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Algebraic Properties of Cauchy Singular Integral Operators on the Unit

Circle
Caixing Gu

Abstract. In this paper we study algebraic properties of singular integral opera-
tors with Cauchy kernel on the L? space of the unit circle. We give an operator
equation characterization for this class of Cauchy singular integral operators. This
characterization provides a direct connection between the singular integral operators
and multiplication operators. We then use this characterization to study when two
Cauchy singular integral operators commute. Our approach also leads to generaliza-
tions of several results on normal Cauchy singular integral operators obtained recently
by Nakazi and Yamamoto.

1. Introduction

Let T be the unit circle in the complex plane. Let L? = L?(T) be the set of all square-
integrable functions on T. Each function f € L? has a Fourier series expansion

o0

f(e?) = Z frne™  for 6 € [0, 27]

and -
£ = [ 1P dmis) = 3 1Al
T n=—oo
where m(z) is the normalized Lebesgue measure on T. The function f(e?) has a unique

harmonic extension into the open unit disk D as follows

oo
fre?) = Z forimlem? o <p <1,
n=-—oo
Let L™ be the set of essentially bounded functions on T. Given ¢ € L, the multipli-
cation operator M., is defined by

Myf=¢f, fel”

Received April 23, 2015, accepted May 19, 2015.

Communicated by Duy-Minh Nhieu.

2010 Mathematics Subject Classification. 45E10, 47B35, 47L05, 47A05.

Key words and phrases. Singular integral operator, Cauchy kernel, Toeplitz operator, Hankel operator,

Normal operator.

161


http://journal.tms.org.tw

162 Caixing Gu

Note that || My|| = ||l If ©1,p2 € L™, then
My My, = My, oy = My, M, .

The Hardy space H? is the closed subspace of L? spanned by analytic polynomials. In

other words, each f € H? has a Fourier series expansion
(o]
F®) =" fae™ for 6 € [0,2q],
n=0

and we can view f as an analytic function inside the unit disk D with power series

expansion
o0
f(z)= anz”, |z| < 1.
n=0

Let H* be the set of all bounded analytic functions on D.
Given ¢ € L*°, the Toeplitz operator T, : H? — H? is defined by

To(f) = P(of), feH?

and the Hankel operator H: H? - L? © H? = zH? is defined by

Hy(f) =Q(ef), g€ H?

where P and Q = I — P denote the orthogonal projections that map L? onto H? and
2o H? = :H? respectively. Some basic algebraic properties of Toeplitz operators were
developed in Brown and Halmos [2]. See also [1] for literatures on Toeplitz operators and
Hankel operators.

Let o, B € L*, the Cauchy singular integral operator S, 3: L? — L? is defined by

Sas(f) = aPf +BQf, feL’

It is clear that

1Sa,s(HIl < laPFIl+ BRI < llelloo 1PFI + 18]l 1RSIl
< (llalloo +118Mloo) 171

so S, is a bounded operator. See a recent survey on norms of some classical singular
integral operators in [9]. The operator S, g has an integral representation with Cauchy

kernel,

f(z) +

) LBC) () 4 K BEIL [ SO

Sap(f) = 2 2 mifré-=z

Singular integral operators and singular integral equations have been studied exten-

sively in literature. The two volumes [4] and [5] by Gohberg and Krupnik are classical.
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Singular integral equations also have wide and important applications as demonstrated in
a recent book [10] by Mandal and Chakrabarti.

Recently Nakazi and Yamamoto in [12] characterized when S, g is normal. The oper-
ator S, 3 has a close connection with Toeplitz and Hankel operators via a 2 by 2 block
operator form (Lemma 3.1 in [12]). This connection plays a key role in deriving most

results in [12].

In this paper we use a more direct approach by characterizing this class of singular
integral operators as the solutions to an operator equation, see Proposition Our
approach provides the insight into how this class of singular integral operators is intimately

related to the multiplication operators.

Research on singular integral operators has focused on boundedness, invertibility and
Fredholm theory. In this paper several basic algebraic properties of the singular integral
operator S, g are obtained. A couple of results from [12]| are generalized and proved in
simpler and more direct ways. Because we consider more general questions, the algebra
involved is somewhat lengthy and more challenging. It is also possible to use 2 by 2 Toeplitz
and Hankel block operator forms as in [12] and the algebra will be even more demanding
and may be impossible in some instances. However our insights do come from working with
related problems on Toeplitz and Hankel operators in [6] and [7]. Furthermore, this study
shows that this class of operators has many interesting properties and these operators are

natural extensions of multiplication operators, Toeplitz operators and Hankel operators.

We outline our plan. In Section 2, we show that singular integral operators or products
of singular operators satisfy an operator equation. In Section 3, we characterize when
the product of two singular integral operators is also a singular integral operator. This
characterization enables us to identify some subalgebras of singular integral operators. We
then study when the product of a singular operator and the adjoint of another singular
operator is also a singular integral operator. As an application, we recover the results
about isometric and unitary singular integral operators in [12]. We prove that S, 5 is a

coisometry if and only if it is a unitary operator.

In Section 4, we prove essentially two singular integral operators commute if and only
if one is a multiple of the other. In Section 5, we discuss when a singular operator and the
adjoint of another singular integral operator commute. As a corollary, we obtain normal
singular integral operators discovered in [12]. In Section 6, we show that most results from
previous sections are also valid for singular integral operators defined on the LP space of

the unit circle T.
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2. A characterization of singular integral operators

Let B(L?) be the algebra of all bounded linear operators on L?. Let S denote the set of

all singular integral operators
S ={Sap € B(L* |a,BeL®}.

Note that Sy = My and S, = Mg + Sa—pg,. By the Spectral Theorem for normal

operators, the commutant of M, is the set of all multiplication operators on L?. Set

M = {M, € B(L*) | a € L}
={A€B(L?) | M.A=AM.}.

Let G be a subset of B(L?), we define
G"={A"| AeG}.

The set G is said to be self-adjoint if G = G*. The set M is a commutative C*-algebra.
The set S is neither an algebra nor a self-adjoint set.

Let e, = 2" and e_,, = 27" = 2" for n > 0 where z = €. For fe LQ, the Fourier
series of f is

o0 )
f= Z Jnén = Z fnem9~
n=—00 n=—00

Thus f—; denotes the Fourier coefficient corresponding to the term e_;.

For two operators C, D € B(L?), let [C, D] = CD — DC denote the commutator of C
and D. For z,y € L?, let x ®y denote the rank one operator defined by [z @ ylh = (h,y) =
for h € L?. The following proposition characterizes S as the set of all operators whose

commutators with M, are special rank one operators.

Proposition 2.1. Let A € B(L?). Then A € S if and only if there exists a v € L™ such
that

(2.1) A M.]=v®e_.

