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Krein-Milman’s Extreme Point Theorem and Weak Topology on Hyperspace

Jennifer Shueh-Inn Hu* and Thakyin Hu

Abstract. Let WCC(X) be the collection of all non-empty, weakly compact, convex

subsets of a Banach space X endowed with the Hausdorff metric h. Weak topology Tw
will be defined on WCC(X). We shall prove that every weakly compact (Tw-compact)

convex subset K ⊂ (WCC(X), Tw) has an extreme point. We also show that there

exists strongly bounded (h-bounded), closed (h-closed) convex subsets which are not

weakly closed (i.e., not Tw-closed).

1. Introduction

The study of convex sets has always been an important and useful research area in various

branches of mathematics. Suppose X is a Banach space and BCC(X) is the collection of

all non-empty bounded, closed, convex subsets of X endowed with the Hausdorff metric,

h. Then (BCC(X), h) is a complete metric space and is known as the hyperspace over X.

Let WCC(X) be the collection of all non-empty, weakly compact, convex subsets of X,

and CC(X) be the collection of all non-empty compact, convex subsets of X. For general

X, we have CC(X) $ WCC(X) $ BCC(X).

Blaschke [2] proved that a bounded sequence An of the hyperspace (CC(Rk), h) over

Rk has a subsequence Anj such that Anj converges to some A ∈ CC(Rk) (i.e., Anj

h−→ A,

or h(Anj , A) → 0). Many mathematicians have studied convergence of convex sets on

different spaces [1, 6, 10, 11]. De Blasi and Myjak [4] introduced the concept of weak

sequential convergence in BCC(X) and proved an infinite dimensional version of Blaschke’s

theorem and some other interesting results. Hu and company [3,7–9] first introduced the

notation of weak topology on CC(X) and later to WCC(X). They showed that the

classical Browder-Kirk and Brodskii-Milman theorems can be extended to the hyperspace

WCC(X) [7, 9]. If X is assumed to be separable, they proved that Alaoglu’s theorem [3]

can be extended, too. The main purpose of this paper is to investigate further on the

hyperspace WCC(X). We obtain a hyperspace version of Krein-Milman’s extreme point

theorem and other results. We also give examples to illustrate results that are valid on

the underlying space X that cannot be extended to the hyperspace WCC(X).
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2. Notations and preliminaries

Let X be a Banach space, X∗ its topological dual and BCC(X) the collection of all non-

empty, bounded closed convex subsets of X. For A,B ∈ BCC(X), define N(A; ε) =

{x ∈ X : d(x, a) = ‖x− a‖ < ε for some a ∈ A}, and h(A,B) = inf{ε > 0 : A ⊂ N(B, ε)

and B ⊂ N(A, ε)}, equivalently h(A,B) = max {supx∈A d(x,B), supx∈B d(x,A)}. Then h

is known as the Hausdorff metric and (BCC(X), h) is the hyperspace over X and which

is known to be a complete metric space. If dim(X) <∞, we have CC(X) = WCC(X) =

BCC(X). If X is reflexive, we have WCC(X) = BCC(X). We shall consider only CC(X)

and WCC(X) in this paper.

First, we shall summarize some elementary properties of the Hausdorff metric h, and

its relationship with x∗ ∈ X∗ in the following lemmas.

Lemma 2.1. Let A,B,C,D ∈WCC(X), and α ∈ C. Then we have

(i) h(A, {0}) = sup {‖a‖ : a ∈ A},

(ii) h(A+B,C +D) ≤ h(A,C) + h(B,D),

(iii) A ⊂ B ⊂ C implies h(A,C) ≥ h(B,C),

(iv) h(αA,αB) = |α|h(A,B),

(v) h([α1, α2], [β1, β2]) = max(|β1 − α1| , |β2 − α2|), for [α1, α2], [β1, β2] ∈ (CC(R1), h).

Lemma 2.2. Let A,B ∈ WCC(X), and x∗ ∈ X∗. Then we have x∗(A), x∗(B) ∈
(CC(C), h), and

(i) A = B if and only if x∗(A) = x∗(B) for each x∗ ∈ X∗,

(ii) h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A,B),

(iii) h(x∗(A), y∗(A)) ≤ ‖x∗ − y∗‖h(A, {0}),

(iv) h(A,B) = sup {h(x∗(A), x∗(B)) : ‖x∗‖ ≤ 1}.

