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The Shock Reflection Phenomenon for Scalar Conservation Law with Dirac

Measure Source Term

Meina Sun

Abstract. This paper is mainly concerned with the shock reflection phenomenon for

convex scalar conservation law with Dirac measure source term. The Riemann solu-

tions are constructed completely and then the impact of the strength of source term

on the Riemann solutions is considered in detail. In order to illustrate the shock reflec-

tion phenomenon, the initial data with three pieces of constant states are considered

and the interactions between a backward shock wave plus a stationary wave discon-

tinuity and a rarefaction wave are displayed in all kinds of situations. Furthermore,

the global solutions are constructed completely and the large time asymptotic states

are obtained. In some certain situations, the shock reflection phenomenon is captured

when a rarefaction wave interacts with a stationary wave discontinuity and then is

divided into a transmitted rarefaction wave and a reflected shock wave at the critical

point. In addition, it is shown that the Riemann solutions are stable with respect to

the particular small perturbations of the initial data.

1. Introduction

The scalar conservation law with source term, which is usually called as the scalar balance

law, may be written in the following form

(1.1) ut + f(u)x = A(x, u),

where u is the state variable, f is the flux function and A is the source term. In particular,

the source term in the form

(1.2) A(x, u) = k′(x)b(u)

has been widely investigated such as in [5, 25] for the reason that it can be regarded as a

model equation for the Saint-Venant equations. See [8,10,11,14,19,20,24,31–33] and the
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references cited therein for the other source terms. Furthermore, if we take a step further

to assume b(u) = 1 in the source term (1.2), then (1.1) becomes

(1.3) ut + f(u)x = k′(x),

which is the scalar conservation law with spatially varying source term and is often served

as the basis on the numerical scheme for (1.1). Let us notice that if the coefficient is given

by the discontinuous one k(x) = kLH(−x) + kRH(x), then (1.3) is reduced to the scalar

conservation law with Dirac measure source term

(1.4) ut + f(u)x = (kR − kL)δ(x).

In this paper, we are concerned with the equation (1.4). For simplicity, a proper

definition of even and convex for the flux function f ∈ C2 is required. That is to say, both

f(0) = f ′(0) = 0 and f ′′(u) > 0 should be satisfied for any u. If k(x) is allowed to be

discontinuous, then it is more convenient to rewrite (1.3) as a system in the form

(1.5)

kt = 0,

ut + (f(u)− k)x = 0.

In fact, we restrict ourselves only to the situation that k(x) = kLH(−x) + kRH(x), such

that the Riemann problem for the system (1.5) is equivalent to that for the equation (1.4)

when the same entropy condition is taken. The Riemann problem for equations of this

type has been well established such as in [6, 9, 13, 17, 18]. The system (1.5), in particular

when the coefficient k(x) is discontinuous, has been extensively investigated as the detailed

example for conservation laws with discontinuous flux [1–4,7, 23,26,34].

It is easy to obtain that the characteristic eigenvalues of the system (1.5) are λ0 = 0

and λ1 = f ′(u) respectively, which can coincide at u = 0 and thus lead to the so-called

resonance [15, 16, 19, 21, 22]. Usually, the total variation of the approximate solutions

generated by Glimm scheme or front tracking is not uniformly bounded for the resonant

systems, such that the convergence of these schemes is more complicated and does not

follow the standard route. Compared with the strictly hyperbolic ones, the wave interac-

tion problem for this nonlinear resonant systems leads to more rich wave phenomena and

more complicated structures. When the interactions of elementary waves for the system

(1.5) are studied, an interesting phenomenon is discovered in some particular situations,

which is called as the so-called shock reflection phenomenon defined by:

Definition 1.1. The shock reflection phenomenon is called when a rarefaction wave inter-

acts with a stationary wave discontinuity and then is divided into a transmitted rarefaction

wave and a reflected shock wave at the reflection point where u achieves its critical value.
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The purpose of the present paper is to investigate and analyze this interesting phe-

nomenon for the system (1.5) in detail. In order to study the shock reflection phenomenon

for the system (1.5), let us consider the following special initial data

(1.6) u(x, 0) =


uL, x < 0,

uM , 0 < x < x0,

uR, x > x0,

and k(x) =

kL, x < 0,

kR, x > 0,

which enables us to investigate the wave interaction problem for the system (1.5). If x0 is

a sufficiently small positive number, then this special Cauchy problem (1.5) and (1.6) can

be seen as the so-called perturbed Riemann problem. Here we discover that the solution

to the perturbed Riemann problem (1.5) and (1.6) only depends on A = kR−kL. Without

loss of generality, let us assume that A > 0 (namely kR > kL) in this paper for the reason

that A < 0 (namely kR < kL) can be dealt with similarly.