In this case A = Sy for some B € L.

Proof. Let A= S, 5 € S for some o, 3 € L. Let f =3 _ f,2" € L?, then

n=—oo

Sa,sM-(f) = aP[zf] + BQ[z f]
=a[zPf+ f1] + B2Qf — f-1]
= 2aPf +2BQf + (a — ) f-1
= MSap(f) + [(a = B) ® e-1](f).
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This proves (2.1) with ¢ = (. — 8) € L.
Now assume A € B(L?) and (2.1)) holds. By the above argument

Sz/;,OMz — MZS%O =Y ®e_j.
Therefore

(A= Sypo)M, — M, (A—Syo) = (AM, — AM;) — (Sy,0M; — Sy oM.)
=Yp®e_1 —9Yp®e_; =0.

and
(A—=Sypo)M, =M, (A—Syp).

By the Spectral Theorem, A—Sy g = Mg = Sg g for some 3 € L>. Thus A = Sy 0+Ss 3 =
Sy+8,8- -

The adjoint S, 5 in general is not in S. The following result tells us when S;’ 3 belongs
to S.

Proposition 2.2. The adjoint 5’;75 € S if and only if (o — B) = X\ for some constant \.
In this case Szﬂ =S

@b
Proof. By Proposition S; 5 € S if and only if

5275Mz — MZS;,IB = w X €_1
for some ¢ € L*°. But MM, = M, M} = I and

S;;’ﬂMZ_MZS27ﬁ:MZ( ;( :‘7/8_5275M;)MZ
Soz,,37MZ]*MZ

Thus
Y Re_1=eyRZ(a—p)

and (a — B)Z = Ae_1 and ¥ = ey for some complex number . In this case
Sap = Mg+ Sa—po)” = Mz + 55, = 55

The proof is complete. O



166 Caixing Gu

The following set M is a self-adjoint subset of S and it is slightly larger than M.
My ={Sp4rp | B e L™ AeC}.

The following corollary is Theorem 2.1 in [12]. See also related work on self-adjoint

singular integral operators [§].

Corollary 2.3. [12] S, 3 is self-adjoint if and only if o and B are real valued functions

and (o — f3) is a real constant.

Proof. 1t S, 5= Sa,p € S, by Proposition (ae — B) is a constant. Furthermore S% 5=
557 = Sa,s implies that a =@ and § = B. -

The set M is a subalgebra of S. Are there other subalgebras of S? To answer this
question, we need to determine when the product of two operators from .S belongs to S.

The following lemma derives operator equations for the products of operators from S or
S*.

Lemma 2.4. Let So, g,,Sa,,8, €S. Then
[Sar,8 902,82, M) = (1 — B1) ® 522,52671 + Sap,p (2 — B2) ®e_1.

Similarly,
[Sa17ﬁ15227ﬁ27 MZ] = 01 ®5062 - /81 ®§/32
and

[522,528011,517]\42] =€ ‘921,,612(042 — f2) + 522752 (051 - ,31) ®e_1.

Proof. By a direct computation,

[Salﬁl Saz,ﬂw MZ] = [Soq,ﬂl > MZ]Sazﬂz + Sal,ﬂl [Sa2,527 MZ]
= [(al - /Bl) X 6*1]5042,52 + Sal,ﬂl [(aQ - BQ) ® 6*1]
= (1 = 1) ® S, p,6-1 + Say p (a2 — B2) @ e—1.

Similarly,

[ at,P1 ]Sa2ﬁ2+sal ,31[Sa2 BQ’M]
[ a1,B1) ]Saz B2 + Sal ,31 [500752’ M ]*MZ
= (o1 — B1) ® Say,B6—1 + Say,pre0 @ Z(a2 — B2)

[Salﬂl 5227/32’ ]

= (o1 — B1) ®ZP2 + a1 ® Z(ax — P2)
=a1 ®zaz — 1 ®ZB2
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and
[ Zg,,BgSahﬁmMz] = [ ;27,62’MZ]SO‘1151 + S;Q,,BQ [Sal,ﬂlvMZ]
= M.[Sas,8,> M2]" M, Se, p, + S5, 5,[S01,81, M-
= €0 ® Sh, g 2(a2 — B2) + 55, 5,(c1 — B1) ®e_1.
The proof is complete. O

We now establish that finite sums of products of singular integral operators are models

for operators whose commutators with M, are of finite rank.

Theorem 2.5. Let A € B(L?). Then

(2.2) AM) =3 0@
k=1

where @i, Y € L> if and only if

m
(2.3) A=Ma+ Say 8,55 5,

k=1
where o, ag, Br, Vi, Ok € L™ and m = 5 if n is even and m = "TH if n is odd. In particular,
if

where p,1p € L™, then
A= Ma + MQOS:M),O or A= Mg =+ S%()M;p
for some a, B € L™,

Proof. One direction is clear from Lemma Assume now ([2.2)) holds, we will prove
(2.3). We will demonstrate the result for n = 2 and n = 1. The general case will be clear.

Assume

[A, M,] = ¢1 @ Y1 + p2 @ 1ha.

We work backward by using Lemma [2.4] and setting
(2.4) P1 @Y1+ P2 @ Y2 = a1 ® 2N — P ® Z01.
One set of solutions is

air =1, Pr=—p2 71 =2¢1, 01 = 2.
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Therefore by Lemma and ((2.4)),

[A - 8017615:1,517]\42] = [A, M.] - [Sa M] =0.

*
1:61 71,51 ’

By the Spectral Theorem,
A— Sal,bﬁ S,

* _
71,01 Mo,

for some a € L*. The proves the case n = 2. For n =1, if
[A, M.] = ¢ @1,
then we work backward by using Lemma and setting
PRY=a; ®zy — 1 ® 2.

We set
a;=pr=¢, m==zy, o1=0.
Then A = Ma—i—M@S’:w,O for some v € L. The proof of A = MB—I—S@,OM:w is similar. [

3. Products of singular integral operators

We first study when the product of two operators from S belongs to S. This result will
help us identify some subalgebras of S.

Theorem 3.1. Let Sy, 8,, 50,8, € S. Assume Sy, g, 1s not in M. Then Sy, 8,S0s,8, €S
if and only if ag € H™, By € H®. In this case Sa, 502,80 = Saras,B1 52 -

Proof. By Proposition 2.1} Sa, g, Sa,,6, € S if and only if
(31) [Soq,ﬁlsaz,ﬁga MZ] = ’(;Z} ® €1

for some 1 € L*°. By Lemma

[Son,p1 50,8, Mz] = (a1 — 1) ® 522,526*1 + Say,p (2 — B2) ® e—q
=y ®e_.

