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Algebraic Properties of Cauchy Singular Integral Operators on the Unit

Circle

Caixing Gu

Abstract. In this paper we study algebraic properties of singular integral opera-

tors with Cauchy kernel on the L2 space of the unit circle. We give an operator

equation characterization for this class of Cauchy singular integral operators. This

characterization provides a direct connection between the singular integral operators

and multiplication operators. We then use this characterization to study when two

Cauchy singular integral operators commute. Our approach also leads to generaliza-

tions of several results on normal Cauchy singular integral operators obtained recently

by Nakazi and Yamamoto.

1. Introduction

Let T be the unit circle in the complex plane. Let L2 = L2(T) be the set of all square-

integrable functions on T. Each function f ∈ L2 has a Fourier series expansion

f(eiθ) =
∞∑

n=−∞
fne

inθ for θ ∈ [0, 2π]

and

‖f(z)‖2 =

∫
T
|f(z)|2 dm(z) =

∞∑
n=−∞

|fn|2

where m(z) is the normalized Lebesgue measure on T. The function f(eiθ) has a unique

harmonic extension into the open unit disk D as follows

f(reiθ) =

∞∑
n=−∞

fnr
|n|einθ, 0 ≤ r ≤ 1.

Let L∞ be the set of essentially bounded functions on T. Given ϕ ∈ L∞, the multipli-

cation operator Mϕ is defined by

Mϕf = ϕf, f ∈ L2.
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Note that ‖Mϕ‖ = ‖ϕ‖∞. If ϕ1, ϕ2 ∈ L∞, then

Mϕ1Mϕ2 = Mϕ1ϕ2 = Mϕ2Mϕ1 .

The Hardy space H2 is the closed subspace of L2 spanned by analytic polynomials. In

other words, each f ∈ H2 has a Fourier series expansion

f(eiθ) =

∞∑
n=0

fne
inθ for θ ∈ [0, 2π],

and we can view f as an analytic function inside the unit disk D with power series

expansion

f(z) =
∞∑
n=0

fnz
n, |z| < 1.

Let H∞ be the set of all bounded analytic functions on D.

Given ϕ ∈ L∞, the Toeplitz operator Tϕ : H2 → H2 is defined by

Tϕ(f) = P (ϕf), f ∈ H2,

and the Hankel operator Hϕ : H2 → L2 	H2 = zH2 is defined by

Hϕ(f) = Q(ϕf), g ∈ H2

where P and Q = I − P denote the orthogonal projections that map L2 onto H2 and

L2 	H2 = zH2 respectively. Some basic algebraic properties of Toeplitz operators were

developed in Brown and Halmos [2]. See also [1] for literatures on Toeplitz operators and

Hankel operators.

Let α, β ∈ L∞, the Cauchy singular integral operator Sα,β : L2 → L2 is defined by

Sα,β(f) = αPf + βQf, f ∈ L2.

It is clear that

‖Sα,β(f)‖ ≤ ‖αPf‖+ ‖βQf‖ ≤ ‖α‖∞ ‖Pf‖+ ‖β‖∞ ‖Qf‖

≤ (‖α‖∞ + ‖β‖∞) ‖f‖ ,

so Sα,β is a bounded operator. See a recent survey on norms of some classical singular

integral operators in [9]. The operator Sα,β has an integral representation with Cauchy

kernel,

Sα,β(f) =
α(z) + β(z)

2
f(z) +

α(z)− β(z)

2

1

πi

∫
T

f(ξ)

ξ − z
dξ.

Singular integral operators and singular integral equations have been studied exten-

sively in literature. The two volumes [4] and [5] by Gohberg and Krupnik are classical.
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Singular integral equations also have wide and important applications as demonstrated in

a recent book [10] by Mandal and Chakrabarti.

Recently Nakazi and Yamamoto in [12] characterized when Sα,β is normal. The oper-

ator Sα,β has a close connection with Toeplitz and Hankel operators via a 2 by 2 block

operator form (Lemma 3.1 in [12]). This connection plays a key role in deriving most

results in [12].

In this paper we use a more direct approach by characterizing this class of singular

integral operators as the solutions to an operator equation, see Proposition 2.1. Our

approach provides the insight into how this class of singular integral operators is intimately

related to the multiplication operators.

Research on singular integral operators has focused on boundedness, invertibility and

Fredholm theory. In this paper several basic algebraic properties of the singular integral

operator Sα,β are obtained. A couple of results from [12] are generalized and proved in

simpler and more direct ways. Because we consider more general questions, the algebra

involved is somewhat lengthy and more challenging. It is also possible to use 2 by 2 Toeplitz

and Hankel block operator forms as in [12] and the algebra will be even more demanding

and may be impossible in some instances. However our insights do come from working with

related problems on Toeplitz and Hankel operators in [6] and [7]. Furthermore, this study

shows that this class of operators has many interesting properties and these operators are

natural extensions of multiplication operators, Toeplitz operators and Hankel operators.

We outline our plan. In Section 2, we show that singular integral operators or products

of singular operators satisfy an operator equation. In Section 3, we characterize when

the product of two singular integral operators is also a singular integral operator. This

characterization enables us to identify some subalgebras of singular integral operators. We

then study when the product of a singular operator and the adjoint of another singular

operator is also a singular integral operator. As an application, we recover the results

about isometric and unitary singular integral operators in [12]. We prove that Sα,β is a

coisometry if and only if it is a unitary operator.

In Section 4, we prove essentially two singular integral operators commute if and only

if one is a multiple of the other. In Section 5, we discuss when a singular operator and the

adjoint of another singular integral operator commute. As a corollary, we obtain normal

singular integral operators discovered in [12]. In Section 6, we show that most results from

previous sections are also valid for singular integral operators defined on the Lp space of

the unit circle T.
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2. A characterization of singular integral operators

Let B(L2) be the algebra of all bounded linear operators on L2. Let S denote the set of

all singular integral operators

S =
{
Sα,β ∈ B(L2) | α, β ∈ L∞

}
.

Note that Sα,α = Mα and Sα,β = Mβ + Sα−β,0. By the Spectral Theorem for normal

operators, the commutant of Mz is the set of all multiplication operators on L2. Set

M =
{
Mα ∈ B(L2) | α ∈ L∞

}
=
{
A ∈ B(L2) |MzA = AMz

}
.

Let G be a subset of B(L2), we define

G∗ = {A∗ | A ∈ G} .

The set G is said to be self-adjoint if G = G∗. The set M is a commutative C∗-algebra.

The set S is neither an algebra nor a self-adjoint set.

Let en = zn and e−n = z−n = zn for n ≥ 0 where z = eiθ. For f ∈ L2, the Fourier

series of f is

f =

∞∑
n=−∞

fnen =

∞∑
n=−∞

fne
inθ.

Thus f−1 denotes the Fourier coefficient corresponding to the term e−1.

For two operators C,D ∈ B(L2), let [C,D] = CD −DC denote the commutator of C

and D. For x, y ∈ L2, let x⊗y denote the rank one operator defined by [x⊗y]h = 〈h, y〉x
for h ∈ L2. The following proposition characterizes S as the set of all operators whose

commutators with Mz are special rank one operators.

Proposition 2.1. Let A ∈ B(L2). Then A ∈ S if and only if there exists a ψ ∈ L∞ such

that

(2.1) [A,Mz] = ψ ⊗ e−1.

In this case A = Sψ+β,β for some β ∈ L∞.

Proof. Let A = Sα,β ∈ S for some α, β ∈ L∞. Let f =
∑∞

n=−∞ fnz
n ∈ L2, then

Sα,βMz(f) = αP [zf ] + βQ[zf ]

= α[zPf + f−1] + β[zQf − f−1]

= zαPf + zβQf + (α− β)f−1

= MzSα,β(f) + [(α− β)⊗ e−1](f).
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This proves (2.1) with ψ = (α− β) ∈ L∞.

Now assume A ∈ B(L2) and (2.1) holds. By the above argument

Sψ,0Mz −MzSψ,0 = ψ ⊗ e−1.