In order to depict the shock reflection phenomenon for the system (1.5) for insight, we

require that a backward shock wave plus a stationary wave discontinuity emits from the

origin (0, 0) and a rarefaction wave emits from the other initial point (x0, 0) whose wave

back has the negative propagation speed. In order to meet the above requirements, we

need to make the following assumptions:

H1. uM < 0 and uM < uR, which enables us to obtain a rarefaction wave starting from

the initial point (x0, 0) whose wave back has the negative propagation speed.

H2. f(uL) + A < f(uM ), which implies that a backward shock wave plus a stationary

wave discontinuity emanates from the initial point (0, 0).

With the above assumptions, we have the following theorem to describe the main result

of this paper.

Theorem 1.2. Assume that f is a smooth, even and convex function and uM < 0,

uM < uR and f(uL)+A < f(uM ), then the shock reflection phenomenon cannot happen if

and only if both uR < 0 and f(uR) > A = kR − kL are satisfied, otherwise it happens. In

addition, if the limit x0 → 0 is taken, then the solutions to the perturbed Riemann problem

(1.5) and (1.6) converge to the corresponding Riemann solutions.

To study the perturbed Riemann problem (1.5) and (1.6) is in essence to study various

possible interactions of elementary waves. We are interested in the propagation of a

rarefaction wave through a stationary wave discontinuity, which is the most interesting

and difficult problem among all the interactions of elementary waves for the system (1.5).

We will deal with the wave interaction problem in detail by employing the method of

characteristics such that the global solutions to the perturbed Riemann problem (1.5) and
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(1.6) can be constructed completely under our assumptions, even when the shock reflection

phenomena appear in their solutions. The large time asymptotic states are obtained after

all the complicated nonlinear interactions have been completed such that all the hyperbolic

waves are expected to combine and cancel and eventually become noninteracting. Thus,

we can point out that the Riemann solutions for the system (1.5) are stable with respect to

the particular small perturbations of initial data (1.6) in all the possible situations under

our assumptions, although the shock reflection phenomena may happen in the solutions to

the perturbed Riemann problem (1.5) and (1.6). It was shown in [30] that the instability

of Riemann solution with respect to the small perturbation of initial data may occur in

some specific situations but the shock reflection phenomenon cannot be captured therein

for the system (1.5).

In fact, the shock reflection phenomenon has also been observed when the interactions

of elementary waves are considered for the following scalar conservation law with a flux

function involving discontinuous coefficients

(1.7) ut + (k(x)g(u))x = 0,

which has been well investigated both numerically by Seguin and Vovelle [27] and theo-

retically in our early works [28, 29]. It is noticed that the shock reflection phenomenon

is named as the so-called bifurcation phenomenon in the above references. However, to

our knowledge, the shock reflection phenomenon for the system (1.5) has not been paid

attention on until now. In this paper, we point out that the shock reflection phenomenon

also happens for the system (1.5) and has the similar properties with that for (1.7).

The paper is organized in the following way. In Section 2, the Riemann problem (1.5)

and (2.1) are considered when kR > kL for self-contained. Consequently, we consider

that the strength A (= kR − kL > 0) has the influence on the Riemann solutions. In

Section 3, the perturbed Riemann problem (1.5) and (1.6) is investigated in all kinds of

situations under our assumptions and the shock reflection phenomena are analyzed by

studying the interactions of elementary waves, including stationary wave discontinuities,

shock waves and rarefaction waves. Furthermore, the global solutions of the perturbed

Riemann problem (1.5) and (1.6) are constructed completely. Finally, the conclusions are

drawn in Section 4.

2. The Riemann problem

In this section, for a smooth, even and convex function f(u), we can describe how to solve

the Riemann problem for the system (1.5) with the following Riemann initial data

(2.1) (k, u)(x, 0) =

(kL, uL), x < 0,

(kR, uR), x > 0,
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which has also been considered such as in [9, 13, 17] etc. In this paper, we present the

exact solutions to the Riemann problem (1.5) and (2.1) by using the visualization method

and then check the influence of the strength A (= kR − kL) on the Riemann solutions.

Without loss of generality, let us assume kL < kR here. Otherwise, if kL > kR, then the

Riemann solutions can also be constructed in the same way. First, the definition of a weak

solution to the system (1.5) is given below.

Definition 2.1. A measurable function u ∈ L∞(R × R+) is called as a weak solution to

the system (1.5) if and only if the equality

(2.2)

∫
R+

∫
R

(uϕt + (f(u)− k(x))ϕx) dxdt+

∫
R
u(x, 0)ϕ(x, 0) dx = 0

holds for any test function ϕ ∈ C∞c (R × R+), in which k(x) may be discontinuous with

respect to x.