By assumption a1 — 81 # 0, therefore, there exists a complex number A such that

(3.2) S

[0}

(3‘3) Sozlﬂl (a2 - BQ) = _)‘(0‘1 - /81) + .

2,026-1 = Ae_1,

Note that S}, 5 (f) = Plaaf] + Q[B2f]. We have from (3.2)

(Plage—1] + Q[Bze1]) = Az,
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which implies that ag € H*® and By = A + Z;i_oo Banz™ € H®. Now (3.3)) becomes

a1 Plag — fa] + B1Q[ae — fo] = = Ao — B1) + 9,
ar(az —A) + Bi(=B2 + A) = —A(a1 — B1) + 9.

Therefore

(3.4) g = P12 + .

Since agp € H* and 5 € H>®,

Sar,p1 92,82 f = Sa (2P f + 52Qf)
= ar1PlaaPf + B2Qf] + f1Q[a2Pf + B2Qf]
=arPf+ 0150 f
= Saia,818:f = Saraz,araz—vf = S8182+0,618.f-

The proof is complete. O

Remark 3.2. (a) If Sy, g, = Ma,, then Sy, 5,50, 3, € S for any Sy, g, and Sy, 5,50,,8, =
Mo, Saz,8, = Sarasaibe-

(b) Assume Sy, 3, € M and Sa, 8, = Ma,. If Sa, 850,38, € S, then by the above
theorem, o is a constant, Sy, g, = aol and Sy, 8, 505,8, = Saias,B1as-

(c) If ap € H*™®, By € H™, then Sa, 5,50s.8, = Saras,pifs- This formula is valid for

more general singular integral operators, see equation (6.3) in [4].

Recall M, for some o« € L is invertible if and only if « is invertible in L*, and in
this case M1 = M, 1. Let erange(a) denote the essential range of a. Thus o(M,) =
erange(c«) where o(M,) denote the spectrum of M,. We now characterize when S, 3 is

invertible and whose inverse is also in S.

Corollary 3.3. Let Sy € S for some o, € L. Assume So3 ¢ M. Then S,z is
invertible and S;}; € S if and only if o, f € H® and o, B are invertible in H>®. In this
case S;lﬁ = Sy-1p-1. Thus, if a,B € H®, then 0(Sa,p) C erange(a) U erange(f3).

Proof. 1If Sy, g, is the inverse of S, g, then Sy, 38,548 = Saja,pp =1 € S. Since Sy, g, ¢
M (otherwise S, 3 € M), by Theorem a,B € H® and aqa = 18 = 1. The result
follows. O

The proof of Theorem also tells us when Sy, 3,Sa,,8, € M. This corresponds to
the case ¢ = 0 in (3.4)).

Corollary 3.4. Let Sy, 8,,Sa,,8, € S. Assume Sy, g, i not in M. Then Sy, g, Sas,8, €
M if and only if co € H*, o € H*® and ayog = B132. In this case Sa, g, Sas,. = Mpa, 3, -
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We will need the following important result (a part of F. and M. Riesz theorem), see

Corollary 4.2 on page 62 of [3].

Lemma 3.5. If a € H? and « is not identically zero, then o # 0 almost everywhere on

the unit circle T.
The next result characterizes when S, 8, Sa,,8, = 0.

Corollary 3.6. Let Su, 8,,S0,,8, € S. Assume Su, g, is not in M and S,, g, # 0. Then
Sai.p1Saz,8, = 0 if and only if one of the following two statements holds.

(i) a1 #0, f1 =0, g =0 and B € H*.
(ii) B1 #0, a1 =0, P2 =0 and ay € H*.

Proof. By Corollary ajag = P12 = 0. The result follows from this equation and
Lemma since ap € H>® and py € H™. O

We now identify some subalgebras of S which are closely related to the subalgebras of
H*>,

Corollary 3.7. The largest subalgebra K of S not contained in M 1is
K={SaplacH® e H®}.

Proof. Let K be a subalgebra of S not contained in M. Let S, 3 € S but S, ¢ M. By
Theorem Si’ﬂ € K C S implies that « € H>®, 8 € H®. Let S,, g, be an arbitrary
element of K, then S, 354, 3 € K C S implies that oy € H*>, 31 € H*. The proof is
complete. O

If Sop € K, then S;ﬁ ¢ S unless both a and § are constants (by Proposition .

For any two fixed inner functions 61, 2, the following set Ky, g, is a subalgebra of S.
Kov0, = { Sy | 0 € H®, B HF} = 8§, 7K.

Next we consider when S7
2,02

Say,5 belongs to S. This characterization is slightly

more complicated.

Proposition 3.8. Let Sa, 8., Sas,8, € S- Then S}, 5 Sa,,5 € S if and only if cy (o —
Ba), Bi(aa — Bo) € H*®. In this case SZQ,BQSM,& = 50720417@,31'

Proof. By Proposition 22752 Say1,5 €5 if and only if

[522”325041”31,]\12] =Y®eq
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for some ¢ € L*>°. By Lemma [2.4]

[Sts.8, 801,81 Mz] = e0 @ Sy, 5, Z (a2 — Ba) + S5, g, (1 — 1) ® e

=y ®e_1.

Therefore there exists a complex number A such that

5317512(012 — 52) = X€,1
Aeg + S, g, (a1 — P1) = 9.

It follows that
(3.5) Plarz(og — B2)] + Q [Brz(a2 — B2)] = Az

A+ Plog(ar — B1)] + Q [Balon — B1)] = 9.
Therefore a7 (ag — B2) = h1 and B1(az — f2) = X + zho for some hi, hy € H*®. Now

SnzpSa1,5f = Plazai Pf+@AiQf] + Q [Bear Pf + B251Qf]
=P lai (ag— B2) Pf+ b1 (02 — B2) Qf] + Bacr Pf + B251Q f
=1 (@ — B2) Pf 4 facar Pf + B21Qf

=ma1Pf+ BhQf = Sgu, 78, -
The proof is complete. O
Corollary 3.9. Let Sy, g,,S0,,8, €S. Then

(4) 82,5005 € M if and only if 01 (a5 — B2), Ba(oz — ) € H and w500 = Fafhr.
In this case S}, 5,501, = Maza, -

«

(b) If Say.8, # 0 and Sa,p, # 0, then S¥

az2,B2

Sar, = 0 if and only if and one of the
following statement holds.

(i) a1 #£0, B2 #0, B1 =0, ag =0 and a8 € H™.
(ii) 0427&0, ,31#0, a1 =0, 62=0 a’rLdEOéQEHOO.

