now we may assume that dG(x1, y`) 6= dG(x1, y`+1) for every `, 0 < ` < t. Since x1

and yt are adjacent and t > s, there exists an index `, 0 < ` < t, such that dG(x1, y`−1) =

dG(x1, y`+1) = dG(x1, y`)−1. If the even cycle property holds for x1, y`−1, y`+1 and y`, then

there exists a u ∈ K which is on a shortest x1, y`−1-path R and on a shortest x1, y`+1-path

R′ in G. Suppose that R (and then also R′) is of length r. We have

dG(a, u) + d〈K〉(a, u) ≤ r + 1 + t− `− 1 ≤ (s− 1 + `− 1) + t− `

= s+ t− 2 < dG(a, b) + d〈K〉(a, b).

By the choice of a and b this implies that d〈K〉(a, u) = dG(a, u).

In both cases we may choose u so that it is closest to x1. Since x1 is adjacent to

a, we have dG(a, u) − 1 ≤ dG(x1, u) ≤ dG(a, u) + 1. If dG(x1, u) = dG(a, u) + 1, then a

shortest x1, u-path contains a and we have d〈K〉(a, y`) = d〈K〉(a, y`+1) or d〈K〉(a, y`−1) =

d〈K〉(a, y`+1), respectively, which is not possible. So let dG(a, u)−1 ≤ dG(x1, u) ≤ dG(a, u)

and let R = z0z1 · · · zk, a = z0 and u = zk, be a shortest a, u-path in 〈K〉. For 1 ≤ i ≤ k
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there must exists two adjacent vertices zi and zi−1 on R with dG(x1, zi) = dG(x1, zi+1)

or two vertices zi−1 and zi+1 on R with dG(x1, zi−1) = dG(x1, zi+1). We choose i to

be the biggest integer when one of these two options occurs. In the first case there

exists u′ ∈ K by the odd cycle property for x1, zi and zi−1. In the second case we have

dG(x1, zi+1)− 1 ≤ dG(x1, zi) ≤ dG(x1, zi+1) + 1. If dG(x1, zi) = dG(x1, zi+1) + 1, then set

u′ = zi. If dG(x1, zi) = dG(x1, zi+1), then there exists u′ by the odd cycle property for x1, zi

and zi+1. If dG(x1, zi) = dG(x1, zi+1) + 1, then there exists u′ by the even cycle property

for x1, zi+1 and zi−1. By the same reasons as above we have that d〈K〉(a, u
′) = dG(a, u′)

and that dG(a, u′) ≤ dG(x1, u
′) ≤ dG(a, u′) + 1. This yields the final contradiction with

the choice of u, since by the choice of i vertex u′ satisfies the odd cycle property for x1, y`

and y`+1 or the even cycle property for x1, y`−1, y`+1 and y`, respectively, and the proof

is complete.

Theorem 3.2. Let G be a graph and let K ⊆ V (G) induce a connected subgraph of G. A

set K is gated in G if and only if the odd cycle property and the even cycle property holds

for K.

Proof. Let K be gated in G. If the odd cycle property or the even cycle property does

not hold for some u, v ∈ K and some x ∈ V (G) −K, then x has no gate in K, which is

not possible for a gated set K.

Suppose that K is not gated in G. Then there exists a vertex x ∈ V (G)−K without

a gate in K. This means that for every a ∈ K we have that

(3.1) dG(x, b) 6= dG(x, a) + d〈K〉(a, b)

for some b ∈ K. Among all such vertices we may choose x to be as close to K as possible

and let a be such that dG(x,K) = dG(x, a). Moreover, let b be a vertex closest to a in

〈K〉 and among all such, let in addition b be closest to x also. If 〈K〉 is not an isometric

subgraph of G, then the odd cycle property or the even cycle property does not hold by

Lemma 3.1. Hence we may assume that 〈K〉 is an isometric subgraph of G.

If ab ∈ E(G), then dG(x, b) = dG(x, a) = ` by (3.1) and the choice of a and there

exists no vertex c ∈ K such that c is on a shortest x, a-path and on a shortest x, b-path

and dG(x, c) < ` by the choice of a. Hence the odd cycle property does not hold. If

d〈K〉(a, b) = 2, then dG(x, a) ≤ dG(x, b) ≤ dG(x, a) + 1 by (3.1) and the choice of a. Let

first dG(x, b) = dG(x, a) + 1 and let d be a common neighbor of a and b in K. We have

dG(x, d) = dG(x, a) + 1 by (3.1) and the choice of b. If the odd cycle property does not

hold for b, d and x for K, then we are done. Otherwise there exists c ∈ K which is on a

shortest x, b-path and on a shortest x, d-path with dG(x, c) < `+ 1. By the choice of a we

have that dG(x, c) = `. In particular this means that c is adjacent to d. If ac ∈ E(G), then
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the odd cycle property does not hold for a, c and x by dG(x,K) = dG(x, a). If ac /∈ E(G),

then c contradicts the choice of b. If dG(x, a) = dG(x, b) = `, then there exist no vertex

c ∈ K such that c is on a shortest x, a-path and on a shortest x, b-path and dG(x, c) < `

by the choice of a. Therefore the even cycle property does not hold for a, b and x for K

since dG(x, d) = `+ 1.

