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Gauss Maps of Ruled Submanifolds and Applications II

Dong-Soo Kim, Young Ho Kim*, Sun Mi Jung and Dae Won Yoon

Abstract. The notion of pointwise 1-type Gauss map was derived from the ordinary

finite type Gauss map and it gives an interesting geometric properties on surfaces

of 3-dimensional Euclidean space. In particular, the helicoid and the right cone of

3-dimensional Euclidean space are characterized by pointwise 1-type Gauss map. In-

spired by such a study, in this paper, we completely classify ruled submanifolds of

Euclidean space with pointwise 1-type Gauss map.

1. Introduction

One of main objects in differential geometry is to study Riemannian manifolds. Due to

Nash’s embedding theorem, every Riemannian manifolds can be regarded as a submanifold

of Euclidean space with sufficiently high codimension. Thus, it is convenient to study

Riemannian manifolds by examining submanifolds of Euclidean space with the intrinsic

and extrinsic properties. The theory of finite type submanifolds initiated to estimate

the total mean curvature of compact submanifolds of Euclidean space in the late 1970s.

Inspired by the degree of algebraic varieties, B.-Y. Chen introduced the concept of order

and type on submanifolds of Euclidean space:

Let M be a submanifold of m-dimensional Euclidean space Em with an isometric

immersion x. We can identifying x with the position vector of Em. Let ∆ be the Laplace

operator of M in Em. The submanifold M is said to be of finite type if x has a spectral

decomposition by x = x0 + x1 + · · · + xk, where x0 is a constant vector and xi are
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the vector fields satisfying ∆xi = λixi for some λi ∈ R (i = 1, 2, . . . , k). In particular,

λ1, λ2, . . . , λk are different, it is called k-type. Many works have been done in studying

finite type submanifolds of Euclidean space (see [2, 3, 5, 10]). This notion of finite type

immersion was naturally extended to pseudo-Riemannian manifolds in pseudo-Euclidean

space [13, 17, 19] and it can be applied to smooth functions, particularly the Gauss map

defined on submanifolds of Euclidean space or pseudo-Euclidean space [2, 3].

In regarding the Gauss map of finite type, B.-Y. Chen and P. Piccini [6] studied

the submanifolds in Euclidean space with finite type Gauss map so that they classified

compact surfaces with 1-type Gauss map, that is, ∆G = λ(G+C), where C is a constant

vector and λ ∈ R. Since then, quite a few works on ruled surfaces and ruled submanifolds

with finite type Gauss map in Euclidean space or pseudo-Euclidean space have been done

[12,13,15–20].

However, some surfaces including a helicoid have an interesting property concerning

the Gauss map which looks satisfying 1-type Gauss map. As a matter of fact, it is not:

The helicoid in E3 parameterized by

x(u, v) = (u cos v, u sin v, av), a 6= 0

has the Gauss map and its Laplacian are respectively given by

G =
1√

a2 + u2
(a sin v,−a cos v, u)

and

∆G =
2a2

(a2 + u2)2
G.

The right (or circular) cone Ca with parametrization

x(u, v) = (u cos v, u sin v, au), a ≥ 0

has the Gauss map

G =
1√

1 + a2
(a cos v, a sin v,−1)

which satisfies

∆G =
1

u2

(
G+

(
0, 0,

1√
1 + a2

))
(cf. [7,8]). The Gauss maps of examples above are similar to 1-type, but obviously different

from the usual sense of 1-type Gauss map. Based on these, we define

Definition 1.1. An oriented n-dimensional submanifold M of the Euclidean space Em is

said to have pointwise 1-type Gauss map if it satisfies the condition

(1.1) ∆G = f(G+ C),
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where f is a non-zero smooth function on M and C some constant vector. In particular,

if C is zero, the Gauss map G is said to be of the first kind. Otherwise, it is said to be of

the second kind [4, 7–9].

In [7, 8], M. Choi et al. proved that a ruled surface in 3-dimensional Euclidean space

with pointwise 1-type Gauss map is part of a plane, a circular cylinder, a heilcoid, a

cylinder over a plane curve of infinite type or a circular cone. And, in [9, 20], ruled

surfaces in pseudo-Euclidean space with pointwise 1-type Gauss map were studied.

Continuing to [14], we now raise a question: Can we completely classify ruled subman-

ifolds in Euclidean space with pointwise 1-type Gauss map of the second kind?