Proof. Part (a) follows from the proof of Proposition We now prove (b). If S}, 5 Sa, .8,
= 0, then @ga; = B2B81 = 0. Since a1B2 € H™, by Lemma either o182 = 0 or
a1B2 # 0 almost everywhere on T. Thus if both a; and fsare not zero functions, then
ooy = (2P = 0 imply that both 3; and s are zero functions. This proves (i). The

proof of (ii) is similar. O
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Corollary 3.10. Let o € L™ and assume « is invertible in L°°. Also let h € H*® and

assume h is invertible in H*°. Then Sy pq 15 left invertible with left inverse ST

1/@1/(ha)’
By Proposition S;‘ Ja1) () is in general not a right inverse of S, po unless h is a

constant.

Corollary 3.11. [12] The operator Sy g is an isometry if and only if |a| = |8| = 1 and
a = 03 for some inner function 0. The operator S, g is a unitary operator if and only if

la] =8| =1 and o = A3 for some unimodular constant \.

Proof. The operator S, g is an isometry if and only if S;ﬁSa’g = I. By Corollary (3.9
aa = BB = 1. The function a(@ — 5) = 1 — aff € H* implies that af € H*. But
|0¢B‘ =1, 50 aff = 0 € H*® is an inner function. Thus a = o33 = 08.

If So 3 = Soy, is a unitary operator, then

B = Ser5S45,88 = Sesp [P(6BB) + Q(BS)]
= So5,5P(0) = 0BP(0).

Thus P (f) = 1 since |3| = 1. Therefore § is a unimodular constant. O

It is natural to ask when S, g is a coisometry. We can answer this question by studying

product Su, g, S:;zﬁz'

Proposition 3.12. Let 5o, 8,;Sa,,8, € S. Assume Sa, g, # 0. Then Sa, 5,5, 53, €5 if

and only if one of the following four statements holds.
(i) a1 =0 and B2 is a constant.

(ii) B1 =0 and ag is a constant.

(iii) Both ag and B are constants.

(iv) B1 = Aa1, e = A\B2 + p for two constants X and pu.
In all cases, Sa, 8,50, 3 = Sa,az.0.5
Proof. By Proposition Sar,8150, 5, € S if and only if

[Sar.61 505,800 Mzl = 9 ® ey
for some ¢ € L*™°. By Lemma

(3.6) [Sa1,515227627 M, =01 ®Zas— 1 ®ZBr =1 ®e_j.

There are two cases. Either as and 2 are linearly dependent or o1 and S are linearly

dependent.
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Assume «g and fg are linearly dependent. If 53 = 0 and ¢ = 0, then a; = 0 (assume
ag # 0). This leads to statement (i) with 82 = 0. If 2 = 0 and ¥ # 0, then by (3.6), a2
is a constant. This leads to statement (iii) with S = 0. If 82 # 0, then

(3.7) a9 = )\52
for some constant A. Now equation (3.6)) becomes
(A1 —B1) @Zh =Y ®e_q.

If ¢ = 0, then Aaj — 31 = 0. This leads to statement (iv) with g = 0. If ¢ # 0, 262 = pe_1
for some constant u, therefore f is a constant. This leads to statement (iii).

Assume now «aq and [ are linearly dependent but as and 5o are linearly independent.
If g1 = 0, then implies that ag is a constant (assume a3 # 0). This leads to
statement (ii). If 81 # 0, then

(3.8) a1 = ABi.
Now equation (3.6) becomes
B @Z(Aag — B2) =Y @ e_y.

If ¢» = 0, then Ao — B2 = 0, which is impossible. If 1) # 0, there exists a constant u # 0
such that

(3.9) (Aag — fBa2) = —p, Eh1 = .

If A =0, then by (3.8)) and (3.9)), @1 = 0 and (2 is a constant. This leads to statement (i).
If X # 0, this leads to statement (iv). In this case, by (3.8)) and (3.9)),

Sear,615m pof = Sonpr [Plozf] + Q [B2f]]
= a1P[af] + 61Q [Baf]
= M1 P [az f] + p1Q [(Naz + ) f]
= Mgiazf + i@ [f]

= S\giaz \1aa+iis = SaloTQ,ﬁl@'

The proof is complete. O

Corollary 3.13. Let g € L. Assume B is invertible in L™ and X is a nonzero constant.

*

1/BA1/8
In fact S; /BAA/B is an inverse of Sy g, see Corollary
Corollary shows that S, 3 can be an isometry but not a unitary operator. Sur-

Then Syg g is right invertible with right inverse S

prisingly we show that S, g is a coisometry implies that S, g is in fact a unitary operator.
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Corollary 3.14. The operator S, g is a coisometry if and only if So g s a unitary oper-

ator.

Proof. The operator S, g is a coisometry if and only if S g5, 5 = I. By Proposition
Sa,85485 = Sampp = I, thus |a| = [B] = 1. If statement (iii) in Proposition holds,
then S, 5 is a multiple of the identity, so S, g is a unitary operator. If statement (iv) in
Propositionholds, then o = AB for some unimodular constant o and S, g is a unitary

operator by Corollary O

4. Commuting singular integral operators

In this section we discuss when two operators from S commute. In contrast with the set
M, where any two operators from M always commute, we prove that two operators from
S commute if and only if one is essentially a scalar multiple of the other operator. Recall
that the algebra K is defined by

K ={S.p5|acH® 3ec H®}.

If either S,, 3, or Su, s, is a scalar multiple of identity operator, then S, g,Sa,,8, =
Sas,p25a1,8 - Thus in the next theorem, we assume both S,, g, and S,, g, are not scalar

multiples of the identity operator.
Theorem 4.1. If Si, 8,Sas,8, = Sas,8.501,8:5 then one of the following statements holds.
(i) Both Su, p, and Sy, s, are in M.
(ii) Both S, 8, and Sa, g, are in K.
(ili) Say,8 = ASas,p, + 1l for some constants A and p.

Proof. Assume (i) does not hold. We will prove either (ii) or (iii) holds. By Lemma
Sau,p15az,8 = Saz,B5a1,8 implies that

(1 = B1) ® S5, g,6-1 + Say gy (2 — B2) ® e—q

(4.1)
= (g — B2) ® S5, g6-1 + Say,p, (a1 — 1) ® 1.

There are three cases.

Case A. Either a1 — 81 = 0 or ag — B2 = 0. Without loss of generality, assume

a; — 1 =0 and ay — f2 # 0. Then by (4.1)),
5217/316*1 =0¢-1

for some constant o. This implies that oy = 81 =7, s0 S, g, = 01.
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Case B. a1 — 1 # 0, ag — B2 # 0 and (a1 — f1) # Aag — B2) for any constant A.

Then by (1),

(4.2) St p-1 = pe—1, S,

a1,8,6-1 = 0€-1

for some constants p and o. Thus
mlar = Pr) + Say g (a2 — B2) =T (a2 — f2) 4 Say,p, (1 — B1).

