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The Inverse p-maxian Problem on Trees with Variable Edge Lengths

Kien Trung Nguyen* and Pham Thi Vui

Abstract. We concern the problem of modifying the edge lengths of a tree in minimum

total cost so that the prespecified p vertices become the p-maxian with respect to the

new edge lengths. This problem is called the inverse p-maxian problem on trees.

Gassner proposed in 2008 an efficient combinatorial algorithm to solve the inverse 1-

maxian problem on trees. For the case p ≥ 2, we claim that the problem can be reduced

to O(p2) many inverse 2-maxian problems. We then develop algorithms to solve the

inverse 2-maxian problem under various objective functions. The problem under l1-

norm can be formulated as a linear program and thus can be solved in polynomial

time. Particularly, if the underlying tree is a star, the problem can be solved in linear

time. We also develop O(n log n) algorithms to solve the problems under Chebyshev

norm and bottleneck Hamming distance, where n is the number of vertices of the tree.

1. Introduction

Location theory plays an important role in Operations Research due to its numerous

applications. Here, we want to find optimal locations of new facilities. Location theory

was intensively investigated, see Kariv and Hakimi [19, 20], Hamacher [17], Eiselt [12].

Recently, a new approach of location theory, the so-called inverse location problem, has

been focused and become an interesting research topic. In the inverse setting, we aim to

modify the parameters in minimum cost so that the prespecified locations become optimal

in the perturbed problem. Inverse median and inverse center problems are the popular

topics in the field of inverse location theory.

For inverse 1-median problems, Burkard et al. [9] solved the inverse 1-median problem

on trees and the inverse 1-median problem on the plane with Manhattan norm inO(n log n)

time. Then Galavii [13] proposed a linear time algorithm for the inverse 1-median problem

on trees. Also, Nguyen [23] generalized this problem to the inverse 1-median problem on

block graphs and solved it in O(n log n) time by a binary search algorithm. Nguyen

and Chi [27] further considered the inverse 1-median problem under uncertain costs and
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developed an O(n2 log n) algorithm to represent the total cost under all confidence levels.

Burkard et al. [7] investigated and solved the inverse Fermat-Weber problem in O(n log n)

time if the given points are not colinear. Otherwise, the problem can be formulated as a

convex program. For the inverse 1-median problem on a cycle, Burkard et al. [10] developed

an O(n2) algorithm based on the concavity of the corresponding linear programmming

constraints. Additionally, the inverse p-median problem on networks with variable edge

lengths is NP -hard, see Bonab et al. [5]. However, the inverse 2-median problem on

a tree can be solved in polynomial time. More particularly, if the underlying tree is a

star, the corresponding problem is solvable in linear time. Sepasian and Rahbarnia [29]

investigated the inverse 1-median problem on trees with both vertex weights and edge

lengths variations. They proposed an O(n log n) algorithm to solve that problem. While

most recently papers concerned the inverse 1-median problem under linear cost functions,

Guan and Zhang [16] solved the inverse 1-median problem on trees under Chebyshev norm

and Hamming distance by a binary search algorithm in linear time.

Cai et al. [11] were the first who showed that although the 1-center problem on directed

networks can be solved in polynomial time, the inverse problem is NP -hard. Hence, it

is interesting to study some special situations which are polynomially solvable. Alizadeh

and Burkard [1] developed a combinatorial algorithm with complexity of O(n2) to solve

the inverse 1-center problem on unweighted trees with variable edge lengths, provided that

the edge lengths remain positive throughout the modification. Dropping this condition,

the problem can be solved in O(n2c) time where c is the compressed depth of the tree.

For the corresponding uniform-cost problem, Alizadeh and Burkard [2] devised improved

algorithms with running time O(n log n) and O(cn log n). Then Alizadeh et al. [4] applied

the AVL-tree structure to develop an O(n log n) algorithm for solving the inverse 1-center

problem on trees with edge length augmentation. Especially, the uniform-cost problem

can be solved in linear time. Based on the method to solve the reverse 1-center problem on

weighted trees (see [22]), Nguyen [21] solved the uniform-cost inverse 1-center problem on a

weighted trees not required topology change in quadratic time and in O(n2c) time if c is the

compressed depth of the tree. For the inverse 1-center problem on a simple generalization

of tree graphs, the so-called cactus graphs, Nguyen ang Chassein [25] showed the NP -

hardness. If the modification of vertex weights is taken into account, the inverse 1-center

problem on trees can be solved in O(n2) time, see Nguyen and Anh [24]. Furthermore,

Nguyen and Sepasian [28] solved the inverse 1-center problem on trees under Chebyshev

norm and Hamming distance in O(n log n) time in the case there exists no topology change.