Therefore

(A− Sψ,0)Mz −Mz(A− Sψ,0) = (AMz −AMz)− (Sψ,0Mz − Sψ,0Mz)

= ψ ⊗ e−1 − ψ ⊗ e−1 = 0.

and

(A− Sψ,0)Mz = Mz(A− Sψ,0).

By the Spectral Theorem, A−Sψ,0 = Mβ = Sβ,β for some β ∈ L∞. Thus A = Sψ,0+Sβ,β =

Sψ+β,β .

The adjoint S∗α,β in general is not in S. The following result tells us when S∗α,β belongs

to S.

Proposition 2.2. The adjoint S∗α,β ∈ S if and only if (α − β) = λ for some constant λ.

In this case S∗α,β = Sα,β.

Proof. By Proposition 2.1, S∗α,β ∈ S if and only if

S∗α,βMz −MzS
∗
α,β = ψ ⊗ e−1

for some ψ ∈ L∞. But M∗zMz = MzM
∗
z = I and

S∗α,βMz −MzS
∗
α,β = Mz(M

∗
zS
∗
α,β − S∗α,βM∗z )Mz

= Mz[Sα,β,Mz]
∗Mz

= Mz[e−1 ⊗ (α− β)]Mz

= e0 ⊗ z(α− β).

Thus

ψ ⊗ e−1 = e0 ⊗ z(α− β)

and (α− β)z = λe−1 and ψ = λe0 for some complex number λ. In this case

S∗α,β = (Mβ + Sα−β,0)
∗ = Mβ + Sλ,0 = Sα,β.

The proof is complete.
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The following set M+ is a self-adjoint subset of S and it is slightly larger than M .

M+ = {Sβ+λ,β | β ∈ L∞, λ ∈ C} .

The following corollary is Theorem 2.1 in [12]. See also related work on self-adjoint

singular integral operators [8].

Corollary 2.3. [12] Sα,β is self-adjoint if and only if α and β are real valued functions

and (α− β) is a real constant.

Proof. If S∗α,β = Sα,β ∈ S, by Proposition 2.2, (α− β) is a constant. Furthermore S∗α,β =

Sα,β = Sα,β implies that α = α and β = β.

The set M is a subalgebra of S. Are there other subalgebras of S? To answer this

question, we need to determine when the product of two operators from S belongs to S.

The following lemma derives operator equations for the products of operators from S or

S∗.

Lemma 2.4. Let Sα1,β1 , Sα2,β2 ∈ S. Then

[Sα1,β1Sα2,β2 ,Mz] = (α1 − β1)⊗ S∗α2,β2e−1 + Sα1,β1(α2 − β2)⊗ e−1.

Similarly,

[Sα1,β1S
∗
α2,β2 ,Mz] = α1 ⊗ zα2 − β1 ⊗ zβ2

and

[S∗α2,β2Sα1,β1 ,Mz] = e0 ⊗ S∗α1,β1z(α2 − β2) + S∗α2,β2(α1 − β1)⊗ e−1.

Proof. By a direct computation,

[Sα1,β1Sα2,β2 ,Mz] = [Sα1,β1 ,Mz]Sα2,β2 + Sα1,β1 [Sα2,β2 ,Mz]

= [(α1 − β1)⊗ e−1]Sα2,β2 + Sα1,β1 [(α2 − β2)⊗ e−1]

= (α1 − β1)⊗ S∗α2,β2e−1 + Sα1,β1(α2 − β2)⊗ e−1.

Similarly,

[Sα1,β1S
∗
α2,β2 ,Mz] = [Sα1,β1 ,Mz]S

∗
α2,β2 + Sα1,β1 [S∗α2,β2 ,Mz]

= [Sα1,β1 ,Mz]S
∗
α2,β2 + Sα1,β1Mz[Sα2,β2 ,Mz]

∗Mz

= (α1 − β1)⊗ Sα2,β2e−1 + Sα1,β1e0 ⊗ z(α2 − β2)

= (α1 − β1)⊗ zβ2 + α1 ⊗ z(α2 − β2)

= α1 ⊗ zα2 − β1 ⊗ zβ2
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and

[S∗α2,β2Sα1,β1 ,Mz] = [S∗α2,β2 ,Mz]Sα1,β1 + S∗α2,β2 [Sα1,β1 ,Mz]

= Mz[Sα2,β2 ,Mz]
∗MzSα1,β1 + S∗α2,β2 [Sα1,β1 ,Mz]

= e0 ⊗ S∗α1,β1z(α2 − β2) + S∗α2,β2(α1 − β1)⊗ e−1.

The proof is complete.

We now establish that finite sums of products of singular integral operators are models

for operators whose commutators with Mz are of finite rank.

Theorem 2.5. Let A ∈ B(L2). Then

(2.2) [A,Mz] =

n∑
k=1

ϕk ⊗ ψk

where ϕk, ψk ∈ L∞ if and only if

(2.3) A = Mα +
m∑
k=1

Sαk,βkS
∗
γk,δk

where α, αk, βk, γk, δk ∈ L∞ and m = n
2 if n is even and m = n+1

2 if n is odd. In particular,

if

[A,Mz] = ϕ⊗ ψ

where ϕ,ψ ∈ L∞, then

A = Mα +MϕS
∗
zψ,0 or A = Mβ + Sϕ,0M

∗
zψ

for some α, β ∈ L∞.

Proof. One direction is clear from Lemma 2.4. Assume now (2.2) holds, we will prove

(2.3). We will demonstrate the result for n = 2 and n = 1. The general case will be clear.

Assume

[A,Mz] = ϕ1 ⊗ ψ1 + ϕ2 ⊗ ψ2.

We work backward by using Lemma 2.4 and setting

(2.4) ϕ1 ⊗ ψ1 + ϕ2 ⊗ ψ2 = α1 ⊗ zγ1 − β1 ⊗ zδ1.

One set of solutions is

α1 = ϕ1, β1 = −ϕ2 γ1 = zψ1, δ1 = zψ2.
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Therefore by Lemma 2.4 and (2.4),

[A− Sα1,β1S
∗
γ1,δ1 ,Mz] = [A,Mz]− [Sα1,β1S

∗
γ1,δ1 ,M ] = 0.

By the Spectral Theorem,

A− Sα1,β1S
∗
γ1,δ1 = Mα

for some α ∈ L∞. The proves the case n = 2. For n = 1, if

[A,Mz] = ϕ⊗ ψ,

then we work backward by using Lemma 2.4 and setting

ϕ⊗ ψ = α1 ⊗ zγ1 − β1 ⊗ zδ1.

We set

α1 = β1 = ϕ, γ1 = zψ, δ1 = 0.

Then A = Mα+MϕS
∗
zψ,0 for some α ∈ L∞. The proof of A = Mβ+Sϕ,0M

∗
zψ is similar.

3. Products of singular integral operators

We first study when the product of two operators from S belongs to S. This result will

help us identify some subalgebras of S.

Theorem 3.1. Let Sα1,β1 , Sα2,β2 ∈ S. Assume Sα1,β1 is not in M . Then Sα1,β1Sα2,β2 ∈ S
if and only if α2 ∈ H∞, β2 ∈ H∞. In this case Sα1,β1Sα2,β2 = Sα1α2,β1β2.

Proof. By Proposition 2.1, Sα1,β1Sα2,β2 ∈ S if and only if

(3.1) [Sα1,β1Sα2,β2 ,Mz] = ψ ⊗ e−1

for some ψ ∈ L∞. By Lemma 2.4,

[Sα1,β1Sα2,β2 ,Mz] = (α1 − β1)⊗ S∗α2,β2e−1 + Sα1,β1(α2 − β2)⊗ e−1
= ψ ⊗ e−1.