Equation (4.2)) is the same as (3.2). Thus equation (4.2)) implies that ag € H*®, By € H®
and ay € H*, 31 € H*. Therefore both S, g, and S,, g, are in K and Sq, 8, 50,8, =

Seas,BaSar,81 = Sayas,prp, This leads to (ii).
Case C. a1 — 1 # 0, ag — B2 # 0 and (a1 — 1) = M ag — B2) for some constant A.
Note that Aag — a3 = A2 — $1. Then (4.1) becomes

(g — f2) ® ()\Sa2 B,€ 5217516_1)
= (Sas,p.(01 — B1) — Say b (042 —f2)) ®e_1
= (Saz,gA(az — B2) = Sayp (a2 — B2)) ® ey
= Shaz—ar M- fr (2 — B2) ® e_1
= [(Aaz2 —a1)(a2 — B2)] ®e_1.

Therefore, there exists a constant u such that
(4.3) Sy, 5,61 — Sy g €1 = Hie_1
(4.4) (Aag — 041)(042 — fB2) = (o — B2).
It follows from that
(P [Moaz —anz] + Q A3z — Biz]) = 7z,
Hence \ag — a1 = hi, A\Ba — B1 = I+ zhs for some hy, hs € H*. Equation becomes
(Aaz — a1 — p)(az — B2) = 0.

But Aas —a; —p = hy —pu € H*. By Lemma 3.5} either ap — 85 = 0 or Aags — a1 — = 0.
In the case ag — B2 = 0, we have (a1 — B1) = Mo — B2) = 0, so both Sy, g, and Sy, 3,
are in M which is excluded at the beginning of the proof. Therefore Aag — ;7 — p = 0.
Furthermore ABs — 81 = Aag — a3 = . That is, a; = Aas — p and 1 = Ay — p. In
conclusion S, g, = ASay,,8, — 1. O]

Remark 4.2. If Sy, g, (or S, p,) is in K but not in M, then S,, g, Sas.8, = Sas,8:501,8
implies that Sy, g, is also in K. If Sy, g, is in M, then Sy, 8,50s,8, = Sas,8,5q,,8, implies

that either S,, g, is also in M or S,, g, = ¢l for some constant c.
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5. Commuting singular integral operators and their adjoints

In this section we study when Sq, 8,5, 5, = 54, 3,5a1,8- As a corollary, we recover

the result in [12] about when S,, 5, is a normal operator. The proof of Theorem is
elementary by using Lemma[2.4] but it is quite long and somewhat complicated. We divide
the proof into several lemmas. If either S,, g, or Sa, g, is a scalar multiple of identity

operator, then 5'0[175“5';2”32 = 522,[3256,1,&. Thus in this section, we assume both Sy, g,

and S,, 3, are not scalar multiples of the identity operator.

Lemma 5.1. If Sa, 8,55, 5, =S4y 5,501,615 then

a
(5.1) a1 ®Zas — 1 ®ZFs =€y @ S;lﬁlf(OéQ — 52) + 522752 (Oél — ﬁ1> ®Xe_1.

Proof. Note that Sq, 5,5, 5, = 54, g,9a1,6 implies that

az,B2
(et 81 Sy a0 M=) =[Sty 5, Sar,81, M] -
By Lemma [2.4]
o1 ®Zag — B1 ®ZP2 = eg ® S5, 5, Z(02 — P2) + 54, 5,(01 — f1) ® e
The proof is complete. O

Lemma 5.2. If both sides of (5.1)) are zero operators, then one of the following statements
holds.

(i) Both Su,p, and Sy, s, are in M.
(ii) ae = B1 =0 and 182 € H*®. In this case Sar,8:505 8y = Seu pyOar,p = 0.

[

(iii) a1 = B2 =0 and Brag € H*®. In this case Sor,81505 5y = Sevg paO0r,p1 = 0.

az,B2
(iv) There exist some constants A (A # 0,1) and p such that
o] = /\51, 62 = XO(Q, a0 = U.
In this case Sa, 8,54, 8, = Say gy 0,8 = B

«

Proof. If both sides of (5.1)) are zero operators and 81 = 0, then oy ® Zae = 0 implies that
ag = 0. If the right side of (5.1]) is a zero operator, then

531“315(042 o ’82) ="ne-1, 522,52 (al - ﬁl) = —Neg

for some constant 7. Therefore

S 702 = B) = P[0 — B)] = 72,
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which implies that a382 € H*. This leads to (ii). If both sides of (5.1]) are zero operators
and f1 # 0, then

al = )‘513 62 = XOZQ,
S;’Blf(oa — B2) =mne-1, 522,52 (1 — B1) = —Teo

for some constants A and 7.
If A\ =0, then a1 = 32 = 0 and fras € H*®. This leads to statement (iii).
If X =1, then both S,, g, and S,, g, are in M. This leads to statement (i).
If A# 0 and A # 1, then

Plaz(1 = Nazg] + Q [A1z(1 — Nz =1z,

which implies that aqas = ABiag € H®, Bias € H®. Hence ajos is a constant. In this

case it is easy to verify that Sa, 8,5, 5, = S5

«

5.5y 001,60 = L. This leads to statement (iv).
0

Lemma 5.3. If both sides of (5.1) are rank one operators, then one of the following

statements holds.

(1) a2 and B are constants. In this case Sa, 8,55, 5, = Say 501,81 = Seyas.6.7

(2) a1 and B are constants. In this case Sa, 5,55, 5, = Sty 8y%1.81 = Soya3.617

«

(3a) ay =0, Bo is a constant, and B1(ag — B2) € H®.

(3b) a1 = AB1, Aag — B2 = § for some constants A # 0 and 5, and B1(az — B2) is a
constant. In cases (3a) and (3b), Say,8,55, 5, = Say.py01,60 = S,

araz,B1B2”

(4a) B2 =0, oy is a constant, and oy (E — 071) € H*™.

(4b) B2 = nas, ay —nP1 = & for some constants n # 0 and 6, and Pa(ar — B2) is a
constant. In cases (4a) and (4b), Say 8,55, 5, = Say pyS01,60 = S

* J—
@ aro,P1B2’
(5a) as = 0, By is a constant, and Ba(ay — P1) € H™. In this case Sor,$150, 5y =

Soo,82%08 = S o 55

(5b) B1 = 0, ag is a constant, and ay(az — P2) € H™. In this case So1,6150, 5,

832,525‘)‘1751 = Salﬁz,ﬁlg'
Proof. We first assume ag # 0 and 81 # 0. If the left side of (5.1)) is of rank one, then

there exist constants n and A such that either

(5.2) 52 = nNa
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or
(5.3) a1 = )\ﬁl.