Let now d〈K〉(a, b) > 2. Let P be a shortest a, b-path in 〈K〉. Denote the vertices of

P by a0, a1, . . . , ak, ak+1 where a = a0 and b = ak+1 and additional u = ak and v = ak−1.

By the choice of a and b we have that dG(x, ai) = dG(x, a) + i for 1 ≤ i ≤ k. (Otherwise,

the first aj for which this does not hold yields a contradiction with b being the closest

vertex to a violating (3.1).) In particular the equality dG(x, u) = dG(x, a) + k holds.

Since ub ∈ E(G), we have that dG(x, b) ≤ dG(x, u) ≤ dG(x, b) + 1. Suppose first that

dG(x, b) = dG(x, u). If the odd cycle property does not hold for x, b and u, then we

are done. Otherwise there exists y ∈ K such that dG(x, u) = dG(x, y) + d〈K〉(y, u) and

dG(x, b) = dG(x, y) + d〈K〉(y, b). In particular we have that d〈K〉(y, b) = d〈K〉(y, u). If

d〈K〉(y, a) > d〈K〉(a, b), then there exists a vertex c on a shortest u, y-path at the distance

k + 1 to a in 〈K〉. Clearly c contradicts the choice of b since it is closer to x than b. So

let d〈K〉(y, a) ≤ d〈K〉(a, b). By the choice of b, we have by (3.1) that

dG(x, y) = dG(x, a) + d〈K〉(a, y)

= dG(x, b)− k + d〈K〉(a, y)

= dG(x, y) + d〈K〉(y, b)− k + d〈K〉(a, y).

This computation implies that d〈K〉(y, b)+d〈K〉(a, y) = k = d〈K〉(y, u)+d〈K〉(a, y). In other

words, y is on a shortest a, u-path in 〈K〉, which is a contradiction with d〈K〉(a, b) = k+ 1

by d〈K〉(y, b) = d〈K〉(y, u).

Therefore we may assume that dG(x, u) = dG(x, b) + 1. With this b is on a shortest

u, x-path. Also v is on a shortest u, x-path and both are neighbors of u. Hence we have

that dG(x, b) = dG(x, v). In addition, we have that d〈K〉(v, b) = 2, since v is on a shortest

a, b-path that contains u. If the even cycle property does not hold for x, b, v and u, then

we are done. Otherwise there exists a vertex y ∈ K such that dG(x, v) = dG(x, y) +

d〈K〉(y, v) and dG(x, b) = dG(x, y) +d〈K〉(y, b). Again we have that d〈K〉(y, b) = d〈K〉(y, v).

Similar as before, d〈K〉(y, a) > d〈K〉(a, b) yields a contradiction with the choice of b. So let

d〈K〉(y, a) ≤ d〈K〉(a, b). By the choice of b, we have that

dG(x, y) = dG(x, a) + d〈K〉(a, y)

= dG(x, b)− k + 1 + d〈K〉(a, y)

= dG(x, y) + d〈K〉(y, b)− k + 1 + d〈K〉(a, y).

This implies that d〈K〉(y, b)+d〈K〉(a, y) = k−1 = d〈K〉(y, v)+d〈K〉(a, y). In other words, y
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is on a shortest a, v-path in 〈K〉. This gives the final contradiction with d〈K〉(a, b) = k+ 1

by d〈K〉(y, b) = d〈K〉(y, v) and the proof is complete.

Next we present three necessary conditions for gated sets, which will be handy later

on when discussing gated sets in weakly modular graphs. For this we need the notion of

boundary of a set. Let K be a subset of V (G) of a graph G. Every edge with one end

vertex in K and other end vertex outside of K is called a boundary edge of K. The set

of all boundary edges of K, denoted ∂KE , is called the edge boundary set of K and the

vertex boundary set of K, denoted ∂KV , contains all vertices of K which have a neighbor

in V (G) − K. Furthermore, let C1, . . . , Ck be components of G − K and we split ∂KV

into subsets ∂KV /Ci called the boundary set of K with respect to Ci, 1 ≤ i ≤ k, which

contains all vertices of ∂KV which have a neighbor in Ci. Note that a vertex v ∈ ∂KV

can be in more than one ∂KV /Ci and hence ∂KV /Ci may not form a partition of ∂KV .