By assumption α1 − β1 6= 0, therefore, there exists a complex number λ such that

S∗α2,β2e−1 = λe−1,(3.2)

Sα1,β1(α2 − β2) = −λ(α1 − β1) + ψ.(3.3)

Note that S∗α2,β2
(f) = P [α2f ] +Q[β2f ]. We have from (3.2)(

P [α2e−1] +Q[β2e−1]
)

= λz,
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which implies that α2 ∈ H∞ and β2 = λ+
∑−1

n=−∞ β2nz
n ∈ H∞. Now (3.3) becomes

α1P [α2 − β2] + β1Q[α2 − β2] = −λ(α1 − β1) + ψ,

α1(α2 − λ) + β1(−β2 + λ) = −λ(α1 − β1) + ψ.

Therefore

(3.4) α1α2 = β1β2 + ψ.

Since α2 ∈ H∞ and β2 ∈ H∞,

Sα1,β1Sα2,β2f = Sα1,β1(α2Pf + β2Qf)

= α1P [α2Pf + β2Qf ] + β1Q[α2Pf + β2Qf ]

= α1α2Pf + β1β2Qf

= Sα1α2,β1β2f = Sα1α2,α1α2−ψf = Sβ1β2+ψ,β1β2f.

The proof is complete.

Remark 3.2. (a) If Sα1,β1 = Mα1 , then Sα1,β1Sα2,β2 ∈ S for any Sα2,β2 and Sα1,β1Sα2,β2 =

Mα1Sα2,β2 = Sα1α2,α1β2 .

(b) Assume Sα1,β1 /∈ M and Sα2,β2 = Mα2 . If Sα1,β1Sα2,β2 ∈ S, then by the above

theorem, α2 is a constant, Sα2,β2 = α2I and Sα1,β1Sα2,β2 = Sα1α2,β1α2 .

(c) If α2 ∈ H∞, β2 ∈ H∞, then Sα1,β1Sα2,β2 = Sα1α2,β1β2 . This formula is valid for

more general singular integral operators, see equation (6.3) in [4].

Recall Mα for some α ∈ L∞ is invertible if and only if α is invertible in L∞, and in

this case M−1α = Mα−1 . Let erange(α) denote the essential range of α. Thus σ(Mα) =

erange(α) where σ(Mα) denote the spectrum of Mα. We now characterize when Sα,β is

invertible and whose inverse is also in S.

Corollary 3.3. Let Sα,β ∈ S for some α, β ∈ L∞. Assume Sα,β /∈ M . Then Sα,β is

invertible and S−1α,β ∈ S if and only if α, β ∈ H∞ and α, β are invertible in H∞. In this

case S−1α,β = Sα−1,β−1. Thus, if α, β ∈ H∞, then σ(Sα,β) ⊆ erange(α) ∪ erange(β).

Proof. If Sα1,β1 is the inverse of Sα,β, then Sα1,β1Sα,β = Sα1α,β1β = I ∈ S. Since Sα1,β1 /∈
M (otherwise Sα,β ∈ M), by Theorem 3.1, α, β ∈ H∞ and α1α = β1β = 1. The result

follows.

The proof of Theorem 3.1 also tells us when Sα1,β1Sα2,β2 ∈ M . This corresponds to

the case ψ = 0 in (3.4).

Corollary 3.4. Let Sα1,β1 , Sα2,β2 ∈ S. Assume Sα1,β1 is not in M . Then Sα1,β1Sα2,β2 ∈
M if and only if α2 ∈ H∞, β2 ∈ H∞ and α1α2 = β1β2. In this case Sα1,β1Sα2,β2 = Mβ1β2.
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We will need the following important result (a part of F. and M. Riesz theorem), see

Corollary 4.2 on page 62 of [3].

Lemma 3.5. If α ∈ H2 and α is not identically zero, then α 6= 0 almost everywhere on

the unit circle T.

The next result characterizes when Sα1,β1Sα2,β2 = 0.

Corollary 3.6. Let Sα1,β1 , Sα2,β2 ∈ S. Assume Sα1,β1 is not in M and Sα2,β2 6= 0. Then

Sα1,β1Sα2,β2 = 0 if and only if one of the following two statements holds.

(i) α1 6= 0, β1 = 0, α2 = 0 and β2 ∈ H∞.

(ii) β1 6= 0, α1 = 0, β2 = 0 and α2 ∈ H∞.

Proof. By Corollary 3.4, α1α2 = β1β2 = 0. The result follows from this equation and

Lemma 3.5 since α2 ∈ H∞ and β2 ∈ H∞.

We now identify some subalgebras of S which are closely related to the subalgebras of

H∞.

Corollary 3.7. The largest subalgebra K of S not contained in M is

K =
{
Sα,β | α ∈ H∞, β ∈ H∞

}
.

Proof. Let K be a subalgebra of S not contained in M . Let Sα,β ∈ S but Sα,β /∈ M . By

Theorem 3.1, S2
α,β ∈ K ⊂ S implies that α ∈ H∞, β ∈ H∞. Let Sα1,β1 be an arbitrary

element of K, then Sα,βSα1,β1 ∈ K ⊂ S implies that α1 ∈ H∞, β1 ∈ H∞. The proof is

complete.

If Sα,β ∈ K, then S∗α,β /∈ S unless both α and β are constants (by Proposition 2.2).

For any two fixed inner functions θ1, θ2, the following set Kθ1,θ2 is a subalgebra of S.

Kθ1,θ2 =
{
Sθ1α,θ2β

∣∣ α ∈ H∞, β ∈ H∞} = Sθ1,θ2K.

Next we consider when S∗α2,β2
Sα1,β1 belongs to S. This characterization is slightly

more complicated.

Proposition 3.8. Let Sα1,β1 , Sα2,β2 ∈ S. Then S∗α2,β2
Sα1,β1 ∈ S if and only if α1(α2 −

β2), β1(α2 − β2) ∈ H∞. In this case S∗α2,β2
Sα1,β1 = Sα2α1,β2β1

.

Proof. By Proposition 2.1, S∗α2,β2
Sα1,β1 ∈ S if and only if

[S∗α2,β2Sα1,β1 ,Mz] = ψ ⊗ e−1
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for some ψ ∈ L∞. By Lemma 2.4,

[S∗α2,β2Sα1,β1 ,Mz] = e0 ⊗ S∗α1,β1z(α2 − β2) + S∗α2,β2(α1 − β1)⊗ e−1
= ψ ⊗ e−1.

Therefore there exists a complex number λ such that

S∗α1,β1z(α2 − β2) = λe−1

λe0 + S∗α2,β2(α1 − β1) = ψ.

It follows that

(3.5) P [α1z(α2 − β2)] +Q
[
β1z(α2 − β2)

]
= λz

λ+ P [α2(α1 − β1)] +Q
[
β2(α1 − β1)

]
= ψ.

Therefore α1(α2 − β2) = h1 and β1(α2 − β2) = λ+ zh2 for some h1, h2 ∈ H∞. Now

S∗α2,βSα1,β1f = P [α2α1Pf + α2β1Qf ] +Q
[
β2α1Pf + β2β1Qf

]
= P

[
α1

(
α2 − β2

)
Pf + β1

(
α2 − β2

)
Qf
]

+ β2α1Pf + β2β1Qf

= α1

(
α2 − β2

)
Pf + β2α1Pf + β2β1Qf

= α2α1Pf + β2β1Qf = Sα2α1,β2β1
f.

The proof is complete.

Corollary 3.9. Let Sα1,β1 , Sα2,β2 ∈ S. Then

(a) S∗α2,β2
Sα1,β1 ∈ M if and only if α1(α2 − β2), β1(α2 − β2) ∈ H∞ and α2α1 = β2β1.

In this case S∗α2,β2
Sα1,β1 = Mα2α1.

(b) If Sα1,β1 6= 0 and Sα2,β2 6= 0, then S∗α2,β2
Sα1,β1 = 0 if and only if and one of the

following statement holds.

(i) α1 6= 0, β2 6= 0, β1 = 0, α2 = 0 and α1β2 ∈ H∞.

(ii) α2 6= 0, β1 6= 0, α1 = 0, β2 = 0 and β1α2 ∈ H∞.