If the right side of ([5.1)) is of rank one, then there exist constants o and p such that either

(5.4) Sal ,31 (042 — ﬁg) = o0€_1
or
(55) 522752 (a1 - ﬁl) = Mep.

There are four cases. We consider them one by one.

Case A. (5.2) and (5.4]) hold. Plugging (5.2)) and (5.4]) into (5.1)), we have
(a1 —71) @ Zag = [Geq + Sy, g, (1 — B1)] @ ey

Therefore as and 52 are constants. This leads to statement (1)

Case B. and ( . hold. Plugging (5.3) and (| into ( , we have
B1©% (Aag — f2) = eo ® Sk, 5,Z(02 — f2) + Tie_1] .

Therefore o and ﬁl are constants. This leads to statement (2)

Case C. and . ) hold. Plugging (/5.3) and ( into ( , we have
B1@% (Mg — B2) = [oeq + S}, 5,(c1 — B1)] @ e_1.
Therefore Aoy — B2 is a constant. In this case, by Part (iv) of Proposition

Sal,ﬂ18*

az,B2 Sawzﬁ,&@'

Therefore S5, 5,501,81 = Sa1,815,.8, €S- By Proposition 02(()72—@), Bi(az—B2) €
H®. If A =0, then we have (3a). If A # 0, then Agi(az — f2), 51(az — B2) € H* implies
that B (g — ,82) is a constant. This is (3b).

Case D. and ( . ) hold. Plugging ([5.2) and ( into , we have
(56) (Oél — ﬁﬁl) R zag = €9 X [8217515(042 — ﬁg) + ﬁefl] .

Therefore oy — 7781 = ¢ for some constant §. Case D in some sense is dual to Case C
* *

by considering (Sa1,515327f32) = ( 22’525041,51) . Here we give a direct proof which

demonstrates that Case C can also be proved directly without using Propositions

and By a1 — 181 = § and (j5.6)),

5;417,312(0‘2 - 52) +pe_1 = gfag.
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Therefore

P [W(O@ — ,32) — 320[2] +Q ,EE(OZQ — ﬁg) — 320[2] = —pe_1.

Hence
ar(ag — ) —dag € H®,  Bi(ag — fBa) — dag € H*®.

Using B2 = nag, a1 — 781 = 9, we have
ai(ag — B2) — dag = nag (B1 — o) € H®,
Bi(oa — B2) — bovg = ap (B1 — 1) € H™.

If n = 0, we have (4a). If n # 0, we have (4b). In this case we can verify that

(Sa17,31 ;2,52)* = (5227528041751)* = SozTaz,E/D’z'

We now deal with the situation ag = 0 or 81 = 0. The proof is similar, so we will be
brief. Since the right side of ([5.1)) is of rank one, there exist constants o and u such that

either

(5.7) S;lﬁlf(az - 62) =o0e_1
or
(5.8) San,8, (01 — P1) = peg.

There are four cases. When as = 0 and holds, equation implies that [y is
a constant. This leads to statement (1). When as = 0 and holds, equation
implies that 31 is a constant and ay(as — B2) € H®. This leads to statement (5a). When
61 =0 and holds, equation implies that s is a constant and a1 (az — 32) € H™.
This leads to statement (5b). When ; = 0 and holds, equation implies that

aq is a constant. This leads to statement (2). The proof is complete. O

Lemma 5.4. If both sides of (5.1) are rank two operators, then one of the following

statements holds.

(i) B1 and as are constants, and Po(ar — B1) — Gzaq € H® (equivalently a(aa — B2) +
B1B2 € H®).

(i) oy and By are constants, and Bi(c — B2) — arae € H™® (equivalently as(aq — 1) +
Boffr € H®).

(iii) There exist some constants X\ # 0, 1 and o such that
a1 = A3+ 61, B2 =Aag+ 0

and B1(az — B2) — 610 is a constant (equivalently oo (ary — B1) + 0231 is a constant).
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In all cases Sa,,5,5,, g, = Oay. py001,81 -

Proof. Recall (5.1]),
(5.9) 0 ®Zag — 1 ®ZPr=e @ f+g®e

where

f:S;1,Blz(a2_B2)7 g:S;Q,ﬁQ(al _Bl)
If both sides of (5.9)) are rank two operators, then there exist constants A1, A2, 71, 72 such
that

(& [0
(5‘10) 0 _ o2 1

g At | | B

Plugging the above equation into left side of (5.9)), we have

o ®Zag — 1 ®ZPa =1 @ (M f + Ae—1) + Bo @ (T2 f + Age—1).

Thus
moAl fl | 7
T A2 |e-1 —Zz 02
(5.11) al 2 M| P ||
-n2 M| | %52 e_1

where Q = 1/ (7rA2 — 2A1). Equations (5.10) and (5.11) imply that

(5.12) eo = moaa + 21
(5.13) e—1 = —Qz (paz + M B2) -

If n1 = 0, then f; and «s are constants. Equation (5.9 becomes
(vaz —g) ®e—1 = eo @ (f +ZB251).

Therefore
aag — g = peo, [f+7zPf1 =Hes

for some constant u. It follows that

a1a@; — Plaz(a1 — A1) + Q [Ba(ar — B1)] = peo,
Plonz(as — f2)] + Q [B1Z(az — B2)] + 26281 = me—1.
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Therefore

Q [B2(a1 — B1) — cuaz] = peg — azPieo,
P [a1z(ay — o) + ZP2f1]| = fie—1 — Broe_1.

So, Ba(a1 — B1) — araz € H™® (equivalently ag(ag — B2) + BoB1 € H™). This leads to
statement (i).

If my # 0, we rewrite the (5.12)) and (5.13) as
(5.14) a1 =M1+ 61, B2=Aaz+ 6
for some constants A # 0, 1, d2. Now plugging these two relations into ([5.10]), we have

01 RZagy — L1 @20 =€ ® f+gRe_q,
eo ® (f —61za2) + (9 + 0261) ® e—y = 0.

Therefore there exists a constant p such that

(f - EEOQ) = pe—1
g+ 8261 = —F.

It follows that

Plonz(az — B2)] + Q [B1Z(a2 — f2)] = fie—1 + 017
Plag(on = B1)] + Q [Ba(ar — B1)] = =11 — 621

Equivalently

P [arz(ag — B2) — 017as] + Q [Biz(az — B2) — 01Zaz] =i
P [CTQ(OH - B1) + 52,81] +Q [E(ozl — 1) +52ﬁ1] = 7.

Therefore
h1 =ai(az — B2) — d1ap € H®
hy == B1(ag — f2) — 610 € H™
h3 :=ag(ar — 1) + 021 € H®
hy == Ba(o — B1) + 0281 € H™®

By using (5.14]) and a direct computation

(5.15) hy = —hy, hy=—h3, hi=Mhy
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he = (1 — X)Eag — 0201 — d100.