Proof. (i), (ii), and (iii) are obvious. To prove (iv), note that, in [4] and [6], they as-

sume X is a real Banach space, σA(x∗) = sup {x∗(a) : a ∈ A} is the support functional

and they prove that h(A,B) = sup {|σA(x∗)− σB(x∗)| : ‖x∗‖ ≤ 1}. In our case, X is

a complex Banach space, and A,B are weakly compact, convex subsets of X. Let

α2 = σA(Rex∗) = sup {Rex∗(a) : a ∈ A} = max {Rex∗(a) : a ∈ A}, β2 = σB(Rex∗) =

sup {Rex∗(b) : b ∈ B} = max {Rex∗(b) : b ∈ B}, α1 = min {Rex∗(a) : a ∈ A} and β1 =

min{Rex∗(b) : b ∈ B}. We have then Rex∗(A) = [α1, α2], Rex∗(B) = [β1, β2] ∈
(CC(R1), h). Thus |σA(Rex∗)− σB(Rex∗)| = |α2 − β2| ≤ max {|α2 − β2| , |α1 − β1|} =



Weak Topology on Hyperspace 631

h(Rex∗(A),Rex∗(B)) ≤ h(x∗(A), x∗(B)). Consequently, h(A,B) = sup{|σA(Rex∗)−
σB(Rex∗)| : ‖x∗‖ ≤ 1} ≤ sup {h(x∗(A), x∗(B)) : ‖x∗‖ ≤ 1}. Reverse inequality follows

from h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A,B) ≤ h(A,B) since ‖x∗‖ ≤ 1.

Now, we let C denote the complex plane and CC(C) the collection of all non-empty

compact, convex subsets of C. It follows from the weak continuity and linearity of x∗

that for each A ∈ WCC(X) (i.e., A is a weakly compact convex subset of X), we have

x∗(A) ∈ CC(C) (i.e., x∗(A) is a compact, convex subset of the complex plane C). Hence

x∗ maps the space WCC(X) into CC(C), or x∗ : (WCC(X), h)) → (CC(C), h). Note

that both the domain and range of x∗ are now hyperspaces endowed with corresponding

Hausdorff metric h. By Lemma 2.2(ii), x∗ : (WCC(X), h) → (CC(C), h) is continuous.

Recall that the weak topology τw on X is defined to be the weakest topology which

makes each x∗ : (X, τw) → (C, |·|) continuous. Thus, we may define Tw to be the weak-

est topology on WCC(X) such that each x∗ : (WCC(X), Tw) → (CC(C), h) is continu-

ous. A typical Tw neighborhood of A ∈ WCC(X) is denoted by W(A;x∗1, . . . , x
∗
n; ε) =

{B ∈WCC(X) : h(x∗i (B), x∗i (A)) < ε for i = 1, 2, . . . , n}.
To avoid confusion, we shall use small letters a, b, c, . . . , x, y, z to denote elements of

the underlying space X, capital letters A,B, . . . , Z to denote elements of the hyperspace

WCC(X) as well as subsets of X, e.g., A,B ⊂ X; A,B ∈ WCC(X). We shall use script

letters to denote subsets of the hyperspace WCC(X), e.g., K ⊂WCC(X), E ⊂WCC(X).

The strong topology on X is the norm topology and will be denoted by ‖·‖-topology and

the weak topology on X will be denoted by τw-topology. The strong topology on the

hyperspace WCC(X) is the metric topology and will be denoted by h-topology; the weak

topology on WCC(X) will be denoted by Tw-topology.

Definition 2.3. (i) A sequence {An} ⊂ WCC(X) is said to be weakly Cauchy (or

Tw-Cauchy) if and only if for each x∗ ∈ X∗, the sequence {x∗(An) ⊂ CC(C)} is

Cauchy.

(ii) An, A ∈ WCC(X). {An} is said to converge strongly to A (denoted by An
s−→ A

or An
h−→ A) if and only if limn→∞ h(An, A) = 0; {An} is said to converge weakly

(denoted by An
w−→ A or An

Tw−−→ A) if and only if limn→∞ h(x∗(An), x∗(A)) = 0 for

each x∗ ∈ X∗.