In principle, the problem is solvable in quadratic time. Additionally, the inverse ordered

1-median problem on Chebyshev norm and bottleneck Hamming distance can be solved

in O(n2 log n) time; see [26].
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Although the inverse location problem was intensively studied, there is a limited num-

ber of papers related to the inverse obnoxious location problem. Alizadeh and Burkard [3]

developed a linear time algorithm to solve the inverse obnoxious 1-center problem. More-

over, Gassner [14] investigated the inverse 1-maxian problem on trees with variable edge

lengths and reduced the problem to a minimum cost circulation problem which can be

solved in O(n log n) time.

We focus in this paper the inverse p-maxian problem on trees with p ≥ 2. This paper is

organized as follows. We briefly introduce the optimality criterion of the p-maxian problem

on trees as well as formulate the problem under arbitrary cost functions in Section 2. We

also state that the problem can be reduced to O(p2) many inverse 2-maxian problems on

trees. Section 3 concentrates on the problem under l1-norm. We show that the inverse

2-maxian problem can be formulated as a linear program. If the underlying tree is a

star, we solve the problem in linear time. We focus on Sections 4 and 5 the inverse 2-

maxian problem under Chebyshev norm and bottleneck Hamming distance, respectively.

We develop algorithms that solve the corresponding problems in O(n log n) time.

2. The p-maxian problems on trees

Given a graph G = (V,E), |V | = n, each vertex vi ∈ V is associated with a nonnegative

weight wi and each edge has a nonnegative length `e. The length of the shortest path

P (u, v) connecting two vertices u and v in G is the distance d(u, v) between these two

vertices. A point on G is either a vertex or lies on an edge of the graph. As proposed

by Burkard et al. [6], the p-maxian problem on G is to identify a set of p points, say

X = {x1, x2, . . . , xp}, to maximize the maxian objective function

F (X) =
n∑

i=1

wi max
1≤j≤p

d(vi, xj).

By the vertex domination property, there exists a p-maxian of G that is the set of p

vertices. Now we restrict ourselves to the case where the underlying graph G is a tree,

say T . Burkard et al. [6] already showed that {a, b} is a 2-maxian of a tree T if P (a, b)

is its longest path. We further show that this condition is also the necessary condition as

follows.

Theorem 2.1 (2-maxian criterion). Given two vertices a and b on the tree T , then {a, b}
is a 2-maxian of T if and only if P (a, b) is the longest path in the tree.

Proof. For the sufficient condition, see [6]. Assume that P (a, b) is not the longest path of

the tree, we will prove that {a, b} is not its 2-maxian as well. Let mab be the midpoint of
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path P (a, b). By deleting an edge that contains mab, we can deduce two parts L and R of

T which contain a and b, respectively. Then we get

F ({a, b}) =
∑
v∈L

wvd(v, b) +
∑
v∈R

wvd(v, a).

Moreover, let P (s, t) be the longest path of the tree. We trivially get d(mab, a) ≤
max {d(mab, s), d(mab, t)} and d(mab, b) ≤ max {d(mab, s), d(mab, t)}, and at least one of

the two inequalities does not hold with equality. Otherwise, it contradicts the assumption

that P (s, t) is the longest path. Therefore, we get

d(v, a) ≤ max {d(v, s), d(v, t)} for v ∈ R

and

d(v, b) ≤ max {d(v, s), d(v, t)} for v ∈ L,

and at least one of the inequalities will not hold with equality. Finally, we conclude that

F (a, b) < F (s, t).

We now reformulate the optimality criterion in Theorem 2.1. Given two prespecified

vertices a and b, and a leaf v, let vab be the common vertex of three paths P (a, v), P (b, v)

and P (a, b). The following result states the necessary and sufficient conditions for {a, b}
to be the longest path in T .

Corollary 2.2 (Longest path criterion). P (a, b) is the longest path of T if and only if

d(v, vab) ≤ d(a, vab) and d(v, vab) ≤ d(b, vab) for all leaves v in T .

Next we formulate the inverse version of the p-maxian problem on trees. Given a tree

T = (V,E) and a prespecified p-vertex. We can assume without loss of generality that the

prespecified p vertices are the leaves of T . The length of each edge e in E can be increased

or decreased by an amount pe or qe, i.e., the new length of e is ˜̀e = `e + pe − qe and is

assumed to be nonnegative. We can state the inverse p-maxian on T as follows.

1. The p-vertex becomes a p-maxian of the tree with respect to the new edge lengths˜̀.
2. The cost function C(p, q) is minimized.