Therefore, if A # 0, then hy, ho, hg, hy are all constants (equivalently one of them is a
constant). This leads to statement (iii). If A = 0, then «; and [y are constants and
hi = —hyg =0 and hg, hg € H*®. This leads to statement (ii). In both cases, note that

(Be — @) on = — (h1 + 61m)
(B2 —az) B1 = (he + 6103)

where hi,hy € H®. We have, for any f € L2,

S, 38apf = PlagarPf +mp1Qf] + Q [Bear Pf + B2f1Qf]
= Pf+®mbQf +Q[(B2 —az) uPf + (B2 — a2) A1QS]
=maPf+®AQS +Q [~ (h +d1a2) Pf — (ha + d102) Qf]
=maPf+@bQf — Q61aPf] — haQf — Q[6102Qf]
=ma Pf+a@Qf — Q[oazf] — haQf

5.16 _
(1) = ma Pf+@fQf — Q[0raaf]+ [(B —az) b + 6103 Qf
=maPf + B251Qf — 61Q [aaf] + 610aQ f
=az(AB1+ 61)Pf + (Naz + 02)51Qf — 01Q [z f] 4 0102Q f
=WA\Gf + Sidaf + 01Qf — 51Q [azf]
=mazf +6MQ[f] — 6Qazf].
Note also
Sa1,61Say,8,f = 1P [@2f] + 51Q [B2f]
= a1 f + A1Q [fof] — @ [oaf]
= aiaaf + /Q [(Maz + 62) f] — (A\B1 + 61) Q [aaf]
=mazf +6MQ[f] — 61Q[azf].
Therefore S, 55a:,81 = Sa1,81 50,6, O

Remark 5.5. The verification of S, 554,38, = Say,8 54, 5, s in (.16)) is lengthy. Since

* M| =|S* M
1, 5 ) )
[Sa B1Paz,B21 Z] [SOQ 525041 B> Z] )

we have Sa,,8,5,, 5, = Say.py001,80 = Ma for some a € L. We need only to verify

«
561,615,650 ~Ony gy Oar,61€0 = @ = 0, which will be slightly shorter than the verification

as in (5.16]). However we choose the above more direct method.

Summarizing the above three lemmas, we have the following theorem.
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Theorem 5.6. Sal,mS;Q,ﬁQ = S*Qﬁzsalﬂl if and only if one of the following six state-

ments holds.

(i) Both Su, p, and Sy, s, are in M.
(ii) a1 and p1 are constants.
(iii) ag and P2 are constants.
(iv) B1 and as are constants, and Pa(a1 — B1) — azaq € H®.
(v) a1 and By are constants, and B1(ag — B2) — aroe € H®.

(vi) a1 = A\B1+01, B = Aag+62 for some constants X # 0, 81, 82, and B1(co—B2) — 10
1S a constant.

Proof. We need to explain the results from Lemmas and Item (i) in Lemmal5.2]
is statement (i) here. Items (ii), (iii) and (iv) in Lemma are included in above state-
ments (iv), (v) and (vi) respectively. Items (1) and (2) from Lemma correspond to
statements (i) and (ii). Item (3a) or (4a) from Lemma [5.3] corresponds to statement (v)
with a3 = 0 or B3 = 0. Item (3b) or (4b) from Lemma corresponds to statement (vi)
with 6; = 0 or d2 = 0. Item (5a) or (5b) from Lemma corresponds to statement (iv)
with ap = 0 or ;1 = 0. Items (i), (ii) and (iii) from Lemma correspond to state-

ments (iv), (v) and (vi) respectively. The proof is complete. O

The statement (vi) with A = 0 is included in the statement (v). The statement (vi)
with A =1 and §; = d, = 0 reduces to statement (i).

Corollary 5.7. [12] The operator S, g is normal if and only if one of the following two

statement holds.
(i) «, B are constants.

(i) a = A8+ 8 for some constants & and X with |\ =1, and (A — 1) || + 08 — 6AB is
a constant.

We can represent Condition (ii) slightly more explicitly by looking at the cases A =1
and A # 1 separately. We refer to Theorems 3.1 and 3.2 in [12] for more details.

We state the above result as a corollary of Theorem However we can prove this
corollary directly by following the proof of Theorem [5.6] The direct proof of this corollary
is considerably simpler than the proof of Theorem (see Appendix). This direct proof

also reveals the following insight.
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Corollary 5.8. The operator S, g is normal if and only if one of the following two state-

ment holds.
(i) Sap = Mg+ S50 where § is a constant such that 63 — 683 is a constant.
(ii) Sa,g = ASa,,8, + 1l for some constants X\ and p and unitary operator Sy, g, -

The operator S, g in (i) above is a normal operator in the set M.

6. Singular integral operators on LP spaces

As seen in [4], the singular integral operator S, s is also defined on any L space. In
this section we extend some results for S, g on L? to Sa,p on LP. Since several of our
problems are purely algebraic, appropriate interpretations of them on LP spaces are not
difficult. Nevertheless we include these interpretations to demonstrate the power of our
techniques in this more general context and to provide a motivation of further studying
singular integral operators on LP space.

For 1 < p < oo, let LP denote the usual Lebesgue space of the unit circle T and HP
denote the Hardy space of the unit disk. We can identify H? as a closed subspace of L?.
Let P denote the projection of LP onto HP. By M. Riesz’s Theorem (Theorem 2.3 on
page 108 of |3]), P is a bounded operator (but P is not bounded for p = 1 and p = o).
Let o, 8 € L*® and Q = I — P. The operator S, g on LP defined by

Sapf=aPf+BQf, [fell
is bounded. The operator S, g in terms of Cauchy integral formula is

a(z) +B(2) a(z) —B(z) 1 /f(&)

(Supf)(2) = TG R () + CEGEE L | T e

Let
Sp ={Sap € B(L") | a, p € L}

Let ¢ be such that 1/p+1/¢ =1 and L9 be the dual space of LP. For z € LP and y € L9,
let x ® y denote the rank one operator defined on LP by [z ® y|h = (h,y)x for h € L?
where (h,y) is the duality pairing,

1

2m
o) = 5= [ W) .

Again S}, 5 € B(L?) is defined by

Sap9=Plagl+Q [Bg], gelLi
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This can be verified by a direct computation, for f € LP and g € L9,

<Soc,ﬁfvg> - <OéPf+ﬁQf,g> - <Pfaag> + <QfaBg>
= (/. Plagl) + (1.Q [Bg]) = (1. 55 59)

We can also view S;’ 5 asa bounded operator on LP. To distinguish, we use a different
notation. Let Tj, g € B(L”) be the operator defined by

Tosf =Plafl+Q[Bf], gel”.