(iii) K ⊂WCC(X) is said to be weakly sequentially closed if and only if every sequence

{An} ⊂ K with An
Tw−−→ A, we have A ∈ K.

(iv) K is said to be weakly sequentially complete if and only if every weak Cauchy

sequence {An} ⊂ K converges weakly to some A ∈ K.
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(v) K is said to be weakly sequentially compact if and only if every sequence {An} ⊂ K
contains a subsequence {Ank

} that converges weakly to some A ∈ K.

(vi) K is said to be weakly bounded if and only if for each x∗ ∈ X∗, the set {x∗(A) : A ∈ K}
is bounded in (CC(C), h).

3. Main results

We now list some of the basic properties of the weak topology Tw in the following.

Lemma 3.1. (i) The weak topology Tw is Hausdorff.

(ii) Addition and scalar multiplications are continuous operations on the space

(WCC(X), Tw).

(iii) Suppose K ⊂WCC(X) is weakly bounded (Tw-bounded). Then K is strongly bounded

(h-bounded).

Proof. The verification of (i) and (ii) is routine. To prove (iii), let K be weakly bounded.

Thus for each x∗ ∈ X∗, {x∗(A) : A ∈ K} is a bounded set of (CC(C), h) and we have some

M > 0 such that sup {h(x∗(A), x∗({0})) : A ∈ K} ≤M <∞. Note that h(x∗(A), x∗({0}))
= sup {‖x∗(a)‖ : a ∈ A}. Thus, if we set K =

⋃
A∈KA =

⋃
A∈K {a : a ∈ A} ⊂ X, we have

sup {h(x∗(A), x∗({0})) : A ∈ K} = supA∈K {supa∈A(‖x∗(a)‖)} = supa∈K {‖x∗(a)‖} ≤M .

It follows now from the uniform boundedness principle that K is a bounded subset

of X, i.e., sup {‖a‖ : a ∈ K} ≤ N < ∞ for some N . Since A ⊂ K, we have h(A, {0}) =

sup {‖a‖ : a ∈ A} ≤ sup {‖a‖ : a ∈ K} ≤ N for each A ∈ K proving that K is bounded.

Theorem 3.2. Let X be a Banach space with dim(X) < ∞, and CC(X) = {A ⊆ X :

A is a non-empty compact, convex subset of X} is the corresponding hyperspace. Suppose

K ⊂ CC(X). Then the following are equivalent:

(a) K is weakly compact (Tw-compact).

(b) K is weakly sequentially compact (Tw-sequentially compact).

(c) K is h-sequentially compact.

(d) K is compact (h-compact).

Proof. Assume K is weakly compact. Then K is weakly bounded. And it follows from

Lemma 3.1 that K is bounded. Hence, there exists some M > 0 such that

sup {h(A, {0}) : A ∈ K} ≤M <∞.
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Next, B∗1 = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1} is compact, and B∗1 ⊂
⋃
x∗∈B∗

1
B∗(x∗, ε/(3M)) implies

that B∗1 ⊂
⋃n
k=1B

∗(x∗k, ε/(3M)) with x∗k ∈ B∗1 for k = 1, 2, . . . , n. Suppose now {Aα} is a

given infinite sequence of K. K is weakly compact (Tw-compact), and x∗1 is Tw-continuous

implies that x∗1(K) is compact in (CC(C), h). Thus {x∗1(Aα)} ⊂ x∗1(K) has a conver-

gent subsequence {x∗1(A1j)}∞j=1. Similarly, x∗2(K) is compact, and {x∗2(A1j)}∞j=1 ⊂ x∗2(K)

implies that {A1j} has a subsequence {A2j} such that {x∗2(A2j)} converges. Note that

{x∗1(A2j)} ⊂ {x∗1(A1j)} also converges. Inductively, we obtain a subsequence {Anj}∞j=1

such that {x∗k(Anj)}
∞
j=1 converges for k = 1, 2, . . . , n. To simplify the notation we let

{Aj}∞j=1 = {Anj}∞j=1. Hence, {Aj}∞j=1 is a sequence such that {x∗k(Aj)}
∞
j=1 converges

for k = 1, 2, . . . , n. Consequently, for ε/3 > 0, there exists Nk such that i, j ≥ Nk im-

plies h(x∗k(Ai), x
∗
k(Aj)) < ε/3. Let N = max {N1, N2, . . . , Nn}, we have i, j ≥ N implies

h(x∗k(Ai), x
∗
k(Aj)) < ε/3 for k = 1, 2, . . . , n. Claim that i, j ≥ N implies

(3.1) h(x∗(Ai), x
∗(Aj)) < ε for each x∗ ∈ B∗1 .