3. Modifications are feasible, i.e., 0 ≤ pe ≤ pe and 0 ≤ qe ≤ qe.

The inverse p-maxian problem can be applied in network design. For instance, a

network of computers is presented by a graph. Here, vertices play the role as servers

or clients which communicate with each other. Edge lengths represent the transmission

time between adjacent vertices. Vertex weights are the communication frequencies of the
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corresponding vertices. Assume that the designer detects p servers that are harmful to the

entire network. He considers them as undesirable servers. On one hand, he aims to modify

the transmission time or roughly speaking, the edge lengths, by innovation or prevention

so as to make the undesirable servers the p-maxian. On the other hand, the designer

wants to minimize the total cost for modifying the network under minisum, minimax, or

Hamming distance. This problem can be modeled as an inverse p-maxian problem.

Burkard et al. [6] states that the set S of p vertices is a p-maxian of T if and only if

it contains a pair of vertices {a, b} such that P (a, b) is the longest path of T . Therefore,

the inverse p-maxian problem on a tree can be reduced to O(p2) many inverse 2-maxian

problems on this tree. From here on, we focus on the inverse 2-maxian problem on the

tree T .

Consider a monotone cost function C and {a, b} is a pair of leaves which are the

prespecified vertices, we get the following property.

Proposition 2.3. In the optimal solution of the inverse 2-maxian problem on T , it suffices

to increase the lengths of edges in P (a, b) and reduce the lengths of edges in T \ P (a, b).

By Proposition 2.3, we can set xe := pe and xe := pe for e ∈ P (a, b), and xe := qe

and xe = qe for e ∈ T \ P (a, b). An edge e is said to be modified by an amount xe if

its modified length is set to ˜̀e := `e + sign(e)xe, where sign(e) = 1 if e ∈ P (a, b) and

sign(e) = −1 if e /∈ P (a, b). Furthermore, denote by L the set of leaves in the tree T and

d̃ by the distance measure with respect to new edge lengths ˜̀. In order to make P (a, b)

the longest path of T , it must hold that d̃(v, vab) ≤ d̃(a, vab) or d̃(v, vab) ≤ d̃(b, vab) for all

leaves v in T , see Corollary 2.2. After some elementary computations, we can formulate

the inverse 1-maxian problem on T as follows.

(2.1) min C(x) s.t.



∑
e∈P (a,vab)

xe +
∑

e∈P (v,vab)

xe ≥ G(a, v) ∀ v ∈ L,∑
e∈P (b,vab)

xe +
∑

e∈P (v,vab)

xe ≥ G(b, v) ∀ v ∈ L,

0 ≤ xe ≤ xe ∀ e ∈ E.

Here, G(?, v) := d(v, vab)− d(?, vab), ? = a, b, for v ∈ L are the gaps between distances.

3. The problem under l1-norm

Assume that modifying an edge e by a unit amount costs ce, the objective function in

(2.1) under l1-norm can be written as

C(x) =
∑
e∈E

cexe.
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The inverse 2-maxian problem on trees under l1-norm can be formulated as a linear pro-

gram. It is therefore solvable in polynomial time. However, an efficient combinatorial

algorithm is still unknown.

We now consider the case where the underlying tree is a star graph with center vertex

v0. We can directly deliver the following property from Corollary 2.2.

Corollary 3.1 (Optimality criterion). Given two leaf nodes a and b in a star graph S.

Then, {a, b} is a 2-maxian of the star graph if and only if `(v0,a) and `(v0,b) are two largest

edges.

For simplicity, we denote `(v0,a) and `(v0,b) by `a and `b, and the cost to modify one

unit length of (v0, a) and (v0, b) by ca and cb. By Corollary 3.1, we consider how to modify

the length of edges with minimum cost such that ˜̀a and ˜̀b become the two largest edges

in the star. Assume that `a < `b, we analyze these two following cases.

1. If ˜̀a ∈ [`a, `b], we do not increase the length of `b but decrease the length of e 6= (v0, b)

with `e > ˜̀a to ˜̀a. We first presolve the problem as follows.

• If ξ = mine6=(v0,b):`e>`a {`e − xe} > `a, then we increase `a by an amount ξ− `a.

• If θ = `a + x(v0,a) < `e for e 6= (v0, b), then we decrease the length of `e by an

amount `e − θ.

If the presolution is not possible, then the problem is infeasible. Otherwise, we can

formulate the problem as a univariate optimization program

min f(z) = ca(z − `a) +
∑

e6=(v0,b):`e>z

ce(`e − z)

where z = ˜̀
a and z ∈ [`a, `a + x(v0,a)].