Proof. Part (a) follows from the proof of Proposition 3.8. We now prove (b). If S∗α2,β2
Sα1,β1

= 0, then α2α1 = β2β1 = 0. Since α1β2 ∈ H∞, by Lemma 3.5, either α1β2 = 0 or

α1β2 6= 0 almost everywhere on T. Thus if both α1 and β2are not zero functions, then

α2α1 = β2β1 = 0 imply that both β1 and α2 are zero functions. This proves (i). The

proof of (ii) is similar.
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Corollary 3.10. Let α ∈ L∞ and assume α is invertible in L∞. Also let h ∈ H∞ and

assume h is invertible in H∞. Then Sα,hα is left invertible with left inverse S∗
1/α,1/(hα)

.

By Proposition 3.12, S∗
1/α,1/(hα)

is in general not a right inverse of Sα,hα unless h is a

constant.

Corollary 3.11. [12] The operator Sα,β is an isometry if and only if |α| = |β| = 1 and

α = θβ for some inner function θ. The operator Sα,β is a unitary operator if and only if

|α| = |β| = 1 and α = λβ for some unimodular constant λ.

Proof. The operator Sα,β is an isometry if and only if S∗α,βSα,β = I. By Corollary 3.9,

αα = ββ = 1. The function α(α − β) = 1 − αβ ∈ H∞ implies that αβ ∈ H∞. But∣∣αβ∣∣ = 1, so αβ = θ ∈ H∞ is an inner function. Thus α = αββ = θβ.

If Sα,β = Sθf,β is a unitary operator, then

β = Sθf,βS
∗
θβ,ββ = Sθβ,β

[
P (θββ) +Q(ββ)

]
= Sθβ,βP (θ) = θβP (θ).

Thus θP (θ) = 1 since |β| = 1. Therefore θ is a unimodular constant.

It is natural to ask when Sα,β is a coisometry. We can answer this question by studying

product Sα1,β1S
∗
α2,β2

.

Proposition 3.12. Let Sα1,β1 , Sα2,β2 ∈ S. Assume Sα1,β1 6= 0. Then Sα1,β1S
∗
α2,β2

∈ S if

and only if one of the following four statements holds.

(i) α1 = 0 and β2 is a constant.

(ii) β1 = 0 and α2 is a constant.

(iii) Both α2 and β2 are constants.

(iv) β1 = λα1, α2 = λβ2 + µ for two constants λ and µ.

In all cases, Sα1,β1S
∗
α2,β

= Sα1α2,β1β2
.

Proof. By Proposition 2.1, Sα1,β1S
∗
α2,β2

∈ S if and only if

[Sα1,β1S
∗
α2,β2 ,Mz] = ψ ⊗ e−1

for some ψ ∈ L∞. By Lemma 2.4,

(3.6) [Sα1,β1S
∗
α2,β2 ,Mz] = α1 ⊗ zα2 − β1 ⊗ zβ2 = ψ ⊗ e−1.

There are two cases. Either α2 and β2 are linearly dependent or α1 and β1 are linearly

dependent.
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Assume α2 and β2 are linearly dependent. If β2 = 0 and ψ = 0, then α1 = 0 (assume

α2 6= 0). This leads to statement (i) with β2 = 0. If β2 = 0 and ψ 6= 0, then by (3.6), α2

is a constant. This leads to statement (iii) with β2 = 0. If β2 6= 0, then

(3.7) α2 = λβ2

for some constant λ. Now equation (3.6) becomes(
λα1 − β1

)
⊗ zβ2 = ψ ⊗ e−1.

If ψ = 0, then λα1−β1 = 0. This leads to statement (iv) with µ = 0. If ψ 6= 0, zβ2 = µe−1

for some constant µ, therefore β2 is a constant. This leads to statement (iii).

Assume now α1 and β1 are linearly dependent but α2 and β2 are linearly independent.

If β1 = 0, then (3.6) implies that α2 is a constant (assume α1 6= 0). This leads to

statement (ii). If β1 6= 0, then

(3.8) α1 = λβ1.

Now equation (3.6) becomes

β1 ⊗ z(λα2 − β2) = ψ ⊗ e−1.

If ψ = 0, then λα2 − β2 = 0, which is impossible. If ψ 6= 0, there exists a constant µ 6= 0

such that

(3.9) (λα2 − β2) = −µ, µβ1 = ψ.

If λ = 0, then by (3.8) and (3.9), α1 = 0 and β2 is a constant. This leads to statement (i).

If λ 6= 0, this leads to statement (iv). In this case, by (3.8) and (3.9),

Sα1,β1S
∗
α2,β2f = Sα1,β1

[
P [α2f ] +Q

[
β2f

]]
= α1P [α2f ] + β1Q

[
β2f

]
= λβ1P [α2f ] + β1Q [(λα2 + µ) f ]

= λβ1α2f + β1µQ [f ]

= Sλβ1α2,λβ1α2+µβ1 = Sα1α2,β1β2
.

The proof is complete.

Corollary 3.13. Let β ∈ L∞. Assume β is invertible in L∞ and λ is a nonzero constant.

Then Sλβ,β is right invertible with right inverse S∗
1/βλ,1/β

.

In fact S∗
1/βλ,1/β

is an inverse of Sλβ,β , see Corollary 3.10.

Corollary 3.11 shows that Sα,β can be an isometry but not a unitary operator. Sur-

prisingly we show that Sα,β is a coisometry implies that Sα,β is in fact a unitary operator.
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Corollary 3.14. The operator Sα,β is a coisometry if and only if Sα,β is a unitary oper-

ator.

Proof. The operator Sα,β is a coisometry if and only if Sα,βS
∗
α,β = I. By Proposition 3.12,

Sα,βS
∗
α,β = Sαα,ββ = I, thus |α| = |β| = 1. If statement (iii) in Proposition 3.12 holds,

then Sα,β is a multiple of the identity, so Sα,β is a unitary operator. If statement (iv) in

Proposition 3.12 holds, then α = λβ for some unimodular constant σ and Sα,β is a unitary

operator by Corollary 3.11.

4. Commuting singular integral operators

In this section we discuss when two operators from S commute. In contrast with the set

M , where any two operators from M always commute, we prove that two operators from

S commute if and only if one is essentially a scalar multiple of the other operator. Recall

that the algebra K is defined by

K =
{
Sα,β | α ∈ H∞, β ∈ H∞

}
.

If either Sα1,β1 or Sα2,β2 is a scalar multiple of identity operator, then Sα1,β1Sα2,β2 =

Sα2,β2Sα1,β1 . Thus in the next theorem, we assume both Sα1,β1 and Sα2,β2 are not scalar

multiples of the identity operator.

Theorem 4.1. If Sα1,β1Sα2,β2 = Sα2,β2Sα1,β1, then one of the following statements holds.

(i) Both Sα1,β1 and Sα2,β2 are in M .

(ii) Both Sα1,β1 and Sα2,β2 are in K.

(iii) Sα1,β1 = λSα2,β2 + µI for some constants λ and µ.

Proof. Assume (i) does not hold. We will prove either (ii) or (iii) holds. By Lemma 2.4,

Sα1,β1Sα2,β2 = Sα2,β2Sα1,β1 implies that

(α1 − β1)⊗ S∗α2,β2e−1 + Sα1,β1(α2 − β2)⊗ e−1
= (α2 − β2)⊗ S∗α1,β1e−1 + Sα2,β2(α1 − β1)⊗ e−1.

(4.1)

There are three cases.

Case A. Either α1 − β1 = 0 or α2 − β2 = 0. Without loss of generality, assume

α1 − β1 = 0 and α2 − β2 6= 0. Then by (4.1),

S∗α1,β1e−1 = σe−1

for some constant σ. This implies that α1 = β1 = σ, so Sα1,β1 = σI.
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Case B. α1 − β1 6= 0, α2 − β2 6= 0 and (α1 − β1) 6= λ(α2 − β2) for any constant λ.