Theorem 3.3. Let G be a graph, let K ⊆ V (G) and let C1, . . . , Ck be components of

G−K. If K is gated in G, then 〈∂KV /Ci〉 is connected for every i ∈ {1, 2, . . . , k}.

Proof. Let K be gated, let C1, . . . , Ck be components of G −K and let ∂KV /Ci be the

boundary set of K with respect to Ci, 1 ≤ i ≤ k. Let a1 and a2 be any two vertices of

∂KV /Ci, 1 ≤ i ≤ k, and let b1 and b2 be their neighbors in Ci. Let Q be a shortest b1, b2-

path in Ci. Clearly, the gate map maps Q to ∂KV /Ci. Since pK is a weak retraction,

pK(Q) yields a a1, a2-path in 〈∂KV /Ci〉, which is therefore connected and the proof is

complete.

For the next result we need some additional notation which is well known in metric

graph theory. For an edge ab of a graph G the set Wab contains all vertices which are

closer to a than to b and similar are in Wba all vertices of G which are closer to b than to

a. While sets Wab and Wba form a partition of V (G) in any bipartite graph, this is not so

in an arbitrary graph. Hence in addition we have the set aWb which contains all vertices

of G which are at the same distance to a and to b. By WC
ab we denote the complement of

Wab. Clearly WC
ab = Wba ∪ aWb.

Theorem 3.4. Let G be a graph and let K ⊆ V (G). If K is gated in G, then K =⋂
ab∈∂KE

Wab =
⋂

ab∈∂KE
WC

ba where a ∈ ∂KV .

Proof. Let K be a gated set of G and suppose that K 6=
⋂

ab∈∂KE
Wab = A where a ∈ ∂KV .

Let first x ∈ A and x /∈ K. Thus x ∈ Wab for every edge ab ∈ ∂KE and with this

dG(x, a) < dG(x, b). Let v be the gate of x in K and let P be a shortest x, a-path that

contains v. The neighbor u of v that is closer to x on P is clearly not in K. (Note that

u can be equal to x.) The edge uv is in the boundary of K, but x ∈ Wuv and x /∈ Wvu,

which is a contradiction with x ∈ A.
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Let now y ∈ K and y /∈ A. Thus there exists an edge ab ∈ ∂KE , such that y /∈ Wab

for a ∈ ∂KV , and we have that dG(y, b) ≤ dG(y, a) = d〈K〉(y, a). Therefore a is not the

gate of b in K. But then b has no gate in K since ab is an edge, which is a contradiction

again. Hence K = A.

Finally let B =
⋂

ab∈∂KE
WC

ba where a ∈ ∂KV . Clearly A ⊆ B since Wab ⊆ WC
ba.

Suppose that A 6= B and there exists u ∈ B − A. Obvious u ∈ aWb for some ab ∈ ∂KE

where a ∈ ∂KV and therefore u /∈ K. On a shortest a, u-path there exists an edge

vw ∈ ∂KE with v ∈ ∂KV . Clearly u ∈Wwv and with this u /∈ B, which is a contradiction.

Thus B = A and the proof is complete.

Edges e = ab and f = uv are in relation Θ, if dG(v, a) + dG(u, b) 6= dG(v, b) + dG(u, a).

Equivalent definition is that an edge f of a graph G is in relation Θ with an edge e = ab, if

f joins two different components of the partition of V (G) induced by Wab,Wba and aWb.

The next lemma involves the relation Θ.

Lemma 3.5. Let G be a graph and let K ⊆ V (G) induce a connected subgraph of G. If

K =
⋂

ab∈∂KE
Wab where a ∈ ∂KV , then no edge of ∂KE is in relation Θ to an edge in

〈K〉.

Proof. LetK =
⋂

ab∈∂KE
Wab where a ∈ ∂KV and let uv be an arbitrary edge in 〈K〉. Thus

u, v ∈ Wab for every ab ∈ ∂KE where a ∈ ∂KV and we have that dG(u, b) = dG(u, a) + 1

and dG(v, b) = dG(v, a) + 1. The following computation shows that uv is not in relation

Θ with ab:

dG(v, a) + dG(u, b) = dG(v, a) + dG(u, a) + 1 = dG(v, b) + dG(u, a)

and the proof is complete.

The following result gives another necessary condition for gated sets for arbitrary

graphs and is a direct consequence of Theorem 3.4 and Lemma 3.5.

Theorem 3.6. Let G be a graph and let K ⊆ V (G). If K is gated in G, then no edge of

∂KE is in relation Θ to an edge in 〈K〉.

Note that the converse of this theorem does not hold. The simplest examples for K

are adjacent vertices in an odd cycle of length at least five. For them no edge of ∂KE is

in relation Θ to an edge in 〈K〉, but K is clearly not gated.