Indeed for each x∗ ∈ B∗1 ⊂
⋃n
k=1B

∗(x∗k, ε/(3M)), there exists some k such that x∗ ∈
B∗(x∗k, ε/(3M)) and hence ‖x∗ − x∗k‖ < ε/(3M). If i, j ≥ N , we have

h(x∗(Ai), x
∗(Aj)) ≤ h(x∗(Ai), x

∗
k(Ai)) + h(x∗k(Ai), x

∗
k(Aj)) + h(x∗k(Aj), x

∗(Aj))

< ‖x∗ − x∗k‖h(Ai, {0}) +
ε

3
+ ‖x∗k − x∗‖h(Ai, {0})

≤ ε

3
+
ε

3
+
ε

3
= ε,

and (3.1) is proved. For each x∗ ∈ B∗1 , {x∗(Aj)} is Cauchy implies that the sequence {Aj}
is weakly Cauchy (Tw-Cauchy).

K is weakly compact implies there exists some A0 ∈ K such that every weak neigh-

borhood W(A0) contains infinitely many terms of the sequence {Aj}. We now claim that

{Aj} converges weakly to A0. Indeed, it follows from (3.1) that for each x∗ ∈ B∗1 , {x∗(Aj)}
is Cauchy in (CC(C), h) and hence there exists Dx∗ ∈ CC(C) such that

(3.2) lim
j→∞

h(x∗(Aj), Dx∗) = 0.

And consequently for given ε > 0, there exists k such that j ≥ k implies h(x∗(Aj), Dx∗)

< ε/2. On the other hand, sinceW(A0, x
∗, ε/2) contains infinitely many Aj ’s, there exists

some j0 ≥ k such that Aj0 ∈ W(A0, x
∗, ε/2), or h(x∗(Aj0), x∗(A0)) < ε/2. Consequently,

h(x∗(A0), Dx∗) ≤ h(x∗(A0), x
∗(Aj0)) + h(x∗(Aj0), Dx∗)

<
ε

2
+
ε

2
= ε.

Thus, x∗(A0) = Dx∗ and hence limj→∞ h(x∗(Aj), x
∗(A0)) = limj→∞ h(x∗(Aj), Dx∗) =

0 by (3.2). Hence Aj converges weakly to A0 showing that K is weakly sequentially
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compact. Thus K is weakly sequentially compact. Also, it follows from (3.1) that for

ε > 0 there exists N such that j ≥ N implies h(x∗(Aj), x
∗(A0)) ≤ ε for x∗ ∈ B∗1 . Hence

by Lemma 2.2(iv), we have h(Aj , A0) = sup {h(x∗(Aj), x
∗(A0)) : ‖x∗‖ ≤ 1} ≤ ε. Thus

{Aj} also h-converges to A0 showing that K is h-sequentially compact. Finally, (K, h) is

a metric space implies that K is also h-compact since compact and sequentially compact

are equivalent in metric spaces.

Since A,B ∈ WCC(X), α ∈ C, we have A + B ∈ WCC(X), αA ∈ WCC(X). We

may define algebraic line segments and convex sets analogous to their counterparts on

the underlying Banach Space X. We may also define extreme points and extremal sets.

However, on the underlying Banach space X with ‖·‖-topology and weak topology τw, we

usually define extreme points on norm-closed convex sets which are of course applicable to

τw-closed convex sets since closed convex sets are also weakly closed. On the hyperspace

WCC(X), carrying the h-topology and the weak topology Tw we see from the Example 3.7

below that h-closed convex subsets are not necessarily Tw-closed. Thus we define extreme

points and extremal sets on Tw-closed, convex sets so that the definition is applicable to

h-closed convex sets too.