Then by (4.1),

(4.2) S∗α2,β2e−1 = µe−1, S∗α1,β1e−1 = σe−1

for some constants µ and σ. Thus

µ(α1 − β1) + Sα1,β1(α2 − β2) = σ(α2 − β2) + Sα2,β2(α1 − β1).

Equation (4.2) is the same as (3.2). Thus equation (4.2) implies that α2 ∈ H∞, β2 ∈ H∞

and α1 ∈ H∞, β1 ∈ H∞. Therefore both Sα1,β1 and Sα2,β2 are in K and Sα1,β1Sα2,β2 =

Sα2,β2Sα1,β1 = Sα1α2,β1β2 This leads to (ii).

Case C. α1 − β1 6= 0, α2 − β2 6= 0 and (α1 − β1) = λ(α2 − β2) for some constant λ.

Note that λα2 − α1 = λβ2 − β1. Then (4.1) becomes

(α2 − β2)⊗
(
λS∗α2,β2e−1 − S

∗
α1,β1e−1

)
= (Sα2,β2(α1 − β1)− Sα1,β1(α2 − β2))⊗ e−1
= (Sα2,β2λ(α2 − β2)− Sα1,β1(α2 − β2))⊗ e−1
= Sλα2−α1,λβ2−β1(α2 − β2)⊗ e−1
= [(λα2 − α1)(α2 − β2)]⊗ e−1.

Therefore, there exists a constant µ such that

λS∗α2,β2e−1 − S
∗
α1,β1e−1 = µe−1(4.3)

(λα2 − α1)(α2 − β2) = µ(α2 − β2).(4.4)

It follows from (4.3) that(
P
[
λα2z − α1z

]
+Q

[
λβ2z − β1z

])
= µz.

Hence λα2 − α1 = h1, λβ2 − β1 = µ+ zh2 for some h1, h2 ∈ H∞. Equation (4.4) becomes

(λα2 − α1 − µ)(α2 − β2) = 0.

But λα2−α1−µ = h1−µ ∈ H∞. By Lemma 3.5, either α2−β2 = 0 or λα2−α1−µ = 0.

In the case α2 − β2 = 0, we have (α1 − β1) = λ(α2 − β2) = 0, so both Sα1,β1 and Sα2,β2

are in M which is excluded at the beginning of the proof. Therefore λα2 − α1 − µ = 0.

Furthermore λβ2 − β1 = λα2 − α1 = µ. That is, α1 = λα2 − µ and β1 = λβ2 − µ. In

conclusion Sα1,β1 = λSα2,β2 − µI.

Remark 4.2. If Sα1,β1 (or Sα2,β2) is in K but not in M , then Sα1,β1Sα2,β2 = Sα2,β2Sα1,β1

implies that Sα2,β2 is also in K. If Sα1,β1 is in M , then Sα1,β1Sα2,β2 = Sα2,β2Sα1,β1 implies

that either Sα2,β2 is also in M or Sα1,β1 = cI for some constant c.
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5. Commuting singular integral operators and their adjoints

In this section we study when Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 . As a corollary, we recover

the result in [12] about when Sα1,β1 is a normal operator. The proof of Theorem 5.6 is

elementary by using Lemma 2.4, but it is quite long and somewhat complicated. We divide

the proof into several lemmas. If either Sα1,β1 or Sα2,β2 is a scalar multiple of identity

operator, then Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 . Thus in this section, we assume both Sα1,β1

and Sα2,β2 are not scalar multiples of the identity operator.

Lemma 5.1. If Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1, then

(5.1) α1 ⊗ zα2 − β1 ⊗ zβ2 = e0 ⊗ S∗α1,β1z(α2 − β2) + S∗α2,β2(α1 − β1)⊗ e−1.

Proof. Note that Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 implies that[

Sα1,β1S
∗
α2,β2 ,Mz

]
=
[
S∗α2,β2Sα1,β1 ,Mz

]
.

By Lemma 2.4,

α1 ⊗ zα2 − β1 ⊗ zβ2 = e0 ⊗ S∗α1,β1z(α2 − β2) + S∗α2,β2(α1 − β1)⊗ e−1.

The proof is complete.

Lemma 5.2. If both sides of (5.1) are zero operators, then one of the following statements

holds.

(i) Both Sα1,β1 and Sα2,β2 are in M .

(ii) α2 = β1 = 0 and α1β2 ∈ H∞. In this case Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = 0.

(iii) α1 = β2 = 0 and β1α2 ∈ H∞. In this case Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = 0.

(iv) There exist some constants λ (λ 6= 0, 1) and µ such that

α1 = λβ1, β2 = λα2, α1α2 = µ.

In this case Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = µI.

Proof. If both sides of (5.1) are zero operators and β1 = 0, then α1⊗zα2 = 0 implies that

α2 = 0. If the right side of (5.1) is a zero operator, then

S∗α1,β1z(α2 − β2) = ηe−1, S∗α2,β2(α1 − β1) = −ηe0

for some constant η. Therefore

S∗α1,β1z(α2 − β2) = P [α1z(0− β2)] = ηz,
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which implies that α1β2 ∈ H∞. This leads to (ii). If both sides of (5.1) are zero operators

and β1 6= 0, then

α1 = λβ1, β2 = λα2,

S∗α1,β1z(α2 − β2) = ηe−1, S∗α2,β2(α1 − β1) = −ηe0

for some constants λ and η.

If λ = 0, then α1 = β2 = 0 and β1α2 ∈ H∞. This leads to statement (iii).

If λ = 1, then both Sα1,β1 and Sα2,β2 are in M . This leads to statement (i).

If λ 6= 0 and λ 6= 1, then

P
[
α1z(1− λ)α2

]
+Q

[
β1z(1− λ)α2

]
= ηz,

which implies that α1α2 = λβ1α2 ∈ H∞, β1α2 ∈ H∞. Hence α1α2 is a constant. In this

case it is easy to verify that Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = µI. This leads to statement (iv).

Lemma 5.3. If both sides of (5.1) are rank one operators, then one of the following

statements holds.

(1) α2 and β2 are constants. In this case Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = Sα1α2,β1β2

.

(2) α1 and β1 are constants. In this case Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = Sα1α2,β1β2

.

(3a) α1 = 0, β2 is a constant, and β1(α2 − β2) ∈ H∞.

(3b) α1 = λβ1, λα2 − β2 = δ for some constants λ 6= 0 and δ, and β1(α2 − β2) is a

constant. In cases (3a) and (3b), Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = Sα1α2,β1β2

.

(4a) β2 = 0, α1 is a constant, and α2

(
β1 − α1

)
∈ H∞.

(4b) β2 = ηα2, α1 − ηβ1 = δ for some constants η 6= 0 and δ, and β2(α1 − β2) is a

constant. In cases (4a) and (4b), Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 = S∗

α1α2,β1β2
.

(5a) α2 = 0, β1 is a constant, and β2(α1 − β1) ∈ H∞. In this case Sα1,β1S
∗
α2,β2

=

S∗α2,β2
Sα1,β1 = S∗

α1α2,β1β2
.

(5b) β1 = 0, α2 is a constant, and α1(α2 − β2) ∈ H∞. In this case Sα1,β1S
∗
α2,β2

=

S∗α2,β2
Sα1,β1 = Sα1α2,β1β2

.

Proof. We first assume α2 6= 0 and β1 6= 0. If the left side of (5.1) is of rank one, then

there exist constants η and λ such that either

(5.2) β2 = ηα2
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or

(5.3) α1 = λβ1.

If the right side of (5.1) is of rank one, then there exist constants σ and µ such that either

(5.4) S∗α1,β1z(α2 − β2) = σe−1

or

(5.5) S∗α2,β2(α1 − β1) = µe0.

There are four cases. We consider them one by one.

Case A. (5.2) and (5.4) hold. Plugging (5.2) and (5.4) into (5.1), we have

(α1 − ηβ1)⊗ zα2 =
[
σe0 + S∗α2,β2(α1 − β1)

]
⊗ e−1.

Therefore α2 and β2 are constants. This leads to statement (1).