The eigenvalues of the system (1.5) are λ0 = 0 and λ1 = f ′(u) and the corresponding

right eigenvectors are −→r0 = (f ′(u), 1)T and −→r1 = (0, 1)T respectively. It is worthy noticed

that λ1 < λ0 for f ′(u) < 0 and λ1 > λ0 for f ′(u) > 0. It is easy to get ∇λ0 · −→r0 = 0

and ∇λ1 · −→r1 = f ′′(u) > 0 where ∇ =
(

∂
∂k ,

∂
∂u

)
. Thus, the system (1.5) is non-strictly

hyperbolic, where the characteristic family of λ0 is linearly degenerate and that of λ1

is genuinely nonlinear. Accordingly, the waves associated with λ0 are the stationary

wave discontinuities denoted by J and those associated with λ1 are the rarefaction waves

denoted by R or the shock waves denoted by S which are determined by the initial data.

The Riemann invariants can be chosen as w = f(u)− k and z = k respectively.

We start with the simpler situation that kL = kR, where the Riemann problem (1.5)

and (2.1) is reduced to that for a scalar conservation law with a convex flux function.

In this situation, we know that uL and uR are linked either by a rarefaction wave when

uL < uR or by a shock wave when uL > uR. Consequently, the more complicated situation

that kL 6= kR is taken into account. It is clear that k(x) is equal to kL in the region

{x < 0, t ≥ 0} and kR in the region {x > 0, t ≥ 0} respectively for the Riemann problem

(1.5) and (2.1). Therefore, the Riemann problem (1.5) and (2.1) may be seen as two

disconnected problems in {x < 0, t ≥ 0} and in {x > 0, t ≥ 0} respectively, in connection

with some interface conditions at J : {x = 0, t ≥ 0}. Let us introduce the notations

u− = u(x = 0−, t ≥ 0) and u+ = u(x = 0+, t ≥ 0), then the Riemann solutions to (1.5)

and (2.1) can be constructed provided that the values of u− and u+ are determined.

Let us first consider the problem in the region {x < 0, t ≥ 0} as

(2.3)

ut + (f(u)− kL)x = ut + f(u)x = 0,

u(x, 0) = uL (x < 0), u(x = 0−, t) = u−,
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which consists of a u-wave with non-positive speed. If uL < u− < 0, then one may arrive

at a backward rarefaction wave
←−
R whose propagation speed can be calculated by τ = f ′(u)

with u varying from uL to u−. Otherwise, if uL > u− and f(uL) < f(u−), then one can

obtain a backward shock wave
←−
S whose propagation speed is given by σ = f(uL)−f(u−)

uL−u− .

Let us turn to the problem in the region {x > 0, t ≥ 0} as

(2.4)

ut + (f(u)− kR)x = ut + f(u)x = 0,

u(x, 0) = uR (x > 0), u(x = 0+, t) = u+,

which consists of a u-wave with non-negative speed. If 0 < u+ < uR, then one can get a

forward rarefaction wave
−→
R whose propagation speed can be calculated by τ = f ′(u) with

u varying from u+ to uR. Otherwise, if u+ > uR and f(u+) > f(uR), then one can obtain

a forward shock wave
−→
S whose propagation speed can be expressed as σ = f(uR)−f(u+)

uR−u+ .

Finally, we deal with the interface Rankine-Hugoniot relation

(2.5) f(u−)− kL = f(u+)− kR,

namely

(2.6) f(u−) +A = f(u+),

where A = kR−kL > 0. There exist infinitely many possible values for u− and u+ to obey

(2.6), such that an additional entropy condition should be proposed in order to ensure

the uniqueness of Riemann solution. In this paper, we choose the minimal jump entropy

condition [12,13,17,27] where the jump |u+ − u−| is the smallest possible jump satisfying

(2.6). For the convex flux function f(u), this is equivalent to choosing the minimal possible

flux across the jump. More specifically, the minimal jump entropy condition becomes

(2.7) u+ < u− ≤ 0 for u− ≤ 0 and 0 ≤ u− < u+ for u− ≥ 0,

which implies that u−u+ ≥ 0 such that only one characteristic leaves the jump.

Figure 2.1: The phase plane (u, f(u)) where A = kR − kL, left for uL < 0 and right for

uL > 0.
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It can be concluded from the above discussions that the Riemann solutions to (1.5)

and (2.1) just rely on the difference A = kR − kL in k to the left and right. For the

situation A > 0 (namely kR > kL), the construction of Riemann solutions is divided into

the two parts in the light of uL. If uL < 0, then we can obtain four cases listed below (see

the left in Figure 2.1).

(i) If uR < uL < 0 and f(uL) +A < f(uR), then the Riemann solution is
←−
S +J which

can be expressed as

(2.8) (k, u)(x, t) =


(kL, uL), x < σt,

(kL, u
−), σt < x < 0,

(kR, uR), x > 0,

in which u− (< 0) satisfies f(u−) +A = f(uR), u+ = uR and σ = f(uL)−f(u−)
uL−u− .

(ii) If uR < 0, uL < 0 and A < f(uR) < f(uL) + A, then the Riemann solution is
←−
R + J which can be represented as

(2.9) (k, u)(x, t) =



(kL, uL), x < f ′(uL)t,

(kL, (f
′)−1(xt )), f ′(uL)t ≤ x ≤ f ′(u−)t,

(kL, u
−), f ′(u−)t < x < 0,

(kR, uR), x > 0,

where u− and u+ are the same as those in case (i).