Definition 3.3. (i) [A,B] = {αA+ (1− α)B : 0 ≤ α ≤ 1, A,B ∈WCC(X)} is called

the closed line segment joining A and B.

(ii) A subset K ⊂ WCC(X) is said to be convex if and only if A1, A2, . . . , An ∈ K,

0 ≤ αi ≤ 1,
∑n

i=1 αi = 1 implies
∑n

i=1 αiAi ∈ K.

(iii) A mapping T : K1 → K2 is said to be affine if and only if T (αA + (1 − α)B) =

αT (A) + (1 − α)T (B) for A,B ∈ K1, 0 ≤ α ≤ 1 and K1, K2 are convex subsets of

WCC(X).

(iv) If K1 ⊂ K2, K1,K2 are Tw-closed, convex subsets of WCC(X), then K1 is said to be

an extremal subset of K2 if A,B ∈ K2, αA + (1 − α)B ∈ K1 for some 0 < α < 1

implies that A,B ∈ K1.

(v) Suppose P ∈ K where K is Tw-closed convex, then P is said to be an extreme point

of K if and only if A,B ∈ K, 0 < α < 1, αA+ (1− α)B = P implies A = B = P .

We state the following lemma whose proofs are similar as in the underlying space X.

Lemma 3.4. Let K be a Tw-closed, convex subset of the hyperspace WCC(X).

(i) If P ∈ K, then {P} is an extremal subset of K if and only if P is an extreme point

of K.
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(ii) K1 ⊂ K2 ⊂ K3 are Tw-closed, convex sets and if K2 is an extremal subset of K3 and

K1 is an extremal subset of K2, then K1 is an extremal subset of K3.

(iii) If K is Tw-compact, convex, and T : (K, Tw) → (R1, |·|) is a continuous affine map-

ping and α1 = infA∈K {T (A)} = minA∈K {T (A)}, α2 = supA∈K {T (A)} = maxA∈K

{T (A)}, then T−1(α1), T
−1(α2) are both extremal subsets of K.

(iv) Suppose [α1, α2], [β1, β2] ∈ (CC(R1), h). Then h([α1, α2], [β1, β2]) = max(|β1 − α1| ,
|β2 − α2|). Then the mapping T : (CC(R1), h) → (R1, |·|) defined by T [α1, α2] = α2

is a continuous (in fact, nonexpansive) affine mapping.

Theorem 3.5. Let X be a Banach sapce and WCC(X) the corresponding hyperspace.

Suppose K ⊂WCC(X) is a weakly compact (Tw-compact), convex subset. Then K has an

extreme point.

Proof. Let Ω denote the collection of all Tw-closed, convex extremal subsets of K. Ω 6= Φ

since K ⊂ Ω. Define a partial order in Ω by K2 ≤ K1 if and only if K1 ⊂ K2. If {Ki}i∈I ⊂ Ω

is a totally ordered subset, we shall show that K0 =
⋂
i∈I Ki is an upper bound of {Kα}.

Each Kα is Tw-compact, convex and {Kα} has finite intersection property implies that

K0 is a non-empty, Tw-compact, convex set. Suppose now we have A,B ∈ K, 0 < α < 1

and αA + (1 − α)B ∈ K0. K0 ⊂ Ki for each i ∈ I implies that αA + (1 − α)B ∈ Ki
which in turn implies A,B ∈ Ki, since Ki is an extremal subset of K. Thus A,B,∈ K0

showing that K0 is an extremal subset of K and consequently K0 is an upper bound of

{Ki}i∈I . It follows now from Zorn’s Lemma that Ω has a maximal element, denoted by

K∞. Finally, we claim that K∞ is a singleton. Otherwise, there exist A0, B0 ∈ K∞ with

A0 6= B0 w.l.o.g., assume there exists some b0 ∈ B0 such that b0 /∈ A0. By Hahn-Banach

theorem, there exists some x∗ ∈ X∗ such that sup {Rex∗(a) : a ∈ A0} < Rex∗(b0). Let

Rex∗(A0) = [α1, α2], Rex∗(B0) = [β1, β2] ∈ CC(R). We have

(3.3) α2 = sup {Rex∗(a) : a ∈ A0} < Rex∗(b0) ≤ β2.