Case B. (5.3) and (5.5) hold. Plugging (5.3) and (5.5) into (5.1), we have

β1 ⊗ z
(
λα2 − β2

)
= e0 ⊗

[
S∗α1,β1z(α2 − β2) + µe−1

]
.

Therefore α1 and β1 are constants. This leads to statement (2).

Case C. (5.3) and (5.4) hold. Plugging (5.3) and (5.4) into (5.1), we have

β1 ⊗ z
(
λα2 − β2

)
=
[
σe0 + S∗α2,β2(α1 − β1)

]
⊗ e−1.

Therefore λα2 − β2 is a constant. In this case, by Part (iv) of Proposition 3.12,

Sα1,β1S
∗
α2,β2 = Sα1α2,β1β2

.

Therefore S∗α2,β2
Sα1,β1 = Sα1,β1S

∗
α2,β2

∈ S. By Proposition 3.8, α1(α2−β2), β1(α2−β2) ∈
H∞. If λ = 0, then we have (3a). If λ 6= 0, then λβ1(α2 − β2), β1(α2 − β2) ∈ H∞ implies

that β1(α2 − β2) is a constant. This is (3b).

Case D. (5.2) and (5.5) hold. Plugging (5.2) and (5.5) into (5.1), we have

(5.6) (α1 − ηβ1)⊗ zα2 = e0 ⊗
[
S∗α1,β1z(α2 − β2) + µe−1

]
.

Therefore α1 − ηβ1 = δ for some constant δ. Case D in some sense is dual to Case C

by considering
(
Sα1,β1S

∗
α2,β2

)∗
=
(
S∗α2,β2

Sα1,β1

)∗
. Here we give a direct proof which

demonstrates that Case C can also be proved directly without using Propositions 3.12

and 3.8. By α1 − ηβ1 = δ and (5.6),

S∗α1,β1z(α2 − β2) + µe−1 = δzα2.
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Therefore

P
[
α1z(α2 − β2)− δzα2

]
+Q

[
β1z(α2 − β2)− δzα2

]
= −µe−1.

Hence

α1(α2 − β2)− δα2 ∈ H∞, β1(α2 − β2)− δα2 ∈ H∞.

Using β2 = ηα2, α1 − ηβ1 = δ, we have

α1(α2 − β2)− δα2 = ηα2

(
β1 − α1

)
∈ H∞,

β1(α2 − β2)− δα2 = α2

(
β1 − α1

)
∈ H∞.

If η = 0, we have (4a). If η 6= 0, we have (4b). In this case we can verify that(
Sα1,β1S

∗
α2,β2

)∗
=
(
S∗α2,β2Sα1,β1

)∗
= Sα1α2,β1β2

.

We now deal with the situation α2 = 0 or β1 = 0. The proof is similar, so we will be

brief. Since the right side of (5.1) is of rank one, there exist constants σ and µ such that

either

(5.7) S∗α1,β1z(α2 − β2) = σe−1

or

(5.8) S∗α2,β2(α1 − β1) = µe0.

There are four cases. When α2 = 0 and (5.7) holds, equation (5.1) implies that β2 is

a constant. This leads to statement (1). When α2 = 0 and (5.8) holds, equation (5.1)

implies that β1 is a constant and α1(α2− β2) ∈ H∞. This leads to statement (5a). When

β1 = 0 and (5.7) holds, equation (5.1) implies that α2 is a constant and α1(α2−β2) ∈ H∞.

This leads to statement (5b). When β1 = 0 and (5.8) holds, equation (5.1) implies that

α1 is a constant. This leads to statement (2). The proof is complete.

Lemma 5.4. If both sides of (5.1) are rank two operators, then one of the following

statements holds.

(i) β1 and α2 are constants, and β2(α1 − β1)−α2α1 ∈ H∞ (equivalently α1(α2 − β2) +

β1β2 ∈ H∞).

(ii) α1 and β2 are constants, and β1(α2 − β2)−α1α2 ∈ H∞ (equivalently α2(α1 − β1) +

β2β1 ∈ H∞).

(iii) There exist some constants λ 6= 0, δ1 and δ2 such that

α1 = λβ1 + δ1, β2 = λα2 + δ2

and β1(α2−β2)− δ1α2 is a constant (equivalently α2(α1−β1) + δ2β1 is a constant).
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In all cases Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1.

Proof. Recall (5.1),

(5.9) α1 ⊗ zα2 − β1 ⊗ zβ2 = e0 ⊗ f + g ⊗ e−1

where

f = S∗α1,β1z(α2 − β2), g = S∗α2,β2(α1 − β1).

If both sides of (5.9) are rank two operators, then there exist constants λ1, λ2, η1, η2 such

that

(5.10)

e0
g

 =

η1 η2

λ1 λ2

α1

β1

 .
Plugging the above equation into left side of (5.9), we have

α1 ⊗ zα2 − β1 ⊗ zβ2 = α1 ⊗ (η1f + λ1e−1) + β2 ⊗ (η2f + λ2e−1).

Thus η1 λ1

η2 λ2

 f

e−1

 =

 zα2

−zβ2

 ,

(5.11) Ω

 λ2 −λ1
−η2 η1

 zα2

−zβ2

 =

 f

e−1


where Ω = 1/

(
η1λ2 − η2λ1

)
. Equations (5.10) and (5.11) imply that

e0 = η1α1 + η2β1(5.12)

e−1 = −Ωz (η2α2 + η1β2) .(5.13)

If η1 = 0, then β1 and α2 are constants. Equation (5.9) becomes

(α1α2 − g)⊗ e−1 = e0 ⊗ (f + zβ2β1).

Therefore

α1α2 − g = µe0, f + zβ2β1 = µe−1

for some constant µ. It follows that

α1α2 − P [α2(α1 − β1)] +Q
[
β2(α1 − β1)

]
= µe0,

P [α1z(α2 − β2)] +Q
[
β1z(α2 − β2)

]
+ zβ2β1 = µe−1.
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Therefore

Q
[
β2(α1 − β1)− α1α2

]
= µe0 − α2β1e0,

P
[
α1z(α2 − β2) + zβ2β1

]
= µe−1 − β1α2e−1.

So, β2(α1 − β1) − α1α2 ∈ H∞ (equivalently α1(α2 − β2) + β2β1 ∈ H∞). This leads to

statement (i).

If η1 6= 0, we rewrite the (5.12) and (5.13) as

(5.14) α1 = λβ1 + δ1, β2 = λα2 + δ2

for some constants λ 6= 0, δ1, δ2. Now plugging these two relations into (5.10), we have

δ1 ⊗ zα2 − β1 ⊗ zδ2 = e0 ⊗ f + g ⊗ e−1,

e0 ⊗
(
f − δ1zα2

)
+
(
g + δ2β1

)
⊗ e−1 = 0.

Therefore there exists a constant µ such that(
f − δ1zα2

)
= µe−1

g + δ2β1 = −µ.

It follows that

P [α1z(α2 − β2)] +Q
[
β1z(α2 − β2)

]
= µe−1 + δ1zα2

P [α2(α1 − β1)] +Q
[
β2(α1 − β1)

]
= −µ− δ2β1.

Equivalently

P
[
α1z(α2 − β2)− δ1zα2

]
+Q

[
β1z(α2 − β2)− δ1zα2

]
= µe−1

P
[
α2(α1 − β1) + δ2β1

]
+Q

[
β2(α1 − β1) + δ2β1

]
= −µ.

Therefore

h1 := α1(α2 − β2)− δ1α2 ∈ H∞

h2 := β1(α2 − β2)− δ1α2 ∈ H∞

h3 := α2(α1 − β1) + δ2β1 ∈ H∞

h4 := β2(α1 − β1) + δ2β1 ∈ H∞.

By using (5.14) and a direct computation

(5.15) h1 = −h4, h2 = −h3, h1 = λh2
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h2 = (1− λ)β1α2 − δ2β1 − δ1α2.