(iii) If uL < 0 and f(uR) < A, then the Riemann solution is
←−
R + J +

−→
S which can be

expressed as

(2.10) (k, u)(x, t) =



(kL, uL), x < f ′(uL)t,

(kL, (f
′)−1(xt )), f ′(uL)t ≤ x ≤ 0,

(kR, u
+), 0 < x < σt,

(kR, uR), x > σt,

where u+ (> 0) satisfies f(u+) = A, u− = 0 and σ = f(uR)−f(u+)
uR−u+ . It is remarkable that

the propagation speed of the wave front of R is zero, which implies that the wave front of

R coincides with J .

(iv) If uL < 0 < uR and f(uR) > A, then the Riemann solution is
←−
R + J +

−→
R which
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is given by

(2.11) (k, u)(x, t) =



(kL, uL), x < f ′(uL)t,

(kL, (f
′)−1(xt )), f ′(uL)t ≤ x ≤ 0,

(kR, u
+), 0 < x < f ′(u+)t,

(kR, (f
′)−1(xt )), f ′(u+)t ≤ x ≤ f ′(uR)t,

(kR, uR), x > f ′(uR)t,

where u− and u+ have the same representations as those in case (iii) and the wave front

of the backward rarefaction wave
←−
R also coincides with J .

Otherwise, if uL > 0, then we can also get three cases listed below (see the right in

Figure 2.1).

(v) If uR < 0 < uL and f(uL) +A < f(uR), then the Riemann solution is also
←−
S + J

given by (2.8).

(vi) If 0 < uL and f(uL) +A > f(uR), then the Riemann solution is J +
−→
S as follows:

(2.12) (k, u)(x, t) =


(kL, uL), x < 0,

(kR, u
+), 0 < x < σt,

(kR, uR), x > σt,

where u+ (> 0) satisfies f(uL) +A = f(u+), u− = uL and σ = f(uR)−f(u+)
uR−u+ .

(vii) If 0 < uL < uR and f(uL) + A < f(uR), then the Riemann solution is J +
−→
R as

follows:

(2.13) (k, u)(x, t) =



(kL, uL), x < 0,

(kR, u
+), 0 < x < f ′(u+)t,

(kR, (f
′)−1(xt )), f ′(u+)t ≤ x ≤ f ′(uR)t,

(kR, uR), x > f ′(uR)t,

in which u− and u+ can be calculated like as those in case (vi).

One can see that the Riemann solutions to (1.5) and (2.1) only depend on the difference

A = kR − kL, such that we can only regard u as the unknown function and the above

Riemann solutions to (1.5) and (2.1) is just the corresponding Riemann solutions for u to

the following Riemann problem

(2.14) ut + f(u)x = Aδ(x),

with the initial data

(2.15) u(x, 0) =

uL, x < 0,

uR, x > 0.
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It is interesting to consider that the strength A of Dirac measure has the influence on

the Riemann solutions to (2.14) and (2.15). Our discussion should also be divided into

the following six cases according to the values of uL and uR.

(1) If uR < uL < 0, then the Riemann solution is only the stationary wave discontinuity

J connecting uL and uR directly when A = f(uR) − f(uL). If we lift A such that

f(uR) ≥ A > f(uR)− f(uL), then it turns out to be
←−
R + J . Furthermore, if we lift

A much larger such that A > f(uR), then it becomes
←−
R + J +

−→
S . On the other

hand, if we drop A such that f(uR)− f(uL) > A > 0, then it becomes
←−
S + J .

(2) If uL < uR < 0, then the Riemann solution is
←−
R + J for 0 < A ≤ f(uR) and then

becomes
←−
R + J +

−→
S if A is added up to satisfy A > f(uR).

(3) For uL < 0 < uR, the Riemann solution is
←−
R + J when A = f(uR). If we increase

A such that A > f(uR), then it turns out to be
←−
R + J +

−→
S . Otherwise, if we drop

A such that 0 < A < f(uR), then it becomes
←−
R + J +

−→
R .

(4) For uR < 0 < uL, if f(uL) > f(uR), then the Riemann solution is still J +
−→
S for all

the A > 0. Otherwise, when f(uL) < f(uR), if we take A = f(uR) − f(uL), then

it is the composite wave SJ with the zero propagation speed, for the reason that S

coincides with J on the line x = 0. If we lift A such that A > f(uR)− f(uL), then

it is transformed into J +
−→
S . If we drop A such that 0 < A < f(uR)− f(uL), then

it becomes
←−
S + J .

(5) If 0 < uR < uL, then the Riemann solution is always J +
−→
S for all the A > 0.