In this paper, we study the problem described in the question above and completely

classify ruled submanifolds of Euclidean space with pointwise 1-type Gauss map.

All of geometric objects under consideration are smooth and submanifolds are assumed

to be connected unless otherwise stated.

2. Preliminaries

Let x : M → Em be an isometric immersion of an n-dimensional Riemannian manifold M

into Em. Let (x1, x2, . . . , xn) be a local coordinate system of M . For the components gij

of the Riemannian metric 〈·, ·〉 on M induced from that of Em, we denote by (gij) (re-

spectively, G) the inverse matrix (respectively, the determinant) of the component matrix

(gij). Then the Laplace operator ∆ on M is defined by

∆ = − 1√
G

∑
i,j

∂

∂xi

(√
Ggij ∂

∂xj

)
.

We now choose an adapted local orthonormal frame {e1, e2, . . . , em} in Em such that

e1, e2, . . . , en are tangent to M and en+1, en+2, . . . , em normal to M . The Gauss map

G : M → G(n,m) ⊂ EN (N = mCn), G(p) = (e1 ∧ e2 ∧ · · · ∧ en)(p) of M is a smooth map

which carries a point p in M to an oriented n-plane in Em by the parallel translation of the

tangent space of M at p to an n-plane passing through the origin in Em, where G(n,m) is

the Grassmannian manifold consisting of all oriented n-planes through the origin of Em.

An inner product 〈〈·, ·〉〉 on G(n,m) ⊂ EN is defined by

〈〈ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn〉〉 = det(〈eil , ejk〉),

where l, k run over the range {1, 2, . . . , n}. Then, {ei1 ∧ ei2 ∧ · · · ∧ ein | 1 ≤ i1 < · · · < in

≤ m} is an orthonormal basis of EN .

An (r + 1)-dimensional submanifold M in Em is called a ruled submanifold if M is

foliated by r-dimensional totally geodesic submanifolds E(s, r) of Em along a regular
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curve α = α(s) on M defined on an open interval I. Thus, a parametrization of a ruled

submanifold M in Em can be given by

x = x(s, t1, t2, . . . , tr) = α(s) +

r∑
i=1

tiei(s), s ∈ I, ti ∈ Ii,

where Ii’s are some open intervals for i = 1, 2, . . . , r. For each s, E(s, r) is open in

Span {e1(s), e2(s), . . . , er(s)}, which is the linear span of linearly independent vector fields

e1(s), e2(s), . . . , er(s) along the curve α. We call E(s, r) the rulings and α the base curve of

the ruled submanifold M . In particular, the ruled submanifold M is said to be cylindrical

if E(s, r) is parallel along α, or non-cylindrical otherwise.

Definition 2.1. An (r + 1)-dimensional cylindrical ruled submanifold M is called a gen-

eralized circular cylinder Σa × Er−1 if the base curve α is a circle and the generators of

rulings are orthogonal to the plane containing the circle α, where Σa is a circular cylinder

S1(a)× R in E3.

For later use, we need

Lemma 2.2. [1] Given a curve α and orthonormal vector fields e1, e2, . . . , en along α

in a Riemannian manifold M with the Riemannian connection D, we can always choose

orthonormal vector fields f1, . . . , fn along α such that:

(i) The sets of vectors {fj(s) : 1 ≤ j ≤ n} and {ej(s) : 1 ≤ j ≤ n} generate the same

subspace of Tα(s)M .

(ii) The vector fields (D/ds)fi(s) are normal to the subspace of Tα(s)M spanned by

{fj(s) : 1 ≤ j ≤ n} for all i = 1, 2, . . . , n.

3. Pointwise 1-type Gauss map of the second kind

In this section, we consider a ruled submanifold M in Em with pointwise 1-type Gauss

map of the second kind. Let M be an (r+1)-dimensional ruled submanifold in Em. Then,

the base curve α can be chosen to be orthogonal to the rulings by taking an integral curve

of the field of normal directions to the rulings of M . Without loss of generality, we may

assume that α is a unit speed curve, that is, 〈α′(s), α′(s)〉 = 1. From now on, the prime ′
denotes d/ds unless otherwise stated. By Lemma 2.2, we may choose orthonormal vector

fields e1(s), . . . , er(s) along α satisfying

(3.1)
〈
α′(s), ei(s)

〉
= 0,

〈
e′i(s), ej(s)

〉
= 0, for s ∈ I and i, j = 1, 2, . . . , r.