4. Gated sets in weakly modular graphs

It is well known that gated sets coincide with geodesic convex sets in modular graphs and

in particular, in median graphs. This is not so among weakly modular graphs. As shown
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by Chepoi [13] are gated sets in weakly modular graphs precisely those convex sets which

are closed for triangles.

By Theorem 3.2 we have a strong connection between gated sets and the odd and the

even cycle property. A special kind of the odd and the even cycle property, namely the

triangle and the quadrangle property, respectively, guarantees the existence of appropriate

vertices at the local range in weakly modular graphs. One only needs to include all such

vertices in a set to be gated. We demonstrate this by two conditions on the boundary

edge set of ∂KE .

Theorem 4.1. Let G be a weakly modular graph. The following statements are equivalent

for K ⊆ V (G) where 〈K〉 is connected.

(i) K is gated;

(ii) K =
⋂

ab∈∂KE
Wab where a ∈ ∂KV ;

(iii) No edge of ∂KE is in relation Θ to an edge in 〈K〉.

Proof. The implication from (i) to (ii) holds by Theorem 3.4 and implication from (ii)

to (iii) holds by Lemma 3.5. It remains to prove the implication from (iii) to (i). For

this suppose that K is not gated. By Theorem 3.2 the odd cycle property or the even

cycle property does not hold. If the odd cycle property does not hold, then there exists

an edge uv in 〈K〉, a vertex x ∈ V (G) −K with dG(x, u) = dG(x, v) = ` and there exist

no y ∈ K with dG(x, y) < ` and y is on a shortest x, u-path and on a shortest x, v-

path. Since G is weakly modular, there exists y ∈ V (G) such that dG(x, y) = ` − 1 and

dG(y, u) = 1 = dG(y, v). Thus y /∈ K and yu, yv ∈ ∂KE . Vertices y, u, v form a triangle

and hence uvΘyu (as well as uvΘyv) and we have an edge from ∂KE in relation Θ to an

edge in 〈K〉.
If the even cycle property does not hold, then there exists u, v ∈ K with d〈K〉(u, v) = 2

where w is a common neighbor of u and v in 〈K〉, a vertex x ∈ V (G)−K with dG(x, u) =

dG(x, v) = ` = dG(x,w) − 1 and there exist no y ∈ K with dG(x, y) < ` and y is on a

shortest x, u-path and on a shortest x, v-path. Since G is weakly modular, there exists

y ∈ V (G) such that dG(x, y) = ` − 1 and dG(y, u) = 1 = dG(y, v). Thus y /∈ K and

yu, yv ∈ ∂KE . Vertices y, u, w, v form an induced four cycle and hence uwΘyv (as well as

vwΘyu) and we have an edge from ∂KE in relation Θ to an edge in 〈K〉 and the proof is

complete.

Recall that gated sets coincide with convex sets in median graphs. A generalization of

convex sets in all bipartite graphs is known as the Convexity lemma, see [18].

Lemma 4.2 (Convexity lemma). A K ⊆ V (G) of a bipartite graph G is convex if and

only if no edge of ∂KE is in relation Θ to an edge in 〈K〉.
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Hence the equivalence between (i) and (iii) of Theorem 4.1 is a result of the same type,

but the generalization goes to nonbipartiteness. Clearly we cannot expect that gatedness

and convexity coincide also for weakly modular graphs. The simplest counterexample for

this is an edge in a triangle, which is convex but not gated. On the other hand, it would

be interesting to know more about gated sets in partial cubes and classes in between them

and median graphs (see [8] for a detailed description of these classes).

5. Gated convexity as convex geometry

We finish our discussion by showing that trees represents gated convex geometries. Recall

that a vertex s from a convex set S is an extreme vertex of S, if S−{s} is also convex. A

graph G is called a convex geometry with respect to a given convexity, if any convex set

of G is the convex hull of its extreme vertices.

Theorem 5.1. Graph G is a gated convex geometry if and only if G is a tree.

Proof. Let G be a gated convex geometry and let K be a gated set in G. Hence K is a

convex hull of its extreme vertices. In particular this means that there exists an extreme

vertex in K and moreover, there exists nontrivial gated sets as V (G) is gated. We show

that G is a tree by induction on the number of vertices n. This is obvious for n = 1 or

n = 2. Suppose now that G has n > 2 vertices. If x is an extreme vertex, then G − x
is gated and x must be of degree one in G. By induction hypothesis G − x is a tree and

therefore G is a tree.

Let now G be a tree. A subset K of V (G) is gated if and only if 〈K〉 is a subtree

of G by Theorem 3.2. It is obvious that extreme vertices in a subtree are all its leaves

and the gated convex hull of these leaves is the starting subtree and nothing more. Thus

every gated convex set is a convex hull of its extreme vertices and G is a gated convex

geometry.
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