(6) If 0 < uL < uR, then the Riemann solution is also only J connecting uL and uR

directly when A = f(uR)− k(uL). If we lift A such that A > f(uR)− f(uL), then it

is changed into J +
−→
S . Otherwise, if we drop A such that f(uR)− f(uL) > A > 0,

then it is turned into J +
−→
R .

3. The perturbed Riemann problem and shock reflection phenomenon

The main purpose of this section is dedicated to the shock reflection phenomenon for

the system (1.5) when f is a smooth, even and convex function. In order to deal with

it, we consider the perturbed Riemann problem (1.5) and (1.6) under the assumptions

uM < 0, uM < uR and f(uL) +A < f(uM ), where the Riemann solution is
←−
S +J starting

from the initial point (0, 0) and the Riemann solution is the rarefaction wave R starting

from the initial point (x0, 0) whose wave back has the negative propagation speed. Thus,

the rarefaction wave R will meet the stationary wave discontinuity J in finite time and

the interaction will happen, in which the shock reflection phenomenon may be captured.
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During the construction of global solutions to the perturbed Riemann problem (1.5) and

(1.6), wave interactions should be dealt with by employing the method of characteristics.

Let us denote the state between S and J with (kL, u1) where u1 (< 0) is determined

uniquely by

(3.1) f(u1) +A = f(uM ).

For sufficiently small t before interaction, the solution of the perturbed Riemann prob-

lem (1.5) and (1.6) may be represented by the juxtaposition of Riemann solutions at (0, 0)

and (x0, 0). That is to say, the solution of the perturbed Riemann problem (1.5) and (1.6)

for sufficiently small t may be expressed briefly as:

(kL, uL) + S1 + (kL, u1) + J + (kR, uM ) +R1 + (kR, uR).

More precisely, before the interaction happens, we have the solution in the form

(3.2) (k, u)(x, t) =



(kL, uL), x <
(
f(uL)−f(u1)

uL−u1

)
t,

(kL, u1),
(
f(uL)−f(u1)

uL−u1

)
t < x < 0,

(kR, uM ), 0 < x < x0 + f ′(uM )t,

(kR, (f
′)−1(x−x0

t )), f ′(uM )t ≤ x− x0 ≤ f ′(uR)t,

(kR, uR), x− x0 > f ′(uR)t.

Our discussion should be divided into two parts according to uL < 0 or not. We first

draw our attention on the situation uL < 0 and have the following lemma to depict all the

situations along with the variation of uR.

Lemma 3.1. Assume that uL < 0, uM < 0, uM < uR and f(uL) + A < f(uM ), then

the results about the perturbed Riemann problem (1.5) and (1.6) can be summarized as

follows:

(i) If uR < 0 and f(uL) + A < f(uR) < f(uM ), then there is no shock reflection

phenomenon and the large time asymptotic state is
←−
S + J .

(ii) If uR < 0 and A < f(uR) < f(uL) + A, then there is also no shock reflection

phenomenon and the large time asymptotic state is
←−
R + J .

(iii) If f(uR) < A, then the shock reflection phenomenon occurs and the large time asymp-

totic state is
←−
R + J +

−→
S .

(iv) If uR > 0 and f(uR) > A, then the shock reflection phenomenon also occurs and the

large time asymptotic state is
←−
R + J +

−→
R .
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Proof. We can first fix the relative positions of uL and uM from the assumption and then

change uR in view of the fixed uL and uM . In what follows, our discussion can be carried

out according to the different positions of uR.

(i) If uR < 0 and f(uL) + A < f(uR) < f(uM ), then it is clear that the rarefaction

wave R1 arrives at the stationary wave discontinuity J in finite time t1 which is given by

(3.3) t1 = − x0
f ′(uM )

.

Consequently, R1 begins to penetrate J and is denoted with R2 after penetration. The

propagation speeds of the matched characteristic lines in R1 and R2 can be calculated

respectively by

(3.4) τ1(u
+) = f ′(u+) and τ2(u

−) = f ′(u−),

in which the state u+ in R1 becomes the corresponding one u− in R2 when across J which

should obey the interface Rankine-Hugoniot relation

(3.5) f(u−) +A = f(u+),

with uM ≤ u+ ≤ uR and u1 ≤ u− ≤ u2, where u1 (< 0) is given by (3.1) and u2 (< 0) is

given by

(3.6) f(u2) +A = f(uR).

For the matched characteristic lines in R1 and R2, it follows from (3.5) that u+ < u− < 0,

such that we have τ1(u
+) < τ2(u

−) < 0 for the reason that f ′(u) is an increasing function

with respect to u, which implies that the rarefaction wave decelerates backwards when it

passes through J .

The propagation speeds of the wave back of the rarefaction wave R2 and the shock

wave S1 can be calculated respectively by

(3.7) τ2(u1) = f ′(u1) and σ1 =
f(uL)− f(u1)

uL − u1
.