Define G : (CC(R), h)→ (R, |·|)) by G([α1, α2]) = α2. It follows from Lemma that G is

a nonexpnasive (hence continuous) affine mapping. Now let F : (WCC(X), Tw)→ (R, |·|)
be defined by F (A) = G(Rex∗(A)). F : (K∞, Tw)→ (R, |·|) is continuous implies F attains

its maximum on K∞, i.e., there exists β∞ ∈ R (β∞ ≥ β2 > α2) and A∞ ∈ K∞ such that

F (A∞) = β∞ = sup {F (A) : A ∈ K∞}. It follows from Lemma 3.4(iii) that F−1(β∞) is

a non-empty, extremal subset of K∞. It follows from (3.3) that A0 /∈ F−1(β∞). Hence,

F−1(β∞) ≥ K∞ and F−1(β∞) 6= K∞. That is a contradiction to the maximality of K∞.

Hence K∞ is a singleton, say K∞ = {D}, and D is an extremal point of K.
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Since (X, τ) is a l.c.t.v.s, it is known from Hahn-Banach theorem that the dual space

X∗ contains enough linear functionals x∗ that separate two disjoint weakly compact (τw-

compact) convex sets in the sense that if K1,K2 are weakly compact, convex subsets

of X and K1 ∩ K2 = Φ, then there exists some x∗ ∈ X∗ such that dist(K1,K2) =

inf {‖k1 − k2‖ = d(k1, k2) : k1 ∈ K1, k2 ∈ K2} = δ > 0. We shall show in the following

example that X∗ does not have enough x∗ to separate two disjoint compact, convex sets

on the hyperspace WCC(X).

Example 3.6. Let x1, x2, x3 be vertices of an equilateral triangle of (R2, ‖·‖). Let A1 =

[x1, x2], A2 = [x2, x3], A3 = [x3, x1] be the closed line segments of unit length, and

D = conv(x1, x2, x3). Then A1, A2, A3, D ∈ (CC(R2), h). Suppose K1 = conv(A1, A2, A3),

K2 = {D} ⊂ CC(R2). Then K1 and K2 are disjoint compact subsets of the hyperspace

CC(R2). In fact, it can be shown that

dist(K1,K2) = inf {h(K1,K2) : K1 ∈ K1,K2 ∈ K2}

= inf

{
h

(
3∑
i=1

αiAi, D

)
: αi ≥ 0,

3∑
i=1

αi = 1

}

= h

(
A1

3
+
A2

3
+
A3

3
, D

)
=

√
3

6
,

where A1/3 + A2/3 + A3/3 = conv(y1, y2, y3, y4, y5, y6), where y1 = 2x1/3 + x2/3, y2 =

x1/3+2x2/3, and thus the line segment [y1, y2] is the middle one-third of [x1, x2] = A1, etc.

However, since each x∗ : (D, ‖·‖2)→ (R1, |·|) is continuous linear, x∗ attains its maximum

and minimum on extreme points of D. Assume x∗(x1) = min {x∗(x) : x ∈ D} = a and

x∗(x2) = max {x∗(x) : x ∈ D} = b. We have then x∗ : (CC(R2), h) → (CC(R1), h) is such

that x∗(A1) = [a, b] ∈ CC(R1) and x∗(D) = [a, b] ∈ CC(R1) and consequently

dist(x∗(K1), x
∗(K2)) = min {h(x∗(K1), x

∗(K2)) : K1 ∈ K1,K2 ∈ K2}

= h(x∗(A1), x
∗(D)) = h([a, b], [a, b]) = 0.

It is well-known that in the underlying Banach space X, every norm-closed convex

set K is weakly closed (Tw-closed) and hence if a sequence {xn} converges weakly to x

(xn → x), then there exists a sequence {yn} which are convex combinations of the xn’s

such that yn → x strongly which is Mazur’s theorem. We show in the following example

that the above result cannot be extended to the hyperspace WCC(X).

Example 3.7. Suppose `2 =
{
a = (a1, a2, . . .) :

∑
|ai|2 <∞

}
is the Hilbert space with

norm ‖a‖ =
∑∞

i=1

∣∣a2i ∣∣1/2, B1 =
{
a ∈ `2 : ‖a‖ ≤ 1

}
, andAn = {a = (a1, a2, . . . , an, 0, 0, . . .)