2. If ˜̀a > `b, then the length of e where `e > ˜̀
a must be decrease to ˜̀a and the length

of `b must be increase to ˜̀a. First, we have to increase `a an amount `b − `a and

presolve the problem as in the first case. If the presolution is not possible then the

problem is infeasible. Otherwise, we can formulate the problem as follows.

min f(z) = (ca + cb)(z − `b) +
∑

e:`e>z

ce(`e − z)

where z = ˜̀
a = ˜̀

b and z ∈
[
`b,min

{
`a + x(v0,a), `b + x(v0,b)

}]
.

In both cases, the function f(z) is a convex function. According to Alizadeh and

Burkard [3], the univariate optimization problem can be solved in linear time. To get the

optimal solution of the inverse 2-maxian problem on S, we have to solve two problems

and get the best one. Therefore, we attain the following result.
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Theorem 3.2. The inverse 2-maxian problem on a star graph can be solved in linear

time.

4. Problem under Chebyshev norm

We recall that modifying an edge e by one unit length costs ce, the objective function in

(2.1) under Chebyshev norm can be written as

C(x) = max
e∈E
{cexe} .

The solution method of the problem is based on the greedy modification. We define a

valid modification of edge lengths in T with cost C as follows.

Definition 4.1 (Valid modification). [21] A valid modification with cost C is to modify

each edge of T as much as possible such that the cost is limited within C, i.e., we set

xe :=


C

ce
if cexe > C,

xe if cexe ≤ C.

We can solve the problem by the following two phases.

Phase 1: Find the interval that contains the optimal cost.

We first sort the costs {cexe}e∈E in nondecreasing order and unite the similar values.

Then we obtain a sequence of costs

c1x1 < c2x2 < · · · < cmxm.

Here, m = O(n).

Then we aim to find the smallest index i0 such that P (a, b) become the longest path

by applying the valid modification with cost ci0xi0 . The index i0 can be found by applying

a binary search algorithm. If we apply the valid modification with cost ckxk but the path

P (a, b) does not become the longest path then i0 > k. Otherwise, we know i0 ≤ k.

Let us analyze the complexity to find i0. In each iteration modifying the edge lengths

of the tree costs linear time. Then we find the longest path of the tree in linear time (see

Handler [18]), and compare the length of P (a, b) with the longest one in order to decide

if Corollary 2.2 holds or not in linear time. As the binary search stops after O(log n)

iterations, this procedure runs in O(n log n) time.

Assume that we have found the interval [ci0−1xi0−1, ci0xi0 ] that contains the optimal

cost. We apply a valid modification with cost ci0−1xi0−1 and get the modified tree T̃ .

Also, we update the upper bounds of modifications. The next step is to define a parameter

t ∈ [0, ci0xi0 ] and find the smallest value t such that P (a, b) becomes the longest path of

T̃ for a valid modification with cost ci0t.
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Phase 2: Find the minimizer t with respect to the optimal objective value in [0, ci0xi0 ].

After deleting all edges of the path P (a, b) we get a forest T del. Consider a vertex v

in the path P (a, b), v 6= a, b. A branch Tv is, by definition, a connected component of

T del that contains the vertex v. Denote by L(Tv) the set of leaves in Tv. Now we try to

modify the edge lengths of T so that there is no path P (v, v′), for v ∈ P (a, b), v 6= a, b

and v′ ∈ L(Tv), is longer than min {d(v, a), d(v, b)}. To solve this problem, we first apply

a valid modification with cost ci0t for t ∈ [0, xi0 ], i.e., one sets xe =
ci0 t

ce
for e ∈ E and

xe > 0. Then we consider the modifying lengths of these following paths.

• For a path P (v, v′) with v′ ∈ L(Tv) and d(v, v′) > min {d(v, a), d(v, b)}, its modifying

length is

d(v, v′)− ci0
∑

e∈P (v,v′),xe>0

t

ce
.

• For the paths P (v, a) and P (v, b), we obtain the modifying lengths

d(v, a) + ci0
∑

e∈P (v,a),xe>0

t

ce
and d(v, b) + ci0

∑
e∈P (v,b),xe>0

t

ce
.