Noticing that u1 < uL < 0, in view of the mean value theorem, there exists one and only

one u ∈ (u1, uL) such that σ1 = f ′(u). Remembering that f ′(u) is an increasing function

with respect to u, it is shown that

(3.8) τ2(u1) < σ1 < 0,

which implies that the rarefaction wave R2 overtakes the shock wave S1 from behind in

finite time and the intersection point (x2, t2) is determined by

(3.9) x2 = σ1t2 = τ2(u1)(t2 − t1).
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Consequently, S1 begins to penetrate R2 after the time t2. During the process of

penetration, we denote it with S2 whose propagation speed is

(3.10) σ2(u
−) =

dx

dt
=
f(uL)− f(u−)

uL − u−
,

where u− varies from u1 to u2. The curve of S2 is determined by (3.10) together with

(3.11) x = f ′(u−)(t− t),

in which t is the time that the characteristic line with the corresponding state u+ in R1

arrives at the line x = 0 and can be calculated by

(3.12) t = − x0
f ′(u+)

,

where u+ varies from uM to uR. It follows from (3.10) that

(3.13)
d2x

dt2
=
f ′(u−)− f(u−)−f(uL)

u−−uL

u− − uL
· du

−

dt
.

By employing the mean value theorem again, there exists one and only one ũ ∈ (u−, uL)

such that we have

(3.14)
f(u−)− f(uL)

u− − uL
= f ′(ũ) > f ′(u−)

for every u− ∈ [u1, u2]. Thus, one can infer that d2x
dt2

> 0, which implies that the shock

wave S2 decelerates backwards when it penetrates the rarefaction wave R2.

Figure 3.1: f(uL) +A < f(uR) < f(uM ) and uM < uR < uL < 0.

It is easy to obtain u2 < uL < 0 from f(uL) +A < f(uR), which enables us to see that

the shock wave S2 has the ability to penetrate the whole rarefaction wave R2 completely

in finite time and is denoted with S3 after penetration whose propagation speed is

(3.15) σ3 =
f(uL)− f(u2)

uL − u2
.



Convex Scalar Conservation Law with Dirac Measure Source Term 675

We can draw Figure 3.1 to illustrate this case and it is clear to see from Figure 3.1 that

the large time asymptotic state is
←−
S + J .

(ii) If uR < 0 and A < f(uR) < f(uL) + A, then the situation is similar to that

in case (i). The difference lies in that uL < u2 < 0 which can be derived from A <

f(uR) < f(uL) + A. Thus, the shock wave S2 has no ability to penetrate R2 thoroughly

and ultimately takes the characteristic line with the state u− = uL in R2 as its asymptote.

We can also draw Figure 3.2 to illustrate it whose large time asymptotic state is
←−
R + J .

(iii) If f(uR) < A, then one can capture the shock reflection phenomenon in the

solution to the perturbed Riemann problem (1.5) and (1.6). In fact, when the state in

R2 arrives at u− = 0, the corresponding one in R1 is u+ = −u3, in which u3 (> 0) is

determined by

(3.16) f(u3) = A.

It should be emphasized that the propagation speed of the characteristic line supported

on the state u− = 0 in R2 is zero for the reason that τ2(0) = f ′(0) = 0, which is identical

with J . At the same time, a reflected shock wave S3 is generated when the state in R1

achieves the critical one u+ = −u3 and the critical point (x3, t3) can be given by

(3.17) (x3, t3) =

(
0,
−x0

f ′(−u3)

)
.

The curve of the reflected shock wave S3 can be derived from

(3.18)

σ3 = dx
dt = f(u+)−f(u3)

u+−u3
,

x− x0 = f ′(u+)t,

with the initial condition (3.17) and u+ varying from −u3 to uR. It is easy to see that S3

is initially tangent to the line of the stationary wave discontinuity J , but it immediately

has the positive speed. Hence, the shock reflection phenomenon can be captured, namely

the rarefaction wave R1 is separated into two waves: a transmitted rarefaction wave R2

and a reflected shock wave S3 after the time t3.

Figure 3.2: A < f(uR) < f(uL) +A < f(uM ) with uM < uR < 0 and uL < 0.
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Figure 3.3: f(uR) < A and f(uL) +A < f(uM ) with uM < uL < 0.

Figure 3.4: f(uR) > A and f(uL) +A < f(uM ) with uM < uL < 0 < uR.

It can be obtained from (3.18) that

(3.19)
d2x

dt2
=
f ′(u+)− f(u+)−f(u3)

u+−u3

u+ − u3
· du

+

dt
.

Like as before, for every u+ ∈ [−u3, uR], one can also obtain d2x
dt2

> 0 from (3.19), which

implies that the shock wave S3 accelerates forwards when it penetrates R1. For uR < u3,

S3 can penetrate the whole R1 thoroughly in finite time and is denoted with S4 after

penetration whose propagation speed is given by

(3.20) σ4 =
f(uR)− f(u3)

uR − u3
.