A parametrization of M is then obtained as

(3.2) x = x(s, t1, t2, . . . , tr) = α(s) +

r∑
i=1

tiei(s), s ∈ I.
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In this paper, we always assume that the parametrization (3.2) satisfies the condi-

tion (3.1). Then, M has the Gauss map

G =
1

‖xs‖
xs ∧ xt1 ∧ · · · ∧ xtr ,

or, equivalently

(3.3) G =
1

q1/2

(
Φ +

r∑
i=1

tiΨi

)
,

where q is the function of s, t1, t2, . . . , tr defined by q = 〈xs, xs〉, Φ and Ψi (i = 1, 2, . . . , r)

are vector fields along α given by

Φ = α′ ∧ e1 ∧ · · · ∧ er and Ψi = e′i ∧ e1 ∧ · · · ∧ er.

Now, we separate the cases into two typical types of ruled submanifolds which are

cylindrical or non-cylindrical.

First of all, we consider the following lemma.

Lemma 3.1. Suppose that a unit speed curve α(s) in an m-dimensional Euclidean space

Em defined on an interval I satisfies

(3.4) α′′′(s) = f(s)(α′(s) + C),

where f is a function and C a constant vector in Em. Then, the curve α lies in a 3-

dimensional Euclidean space. In particular, if the constant vector C is zero, we see that

α is a plane curve.

Proof. We fix a point s0 ∈ I. Let us denote by V the linear span of {α′(s0), α′′(s0), C}.
Then V is of at most 3-dimensional space in Em.

For any vector a in the orthogonal complement V ⊥ of V , we consider the function

ha(s) defined by ha(s) = 〈a, α′(s)〉. Then, it follows from (3.4) that

(3.5) h′′a(s) = f(s)ha(s).

Hence, the function ha(s) is a solution of a second order linear differential equation with

initial condition ha(s0) = h′a(s0) = 0. This shows that the function ha(s) vanishes identi-

cally on the interval I. Thus, we have α′(s) ∈ V for all s ∈ I, which shows that the curve

α lies in a parallel displacement α(s0) + V of the space V . This completes the proof.

Let M be an (r + 1)-dimensional ruled submanifold in Em parameterized by (3.2)

satisfying Condition (3.1).
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Suppose that the cylindrical ruled submanifold M has pointwise 1-type of the second

kind. Equation ∆G = f(G+ C) implies

(3.6) − Φ′′ = f(Φ + C)

for some non-zero function f and some non-zero constant vector C. From equation (3.6),

we note that f is a function of s. We may assume that f is non-zero on some open interval

I1. Then, on the interval I1, differentiating equation (3.6) with respect to s gives

(3.7)
f ′

f2
Φ′′ − 1

f
Φ′′′ − Φ′ = 0,

or, equivalently
f ′

f2
α′′′ − 1

f
α(4) − α′′ = 0,

which means that − 1
fα
′′′ − α′ is a constant vector. Namely,

(3.8) ∆′α′ = −α′′′ = f(α′ +D)

for some constant vectorD on I1. On I−I1, (3.8) holds obviously. Again, using Lemma 3.1,

we see that the curve α lies in a 3-dimensional Euclidean space E3.

Making use of Theorem 3.3 of [9] and Lemma 3.1, we have

Theorem 3.2. An (r+ 1)-dimensional cylindrical ruled submanifold M in Em has point-

wise 1-type Gauss map of the second kind if and only if M is an open part of an (r+1)-plane

or a cylinder over a curve in E3 of infinite type.

We now consider the case of non-cylindrical ruled submanifold with pointwise 1-type

Gauss map of the second kind. Let M be an (r + 1)-dimensional non-cylindrical ruled

submanifold in Em parameterized by (3.2).

Suppose that M has pointwise 1-type Gauss map of the second kind, that is, the Gauss

map G of M satisfies the condition

∆G = f(G+ C)

for a non-zero function f and some non-zero constant vector C. In order to make the

matter simple, we introduce the following lemma.