Therefore, if λ 6= 0, then h1, h2, h3, h4 are all constants (equivalently one of them is a

constant). This leads to statement (iii). If λ = 0, then α1 and β2 are constants and

h1 = −h4 = 0 and h2, h3 ∈ H∞. This leads to statement (ii). In both cases, note that(
β2 − α2

)
α1 = − (h1 + δ1α2)(

β2 − α2

)
β1 =

(
h2 + δ1α2

)
where h1, h2 ∈ H∞. We have, for any f ∈ L2,

S∗α2,βSα1,β1f = P [α2α1Pf + α2β1Qf ] +Q
[
β2α1Pf + β2β1Qf

]
= α2α1Pf + α2β1Qf +Q

[(
β2 − α2

)
α1Pf +

(
β2 − α2

)
β1Qf

]
= α2α1Pf + α2β1Qf +Q

[
− (h1 + δ1α2)Pf −

(
h2 + δ1α2

)
Qf
]

= α2α1Pf + α2β1Qf −Q [δ1α2Pf ]− h2Qf −Q [δ1α2Qf ]

= α2α1Pf + α2β1Qf −Q [δ1α2f ]− h2Qf

= α2α1Pf + α2β1Qf −Q [δ1α2f ] +
[(
β2 − α2

)
β1 + δ1α2

]
Qf

= α2α1Pf + β2β1Qf − δ1Q [α2f ] + δ1α2Qf

= α2(λβ1 + δ1)Pf + (λα2 + δ2)β1Qf − δ1Q [α2f ] + δ1α2Qf

= α2λβ1f + δ1α2f + δ2β1Qf − δ1Q [α2f ]

= α1α2f + δ2β1Q [f ]− δ1Q [α2f ] .

(5.16)

Note also

Sα1,β1S
∗
α2,β2f = α1P [α2f ] + β1Q

[
β2f

]
= α1α2f + β1Q

[
β2f

]
− α1Q [α2f ]

= α1α2f + β1Q
[(
λα2 + δ2

)
f
]
− (λβ1 + δ1)Q [α2f ]

= α1α2f + δ2β1Q [f ]− δ1Q [α2f ] .

Therefore S∗α2,β
Sα1,β1 = Sα1,β1S

∗
α2,β2

.

Remark 5.5. The verification of S∗α2,β
Sα1,β1 = Sα1,β1S

∗
α2,β2

as in (5.16) is lengthy. Since[
Sα1,β1S

∗
α2,β2 ,Mz

]
=
[
S∗α2,β2Sα1,β1 ,Mz

]
,

we have Sα1,β1S
∗
α2,β2

− S∗α2,β2
Sα1,β1 = Mα for some α ∈ L∞. We need only to verify

Sα1,β1S
∗
α2,β2

e0−S∗α2,β2
Sα1,β1e0 = α = 0, which will be slightly shorter than the verification

as in (5.16). However we choose the above more direct method.

Summarizing the above three lemmas, we have the following theorem.
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Theorem 5.6. Sα1,β1S
∗
α2,β2

= S∗α2,β2
Sα1,β1 if and only if one of the following six state-

ments holds.

(i) Both Sα1,β1 and Sα2,β2 are in M .

(ii) α1 and β1 are constants.

(iii) α2 and β2 are constants.

(iv) β1 and α2 are constants, and β2(α1 − β1)− α2α1 ∈ H∞.

(v) α1 and β2 are constants, and β1(α2 − β2)− α1α2 ∈ H∞.

(vi) α1 = λβ1+δ1, β2 = λα2+δ2 for some constants λ 6= 0, δ1, δ2, and β1(α2−β2)−δ1α2

is a constant.

Proof. We need to explain the results from Lemmas 5.2, 5.3 and 5.4. Item (i) in Lemma 5.2

is statement (i) here. Items (ii), (iii) and (iv) in Lemma 5.2 are included in above state-

ments (iv), (v) and (vi) respectively. Items (1) and (2) from Lemma 5.3 correspond to

statements (i) and (ii). Item (3a) or (4a) from Lemma 5.3 corresponds to statement (v)

with α1 = 0 or β2 = 0. Item (3b) or (4b) from Lemma 5.3 corresponds to statement (vi)

with δ1 = 0 or δ2 = 0. Item (5a) or (5b) from Lemma 5.3 corresponds to statement (iv)

with α2 = 0 or β1 = 0. Items (i), (ii) and (iii) from Lemma 5.4 correspond to state-

ments (iv), (v) and (vi) respectively. The proof is complete.

The statement (vi) with λ = 0 is included in the statement (v). The statement (vi)

with λ = 1 and δ1 = δ2 = 0 reduces to statement (i).

Corollary 5.7. [12] The operator Sα,β is normal if and only if one of the following two

statement holds.

(i) α, β are constants.

(ii) α = λβ + δ for some constants δ and λ with |λ| = 1, and (λ− 1) |β|2 + δβ − δλβ is

a constant.

We can represent Condition (ii) slightly more explicitly by looking at the cases λ = 1

and λ 6= 1 separately. We refer to Theorems 3.1 and 3.2 in [12] for more details.

We state the above result as a corollary of Theorem 5.6. However we can prove this

corollary directly by following the proof of Theorem 5.6. The direct proof of this corollary

is considerably simpler than the proof of Theorem 5.6 (see Appendix). This direct proof

also reveals the following insight.
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Corollary 5.8. The operator Sα,β is normal if and only if one of the following two state-

ment holds.

(i) Sα,β = Mβ + Sδ,0 where δ is a constant such that δβ − δβ is a constant.

(ii) Sα,β = λSα1,β1 + µI for some constants λ and µ and unitary operator Sα1,β1.

The operator Sα,β in (i) above is a normal operator in the set M+.

6. Singular integral operators on Lp spaces

As seen in [4], the singular integral operator Sα,β is also defined on any Lp space. In

this section we extend some results for Sα,β on L2 to Sα,β on Lp. Since several of our

problems are purely algebraic, appropriate interpretations of them on Lp spaces are not

difficult. Nevertheless we include these interpretations to demonstrate the power of our

techniques in this more general context and to provide a motivation of further studying

singular integral operators on Lp space.

For 1 < p < ∞, let Lp denote the usual Lebesgue space of the unit circle T and Hp

denote the Hardy space of the unit disk. We can identify Hp as a closed subspace of Lp.

Let P denote the projection of Lp onto Hp. By M. Riesz’s Theorem (Theorem 2.3 on

page 108 of [3]), P is a bounded operator (but P is not bounded for p = 1 and p = ∞).

Let α, β ∈ L∞ and Q = I − P . The operator Sα,β on Lp defined by

Sα,βf = αPf + βQf, f ∈ Lp

is bounded. The operator Sα,β in terms of Cauchy integral formula is

(Sα,βf)(z) =
α(z) + β(z)

2
f(z) +

α(z)− β(z)

2

1

πi

∫
T

f(ξ)

ξ − z
dξ.

Let

Sp = {Sα,β ∈ B(Lp) | α, β ∈ L∞} .

Let q be such that 1/p+ 1/q = 1 and Lq be the dual space of Lp. For x ∈ Lp and y ∈ Lq,
let x ⊗ y denote the rank one operator defined on Lp by [x⊗ y]h = 〈h, y〉x for h ∈ Lp

where 〈h, y〉 is the duality pairing,

〈h, y〉 =
1

2π

∫ 2π

0
h(eiθ)y(eiθ) dθ.

Again S∗α,β ∈ B(Lq) is defined by

S∗α,βg = P [αg] +Q
[
βg
]
, g ∈ Lq.
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This can be verified by a direct computation, for f ∈ Lp and g ∈ Lq,

〈Sα,βf, g〉 = 〈αPf + βQf, g〉 = 〈Pf, αg〉+
〈
Qf, βg

〉
= 〈f, P [αg]〉+

〈
f,Q

[
βg
]〉

=
〈
f, S∗α,βg

〉
.

We can also view S∗α,β as a bounded operator on Lp. To distinguish, we use a different

notation. Let Tα,β ∈ B(Lp) be the operator defined by

Tα,βf = P [αf ] +Q
[
βf
]
, g ∈ Lp.