On the other hand, for uL < 0, S2 cannot cross the total R2 and at last also has the

characteristic line with the state u− = uL in R2 as its asymptote. Let us draw Figure 3.3

to illustrate this case whose large time asymptotic state is
←−
R + J +

−→
S .

(iv) If uR > 0 and f(uR) > A, then the situation is similar to that in case (iii). The

difference lies in that 0 < u3 < uR which can be derived from uR > 0 and f(uR) > A.

Thus, S3 cannot penetrate R1 thoroughly and has the characteristic line with the state
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u+ = u3 in R1 as its asymptote in the end. Let us draw Figure 3.4 to explain the difference

whose large time asymptotic state is
←−
R + J +

−→
R .

We are now in a position to pay our attention on the situation uL > 0 and also have

the similar result as Lemma 3.1 to describe it.

Lemma 3.2. Assume that uL > 0, uM < 0, uM < uR and f(uL) + A < f(uM ), then

the results about the perturbed Riemann problem (1.5) and (1.6) can be summarized as

follows:

(i) If uR < 0 and f(uL) + A < f(uR) < f(uM ), then there is no shock reflection

phenomenon and the large time asymptotic state is
←−
S + J .

(ii) If uR < 0 and A < f(uR) < f(uL) + A, then there is also no shock reflection

phenomenon and the large time asymptotic state is J +
−→
S .

(iii) If f(uR) < A or A < f(uR) < f(uL) + A with uR > 0, then the shock reflection

phenomenon occurs and the large time asymptotic state is also J +
−→
S .

(iv) If uR > 0 and f(uR) > f(uL) +A, then the shock reflection phenomenon also occurs

and the large time asymptotic state is J +
−→
R .

Figure 3.5: A < f(uR) < f(uL) +A < f(uM ) with uM < uR < 0 < uL.

Proof. The process of proof is analogous to that in Lemma 3.1. In fact, we also change

uR in view of the fixed uL and uM and our discussion can be carried out according to the

different positions of uR.

(i) If uR < 0 and f(uL) +A < f(uR) < f(uM ), then the situation is similar to that in

Case (i) in Lemma 3.1 and we omit the detail.

(ii) If uR < 0 and A < f(uR) < f(uL) + A, then the shock wave S2 has the ability

to penetrate the whole rarefaction wave R2 completely in finite time for the reason that

u2 < 0 < uL. During the process of penetration, it follows from (3.10) that the shock wave
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S2 changes its direction and has a positive propagation speed when it passes through the

characteristic line with the state u− = −uL in R2 due to the fact that u1 < −uL < u2 < 0.

After penetration, it is denoted with S3 whose propagation speed satisfies

(3.21) σ3 =
f(uL)− f(u2)

uL − u2
=
f(uL) +A− f(uR)

uL − u2
> 0,

which implies that the shock wave S3 turns back to the line x = 0 of J in finite time and

then passes through it. Consequently, it is denoted with S4 whose propagation speed is

(3.22) σ4 =
f(uR)− f(u4)

uR − u4
,

in which u4 (> 0) is given by

(3.23) f(uL) +A = f(u4).

Noticing that u4−uR > uL−u2 > 0 and f(uR) < f(uL) +A, it follows from (3.21)–(3.23)

that

(3.24) σ4 =
f(uL) +A− f(uR)

u4 − uR
<
f(uL) +A− f(uR)

uL − u2
= σ3,

which implies that the shock wave decelerates when it passes through the stationary wave

discontinuity J . Let us draw Figure 3.5 to illustrate this case whose large time asymptotic

state is J +
−→
S .

(iii) If f(uR) < A, then it follows from (3.10) that the shock wave S2 changes its

movement direction when it passes through the characteristic line with the state u− = −uL
in R2. Consequently, it speeds up forwards and continues to penetrate R2 until it arrives

at J in finite time for the reason that the wave front of R2 is identical with J . The shock

wave is denoted with S4 after penetration.

The propagation speeds of the shock waves before penetration and after penetration

can be calculated respectively by

(3.25) σ2(0) =
f(uL)− f(0)

uL − 0
=
f(uL)

uL
and σ4 =

f(u4)− f(u3)

u4 − u3
,

in which u3 and u4 are given by (3.16) and (3.23), respectively. We shall show that

0 < σ2(0) < σ4, namely the shock wave accelerates forwards when it passes through J . In

fact, it follows from (3.16) and (3.23) that

(3.26) f(uL)− f(0) = f(u4)− f(u3) > 0.

Thus, the assertion is true provided that one can prove that uL > u4 − u3 > 0. Actually,

if uL ≤ u3, then there exist one and only one ξ1 ∈ (0, uL) and ξ2 ∈ (u3, u4) such that

(3.27) f ′(ξ1)(uL − 0) = f(uL)− f(0) = f(u4)− f(u3) = f ′(ξ2)(u4 − u3),
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which enables us to obtain uL > u4 − u3 > 0 for 0 < f ′(ξ1) < f ′(ξ2). Otherwise, if

uL < u3, then there exist one and only one η1 ∈ (0, u3) and η2 ∈ (uL, u4) such that

(3.28) f ′(η1)(u3 − 0) = f(u3)− f(0) = f(u4)− f(uL) = f ′(η2)(u4 − uL),

which also enables us to achieve uL > u4 − u3 > 0 for 0 < f ′(η1) < f ′(η2).