Here is the analogue of Proposition

Proposition 6.1. Let A € B(LP). Then A € S, if and only if there exists a ¢ € L™ such
that

[A7 MZ] =Y ®e_.
In this case A = Sy1pa for some 3 € L.

Even though proofs of the following two results on L? are similar to the corresponding
proofs on L?, we demonstrate these proofs carefully. The proofs are simple but they

illustrate the needed adaptation. We will skip the more complicated proofs.
Lemma 6.2. MzT, 53— T, sMz=e€e_1® (o — ).
Proof. For f € LP,
TogMzf = P [zaf] + [ ]

=zZP[af] -z (af) —I—erf]—i-z(Bf)

= MzTopf + ((B—a) f,1) e

= MzTopf —[e-1 @ (= B)] f
where (@ f), denotes the constant term in the Fourier series of arf. O

Proposition 6.3. The operator T,, g3 € Sy, if and only if (o — ) = X\ for some constant
A. In this case Ty g = Saﬁ'
Proof. By Proposition , T, p € S if and only if

TopgM, — M Th3 =19 Re_1
for some ¢ € L*°. But

TopgM, — M. T, 5= M, (MgTa,lg — Ta’ﬁMg) M,
=M, [6_1 &® (a — B)] M,
=ey)®Z(a — f).
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Thus
YR®e_1=ey@Z(a—P)
and (a — B)Z = Ae_1 and ¥ = ey for some complex number . In this case
Tap = Mg+ 550 =S5
The proof is complete. O

Corollary 6.4. T, g = So,3 on LP if and only if o and 3 are real valued functions and

(a — B) is a real constant.

Recall by definition the operator S, g on the Banach space L? is self-adjoint if (S, g f, g)
is real for all f € L? and g € L?. The condition T,, 3 = S, g is equivalent to S, 3 being
self-adjoint.

Lemma also holds on LP. We state part of it.

Lemma 6.5. Let Sy, 8,, 10,3, € B(LP). Then

(6‘1) [Ta2,B2Sa1,517MZ] =e)® Ta2,525(a2 - 62) + Ta2ﬂ2 (Oq - /81) ®e—1.

Proof. Since ag, 2 € L™, by M. Riesz’s Theorem, T, g,Z(aa —fB2) € L9, Ty, g, (1 — 1) €
LP. Thus the operator on the right side of (6.1)) is a bounded operator on LP. ]

Next we select a few results and state them without proofs.

Theorem 6.6. Let Sy, 8,, 50,8, € Sp. Assume a1 # Bi. Then Squ, 8,58, € Sp if and
only if ap € H*>, By € H®. In this case Sqa, 8,548, = Saias,B1 8-

Theorem 6.7. The operator S, 3 on LP is an isometry if and only if o] = || =1 and

a = 0B for some inner function 6 € H*. The operator S, g is an invertible isometry

if and only if |a| = |B] = 1 and o = A\ for some unimodular constant X\. The operator
To g on LP is an isometry if and only if || = |B| = 1 and o = A\ for some unimodular
constant \.

Theorem 6.8. Assume Sy, 8,505,8, = Sas,p:9a1,8 00 LP. Then one of the following

statements holds.
(i) a1 = B1 and ag = Pa.
(i) 1,81 € H® and o, B2 € H™.
(ili) Say,8 = ASas,p, + 1l for some constants A and p.

Theorem 6.9. If S, 3T, 3 = T, 3Sqa3 on LP, then one of the following two statement
holds.
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(i) Sap = Mg+ S50 where § is a constant such that 63 — 683 is a constant.
(ii) Sap = ASay.8 + pl for some constants A and p. Furthermore Sy, g, is a unitary

operator.

7. Appendix

In this appendix we provide a direct derivation of normal singular integral operators
obtained in [12].

Theorem 7.1. Assume one of a and 3 is not a constant and o —  # 0. Then S,
is normal if and only if « = A3 + 0§ for some constants 6 and A with |\ = 1, and
(A=1)|B> + 6B — 6\B is a constant.

Proof. 1f S, g is normal, then [S, S e M| =[S 550,85 M.]. By Lemma

(7.1) a®zZa—BRZB=e @S, zZ(a—B)+ S, 5(a—B)@e_1.

We divide the proof into three cases.
Case 1. Both sides of ([7.1) are rank zero operators. Then

a= M3
for some constant A # 1. Plugging this into the left side of , we have
(AP -1)p@z8 =0,
so [A]* = 1. Furthermore
eo® Sy pZ(a—B)+ Sy sa—B)®e1=0

implies that
tala—B) =p, SigEla—B) = —fier.
Thus

Pla(r— 18] +Q B - 1)8] = u
Plaz(A - 18] + Q [Bz(\ — 1)f] = —zz.

Therefore A(A — 1) 8> € H®, (A —1)|8]> € H® and |8]* = o for some constant o. In
this case it is easy to verify that Sa’gSgﬁ =5 550‘75 =S5 68 = ol. In fact S, is a

multiple of a unitary operator.
Case 2. Both sides of (7.1]) are rank one operators. Then

a=A3, Sigla—=pB)=p
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for some constants A and p. Plugging these relations into ([7.1]), we have
(\)\’2 - 1) BOZB =eg® (Shpz(a—B) +He_1).

Therefore § is a constant and o = AS is also a constant. This is impossible by the
assumption.
Case 3. Both sides of are rank two operators. By , ep is a linear combination
of « and . Therefore @ = A\ + J for some constants § # 0 and A. We consider two cases.
Case 3a. A = 1. Plugging a = 5+ ¢ into , we have

(B+0)®@Z0+0@Z8 =e® S, 320 + S5, 50 @ e_1.
Thus

eo ® [Sh 526 — Z0B] + [Sh 50 — (B +6)] ®e—1 =0,
P [azd —z0B] + P [Bz6 — z083] = p,
Plas—6(8+40)] +P[B0—6(B+6)] = —p.

Hence 56 — 63 € H®, B — 63 € H*>® and B0 — 003 is a constant. In this case we see that
Sa,8 = Mg+ S50 is normal.
Case 3b. A # 1. Let

c=0/(A=1), ag=a+o, pf1=L+o0.

Then
AMi=AB+do=a—-d0d+do=a1—0—05+ o = a;.

Since Sa, 8, = Sa,8 + 01, Sap is normal if and only if S,, g, is normal, this reduces to

case (1) and Sy, g, is a multiple of a unitary operator. Thus |[A| =1 and

81 =18+ o] = (A= 1) 18> + 68 = 538] + |o?

1
(A-1)

is a constant. The proof is complete. ]
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