Here is the analogue of Proposition 2.1.

Proposition 6.1. Let A ∈ B(Lp). Then A ∈ Sp if and only if there exists a ψ ∈ L∞ such

that

[A,Mz] = ψ ⊗ e−1.

In this case A = Sψ+β,β for some β ∈ L∞.

Even though proofs of the following two results on Lp are similar to the corresponding

proofs on L2, we demonstrate these proofs carefully. The proofs are simple but they

illustrate the needed adaptation. We will skip the more complicated proofs.

Lemma 6.2. MzTα,β − Tα,βMz = e−1 ⊗ (α− β).

Proof. For f ∈ Lp,

Tα,βMzf = P [zαf ] +Q
[
zβf

]
= zP [αf ]− z (αf)0 + zQ

[
βf
]

+ z
(
βf
)
0

= MzTα,βf +
〈(
β − α

)
f, 1
〉
e−1

= MzTα,βf − [e−1 ⊗ (α− β)] f

where (αf)0 denotes the constant term in the Fourier series of αf .

Proposition 6.3. The operator Tα,β ∈ Sp if and only if (α − β) = λ for some constant

λ. In this case Tα,β = Sα,β.

Proof. By Proposition (6.1), Tα,β ∈ S if and only if

Tα,βMz −MzTα,β = ψ ⊗ e−1

for some ψ ∈ L∞. But

Tα,βMz −MzTα,β = Mz (MzTα,β − Tα,βMz)Mz

= Mz [e−1 ⊗ (α− β)]Mz

= e0 ⊗ z(α− β).
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Thus

ψ ⊗ e−1 = e0 ⊗ z(α− β)

and (α− β)z = λe−1 and ψ = λe0 for some complex number λ. In this case

Tα,β = Mβ + Sλ,0 = Sα,β.

The proof is complete.

Corollary 6.4. Tα,β = Sα,β on Lp if and only if α and β are real valued functions and

(α− β) is a real constant.

Recall by definition the operator Sα,β on the Banach space Lp is self-adjoint if 〈Sα,βf, g〉
is real for all f ∈ Lp and g ∈ Lq. The condition Tα,β = Sα,β is equivalent to Sα,β being

self-adjoint.

Lemma 2.4 also holds on Lp. We state part of it.

Lemma 6.5. Let Sα1,β1 , Tα2,β2 ∈ B(Lp). Then

(6.1) [Tα2,β2Sα1,β1 ,Mz] = e0 ⊗ Tα2,β2z(α2 − β2) + Tα2,β2(α1 − β1)⊗ e−1.

Proof. Since α2, β2 ∈ L∞, by M. Riesz’s Theorem, Tα2,β2z(α2−β2) ∈ Lq, Tα2,β2(α1−β1) ∈
Lp. Thus the operator on the right side of (6.1) is a bounded operator on Lp.

Next we select a few results and state them without proofs.

Theorem 6.6. Let Sα1,β1 , Sα2,β2 ∈ Sp. Assume α1 6= β1. Then Sα1,β1Sα2,β2 ∈ Sp if and

only if α2 ∈ H∞, β2 ∈ H∞. In this case Sα1,β1Sα2,β2 = Sα1α2,β1β2.

Theorem 6.7. The operator Sα,β on Lp is an isometry if and only if |α| = |β| = 1 and

α = θβ for some inner function θ ∈ H∞. The operator Sα,β is an invertible isometry

if and only if |α| = |β| = 1 and α = λβ for some unimodular constant λ. The operator

Tα,β on Lp is an isometry if and only if |α| = |β| = 1 and α = λβ for some unimodular

constant λ.

Theorem 6.8. Assume Sα1,β1Sα2,β2 = Sα2,β2Sα1,β1 on Lp. Then one of the following

statements holds.

(i) α1 = β1 and α2 = β2.

(ii) α1, β1 ∈ H∞ and α2, β2 ∈ H∞.

(iii) Sα1,β1 = λSα2,β2 + µI for some constants λ and µ.

Theorem 6.9. If Sα,βTα,β = Tα,βSα,β on Lp, then one of the following two statement

holds.
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(i) Sα,β = Mβ + Sδ,0 where δ is a constant such that δβ − δβ is a constant.

(ii) Sα,β = λSα1,β1 + µI for some constants λ and µ. Furthermore Sα1,β1 is a unitary

operator.

7. Appendix

In this appendix we provide a direct derivation of normal singular integral operators

obtained in [12].

Theorem 7.1. Assume one of α and β is not a constant and α − β 6= 0. Then Sα,β

is normal if and only if α = λβ + δ for some constants δ and λ with |λ| = 1, and

(λ− 1) |β|2 + δβ − δλβ is a constant.

Proof. If Sα,β is normal, then [Sα,βS
∗
α,β,Mz] = [S∗α,βSα,β,Mz]. By Lemma 2.4,

(7.1) α⊗ zα− β ⊗ zβ = e0 ⊗ S∗α,βz(α− β) + S∗α,β(α− β)⊗ e−1.

We divide the proof into three cases.

Case 1. Both sides of (7.1) are rank zero operators. Then

α = λβ

for some constant λ 6= 1. Plugging this into the left side of (7.1), we have(
|λ|2 − 1

)
β ⊗ zβ = 0,

so |λ|2 = 1. Furthermore

e0 ⊗ S∗α,βz(α− β) + S∗α,β(α− β)⊗ e−1 = 0

implies that

S∗α,β(α− β) = µ, S∗α,βz(α− β) = −µe−1.

Thus

P [α(λ− 1)β] +Q
[
β(λ− 1)β

]
= u

P [αz(λ− 1)β] +Q
[
βz(λ− 1)β

]
= −µz.

Therefore λ(λ − 1) |β|2 ∈ H∞, (λ − 1) |β|2 ∈ H∞ and |β|2 = σ for some constant σ. In

this case it is easy to verify that Sα,βS
∗
α,β = S∗α,βSα,β = Sαα,ββ = σI. In fact Sα,β is a

multiple of a unitary operator.

Case 2. Both sides of (7.1) are rank one operators. Then

α = λβ, S∗α,β(α− β) = µ
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for some constants λ and µ. Plugging these relations into (7.1), we have(
|λ|2 − 1

)
β ⊗ zβ = e0 ⊗

(
S∗α,βz(α− β) + µe−1

)
.

Therefore β is a constant and α = λβ is also a constant. This is impossible by the

assumption.

Case 3. Both sides of (7.1) are rank two operators. By (7.1), e0 is a linear combination

of α and β. Therefore α = λβ+ δ for some constants δ 6= 0 and λ. We consider two cases.

Case 3a. λ = 1. Plugging α = β + δ into (7.1), we have

(β + δ)⊗ zδ + δ ⊗ zβ = e0 ⊗ S∗α,βzδ + S∗α,βδ ⊗ e−1.

Thus

e0 ⊗
[
S∗α,βzδ − zδβ

]
+
[
S∗α,βδ − δ(β + δ)

]
⊗ e−1 = 0,

P
[
αzδ − zδβ

]
+ P

[
βzδ − zδβ

]
= µ,

P
[
αδ − δ(β + δ)

]
+ P

[
βδ − δ(β + δ)

]
= −µ.

Hence βδ − δβ ∈ H∞, βδ − δβ ∈ H∞ and βδ − δβ is a constant. In this case we see that

Sα,β = Mβ + Sδ,0 is normal.

Case 3b. λ 6= 1. Let

σ = δ/(λ− 1), α1 = α+ σ, β1 = β + σ.

Then

λβ1 = λβ + λσ = α− δ + λσ = α1 − σ − δ + λσ = α1.

Since Sα1,β1 = Sα,β + σI, Sα,β is normal if and only if Sα1,β1 is normal, this reduces to

case (1) and Sα1,β1 is a multiple of a unitary operator. Thus |λ| = 1 and

|β1|2 = |β + σ|2 =
1

(λ− 1)

[
(λ− 1) |β|2 + δβ − δλβ

]
+ |σ|2

is a constant. The proof is complete.

References
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