We first identify the value t1 and t2 such that

t1 := arg min max

d(v, v′)− ci0
∑

e∈P (v,v′),xe>0

t

ce
, d(v, a) + ci0

∑
e∈P (v,a),xe>0

t

ce

 ,(4.1)

t2 := arg min max

d(v, v′)− ci0
∑

e∈P (v,v′),xe>0

t

ce
, d(v, b) + ci0

∑
e∈P (v,b),xe>0

t

ce

 ,(4.2)

where v ∈ P (a, b) \ {a, b}, v′ ∈ L(Tv), d(v, v′) > min {d(v, a), d(v, b)} and t ∈ [0, xi0 ]. As

we have to find the minimizer of the upper envelop of linear functions, the algorithm in

Section 5 of Gassner [15] will find t1 and t2 in linear time provided that all linear functions

have been found.

The smallest value t∗, such that the modifying lengths of all paths P (v, v′) for v ∈
P (a, b)\{a, b} and v′ ∈ L(Tv) are not larger than min

{
d̃(v, a), d̃(v, b)

}
, is easily identified

as t∗ := max {t1, t2}.
We now analyze the complexity to find all linear functions in the expressions (4.1)

and (4.2). We number the vertices in the path P (a, b) from the left to the right side by

a, v1, v2, . . . , vk, b, where k = O(n). Denote by E(S) the set of edges in a subtree S. We

start with the vertex v1, it costs O(|E(Tv1)|) time (by a breath-first-search procedure) to

identify all functions

d(v1, v
′)− ci0

∑
e∈P (v1,v′),xe>0

t

ce
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for v′ ∈ L(Tv1) and O(|E(P (a, b))|) time to identify

d(v1, ?) + ci0
∑

e∈P (v1,?),xe>0

t

ce

for ? = a, b.

Next we have to find all linear functions with respect to vertex v2. To identify the

functions

d(v2, ?) + ci0
∑

e∈P (v2,?),xe>0

t

ce

for ? = a, b, we have to exchange the modification edge (v1, v2) that contribute to the

augmentation of path P (v2, a). We continue the process for vertex v3, v4, . . . , vk similarly.

In conclusion, it costs O
(∑

v∈P (a,b)\{a,b} |E(Tv)|+ 2 |E(P (a, b))|
)

= O(n) time to com-

plete the procedure to find all linear functions in (4.1) and (4.2). Therefore, we get the

following result.

Theorem 4.2. The inverse 2-maxian problem on a tree under Chebyshev norm can be

solved in O(n log n) time.

5. Problem under Hamming distance

First, let us focus on the problem under bottleneck Hamming distance. Assume that

modifying one unit length of edge e costs ce, we aim to minimize the following objective

function

max
e∈E
{ceH(xe)} .

Here, H is a Hamming distance and defined by

H(θ) :=

0 if θ = 0,

1 otherwise.

By the special structure of the Hamming distance, the objective function receives

finitely many values, say {ce : e ∈ E}. Therefore, we can solve the problem by finding the

smallest value in {ce : e ∈ E} such that the optimality criterion in Lemma 2.2 holds.

Number the edges in T by 1, 2, . . . ,m, and the corresponding costs are c1, c2, . . . , cm

for m = n− 1. Let us first sort the costs {ce : e ∈ E} increasingly and get without loss of

generality a sequence

c1 ≤ c2 ≤ · · · ≤ cm.

Now we apply a binary search algorithm to find the optimal cost. We start with the

cost ck, k = bm+1
2 c. We modify all the edges 1, 2, . . . , k − 1. If the optimality criterion
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holds, we know that the optimal value is less than or equal to ck. Otherwise, it is larger

than ck. In each iteration we recomputing the length of the longest path in linear time

(see Handler [18]) and compare it with the length of P (a, b). Moreover, as the binary

search stop after O(logm) iterations, Phase 1 runs in O(m logm) = O(n log n) time.

Theorem 5.1. The inverse 2-maxian problem on trees under bottleneck Hamming distance

can be solved in O(n log n) time.

For the problem under weighted sum Hamming distance, the objective function can be

written as
∑

e∈E ceH(xe). As we can easily reduce the Knapsack problem into an inverse

p-maxian problem under weighted sum Hamming distance in polynomial time, we derive

a result as follows.

Theorem 5.2. The inverse p-maxian problem on tree under weighted sum Hamming

distance is NP -hard.

6. Conclusions

We have addressed the inverse p-maxian problem, p ≥ 2, under various objective functions.

It is shown that the problem can be reduced to O(p2) many 2-maxian problems. Then we

have formulated the inverse 2-maxian problem on trees under l1-norm as a linear program

and solved the problem on star graphs in linear time. Furthermore, the inverse 2-maxian

problem on a tree under Chebyshev norm and bottleneck Hamming distance is solvable in

O(n log n) time, where n is the number of vertices in the tree. For future research topics,

we will consider the inverse maxian problem on other classes of graphs, e.g., cacti, interval

graphs, block graphs, etc.
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