: ‖a‖ ≤ 1}. Then An
Tw−−→ B1, An 6

h−→ B1. Moreover K = conv {A1, A2, . . . , An, . . .} ={
D ∈WCC(`2) : D =

∑k
i=j αjAij ,

∑k
j=1 αj = 1, 0 ≤ αj ≤ 1

}
⊂WCC(`2), K is an h-closed

convex subset of the hyperspace WCC(`2) but K is not Tw-closed.
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Proof. Let en = {0, 0, . . . , 0, 1, 0, 0, . . .} ∈ B1 with the nth co-ordinate equal to 1 and

0 elsewhere. Then, we have dist(en+1, An) = 1 which implies that h(B1, An) = 1 for

n = 1, 2, 3, . . ., which in turn implies that An 6
h−→ B1. Also, if D ∈ conv(A1, A2, . . .), we

have D = α1Ai1 + α2Ai2 + · · · + αkAik (assume i1 < i2 < · · · < ik w.l.o.g), αj ≥ 0,∑k
j=1 αj = 1. Thus D ⊂ Aik ⊂ B1 and thus h(D,B1) ≥ h(Aik , B1) = 1. Consequently

dist(B1, conv(A1, A2, . . .)) ≥ 1 which in turn implies that dist(B1, conv(A1, A2, . . .) =

K) = 1.

On the other hand, let x∗ = (x1, x2, . . .) ∈ `∗2, y
∗
n = (0, 0, . . . , 0, xn, xn+1, . . .) ∈ `∗2.

Then ‖x∗‖ < ∞, and ‖y∗n‖ → 0, and we have |y∗n(b)| ≤ ‖y∗n‖ ‖b‖ ≤ ‖y∗n‖ → 0 for each

b ∈ B1. Thus for each b = (b1, b2, . . .) ∈ B1, if we let b(n) = (b1, b2, . . . , bn, 0, 0, . . .), we have

b(n) ∈ An and
∣∣x∗(b)− x∗(b(n))∣∣ = |

∑∞
i=1 bixi −

∑n
i=1 bixi| =

∣∣∑∞
i=n+1 bixi

∣∣ =
∣∣y∗n+1(b)

∣∣ ≤∥∥y∗n+1

∥∥ → 0 as n → ∞. Hence for any given ε > 0, given x∗(b), choose n0 such that

n ≥ n0 implies ‖y∗n‖ < ε/2. Consequently, for each x∗(b) ∈ x∗(B1), and n ≥ n0, there

exists b(n) ∈ An such that d(x∗(b), x∗(b(n))) = |x∗(b)− x∗(bn)| < ε and we have x∗(B) ⊆
N(x∗(An), ε). Also An ⊂ B implies x∗(An) ⊂ N(x∗(B), ε). It follows from the definition

of Hausdorff metric that h(x∗(B1), x
∗(An)) < ε. Now we have x∗(An)

h−→ x∗(B1) for each

x∗ ∈ `∗2. That is, An
Tw−−→ B1 (or An → B1 weakly in the hyperspace (WCC(`2), Tw).

Hence B1 ∈ K
Tw

, but B1 /∈ K. Thus Mazur’s Theorem is not valid on hyperspaces.

Remark 3.8. Let X = {x = {x} : x ∈ X}. Then (X,h) ⊂ (WCC(X), h) and (X,h) is

isomorphic to (X, ‖·‖); (X, Tw) is isomorphic to (X, τw). Thus every theorem proved on

the hyperspace is a natural extension of its counterpart on the original space as illustrated

by Blaschke’s Theorem and Bolzano-Weierstrass Theorem. However, from the two given

examples of this paper, we see there are many results that are valid on the original space

but cannot be extended analogously to the hyperspace. In fact, we do not know whether

the classical Eberlein-Smulian Theorem can be extended to the hyperspace or not. Also

Krein-Milman’s extreme point theorem has many important applications. De Branges [5]

used it to prove the famous Stone-Weierstrass Theorem. We hope further investigation in

this area will lead to more results and useful applications on the hyperspace.
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