Figure 3.6: f(uR) < A < f(uL) +A < f(uM ) with uM < 0 < uL.

Figure 3.7: f(uR) > A and f(uL) +A < f(uM ) with uM < 0, uL > 0 and uR > 0.

Figure 3.8: f(uL) +A < f(uR) and f(uL) +A < f(uM ) with uM < 0, uR > uL > 0.
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Let us turn to the reflected shock wave S3. If the state uR is near −u3, then S3 has

the ability to penetrate the entire R1 completely before S4 keeps up with it. It is denoted

with S5 after penetration whose propagation speed is

(3.29) σ5 =
f(uR)− f(u3)

uR − u3
.

It is easy to obtain 0 < σ5 < σ4 from 0 < u3 < uR < u4, which implies that the shock

wave S4 keeps up with the shock wave S5 in finite time. Finally, they coalesce into a new

shock wave S6 whose propagation speed is

(3.30) σ6 =
f(uR)− f(u4)

uR − u4
.

On the other hand, if the state uR is near u3, then S3 has no ability to cross R1

fully before the shock wave S4 catches up with it. In this situation, they coalesce into

a new shock wave who continues to penetrate the rarefaction wave R1 and is able to

penetrate it completely for u4 > uR. In fact, the situation also happens when both

A < f(uR) < f(uL) + A with uR > 0 are satisfied. Let us draw Figures 3.6–3.7 to

illustrate the difference and the large time asymptotic state is J +
−→
S for both of them.

(iv) If uR > 0 and f(uR) > f(uL) +A, then the situation is similar to that illustrated

in Figure 3.7. The difference lies in that the shock wave has no ability to penetrate R1

completely and finally has the characteristic line with the state u+ = u4 in R1 as its

asymptote for u4 < uR. Let us draw Figure 3.8 to explain the situation whose large time

asymptotic state is J +
−→
R .

One can observe clearly that the limits as x0 → 0 of the solutions to the perturbed

Riemann problem (1.5) and (1.6) are in accordance with the corresponding Riemann

solutions to (1.5) and (2.1), which can also be seen from the large time asymptotic states

in all kinds of situations. Thus, in all the cases studied above, the Riemann solutions

for the system (1.5) are stable with respect to the particular small perturbation (1.6) of

Riemann initial data if x0 is regarded as the perturbation parameter. It can be concluded

from the above discussions that the shock reflection phenomenon occurs if and only if

uR > −u3. Thus, Theorem 1.2 can be achieved by pasting Lemmas 3.1 and 3.2 together.

4. Conclusions

So far, the structures of global solutions and the large time asymptotic states for the

perturbed Riemann problem (1.5) and (1.6) are obtained and illustrated for all the situ-

ations under our suitable assumptions, where the shock reflection phenomena appear in

their solutions provided that uR > −u3. In fact, the shock reflection phenomena for the

system (1.5) can be observed and analyzed well by using the perturbed Riemann problem
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here, which enables us to describe the critical state, the reflected shock wave and the

transmitted rarefaction wave in detail.

If we take the assumption f(uL) + A > f(uM ) and uL < 0 instead of the assumption

f(uL)+A < f(uM ), then the shock reflection phenomenon can also be captured. But here

the Riemann solution at the point (0, 0) is
←−
R + J , namely a backward rarefaction wave

plus a stationary wave discontinuity. The situation is relatively simpler compared with the

situation in this paper for the reason that the wave front of this backward rarefaction wave

is parallel to the wave back of this transmitted rarefaction wave and thus no interaction

happens in the region {x < 0, t ≥ 0}.
In addition, if we consider A < 0 (namely kR < kL) instead of A > 0 (namely kR > kL),

then the shock reflection phenomenon can also be observed if we consider the perturbed

Riemann problem for the system (1.5) with the following initial data

(4.1) u(x, 0) =


uL, x < x0,

uM , x0 < x < 0,

uR, x > 0,

and k(x) =

kL, x < 0,

kR, x > 0,

under the similar assumptions. The Riemann problem (1.5) and (2.1) should be resolved

for A < 0 (namely kR < kL) and the perturbed Riemann problem is axisymmetric com-

pared with here.

The perturbed Riemann problem (1.5) and (1.6) is investigated through analyzing the

phase plane which enables us to construct the global solutions completely. Thus, it is clear

to see that the results in this paper can be generalized to the general convex (or concave)

flux function f(u) satisfying f ′′(u) > 0 (or f ′′(u) < 0) for all the u. Here we take the

assumption that f is even in order to simplify our calculation which is not essential.
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