Lemma 3.3. [14] Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold

of Em parametrized by (3.2) satisfying (3.1). Suppose some generators ej1 , ej2 , . . . , ejk
(1 ≤ k < r) of the rulings are constant vectors along α. Then, M has pointwise 1-type

Gauss map if and only if the ruled submanifold M1 has pointwise 1-type Gauss map,

where M1 is the non-cylindrical ruled submanifold over the base curve α with the rulings

generated by ej for j 6= j1, j2, . . . , jk.
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According to Lemma 3.3, we may assume that e′i 6= 0 for all i = 1, 2, . . . , r. Let us

define functions:

ui =
〈
α′, e′i

〉
, wij =

〈
e′i, e

′
j

〉
, φ =

〈〈
Φ,Φ′′

〉〉
and ϕi =

〈〈
Φ,Ψ′′

〉〉
on M for i, j = 1, 2, . . . , r. Note that ui 6= 0 for all i = 1, 2, . . . , r. Then, ∆G = f(G+ C)

can be written as(
∂q

∂s

)2
Φ +

r∑
j=1

Ψjtj

− 3

2
q
∂q

∂s

Φ′ +
r∑
j=1

Ψ′jtj

− 1

2
q
∂2q

∂s2

Φ +
r∑
j=1

Ψjtj


+ q2

Φ′′ +

r∑
j=1

Ψ′′j tj

+
1

2
q

r∑
i=1

(
∂q

∂ti

)2
Φ +

r∑
j=1

Ψjtj

− 1

2
q2

r∑
i=1

∂q

∂ti
Ψi

− 1

2
q2

r∑
i=1

∂2q

∂t2i

Φ +

r∑
j=1

Ψjtj

+ f

q3
Φ +

r∑
j=1

Ψjtj

+ q
7
2C


= 0.

(3.9)

By putting

P (t) =

(
∂q

∂s

)2
1 +

r∑
j=1

ujtj

− 3

2
q
∂q

∂s

r∑
j=1

xjtj −
1

2
q
∂2q

∂s2

1 +
r∑
j=1

ujtj


+ q2

φ+
r∑
j=1

ϕjtj

+
1

2
q

r∑
i=1

(
∂q

∂ti

)2
1 +

r∑
j=1

ujtj

− 1

2
q2

r∑
i=1

∂q

∂ti
ui

− 1

2
q2

r∑
i=1

∂2q

∂t2i

1 +

r∑
j=1

ujtj

 ,

(3.10)

we may put

(3.11) f = − P (t)

q3
(

1 +
∑r

j=1 ujtj

)
+ q

7
2γ(s)

,

where γ(s) = 〈〈C,Φ(s)〉〉. Substituting equation (3.11) into (3.9), we get

(3.12)

1 +

r∑
j=1

ujtj

−3

2
q
∂q

∂s

Φ′ +

r∑
j=1

Ψ′
jtj

+ q2

Φ′′ +

r∑
j=1

Ψ′′
j tj

− 1

2
q2

r∑
i=1

∂q

∂ti
Ψi


−

Φ +

r∑
j=1

Ψjtj

−3

2
q
∂q

∂s

r∑
j=1

xjtj + q2

φ+

r∑
j=1

ϕjtj

− 1

2
q2

r∑
i=1

∂q

∂ti
ui


= −q 1

2 γ(s)


(
∂q

∂s

)2
Φ +

r∑
j=1

Ψjtj

− 3

2
q
∂q

∂s

Φ′ +

r∑
j=1

Ψ′
jtj


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− 1

2
q
∂2q

∂s2

Φ +

r∑
j=1

Ψjtj

+ q2

Φ′′ +

r∑
j=1

Ψ′′
j tj

+
1

2
q

r∑
i=1

(
∂q

∂ti

)2
Φ +

r∑
j=1

Ψjtj


− 1

2
q2

r∑
i=1

∂q

∂ti
Ψi −

1

2
q2

r∑
i=1

∂2q

∂t2i

Φ +

r∑
j=1

Ψjtj

+ q
1
2CP (t).

Regarding equation (3.12), we have two possible cases whether q
1
2 is a polynomial or not.

Suppose that q
1
2 is not a polynomial in t. We will show that it is impossible. In this

case, the polynomial in the left side must vanish and we can rewrite it as follows:

− 3

2
q
∂q

∂s

Φ′ +

r∑
j=1

tjΨ
′
j

(1 +

r∑
k=1

uktk

)
+

3

2
q
∂q

∂s

Φ +

r∑
j=1

tjΨj

 r∑
k=1

xktk

+ q2

Φ′′ +
r∑
j=1

tjΨ
′′
j

(1 +
r∑

k=1

uktk

)
− q2

Φ +
r∑
j=1

tjΨj

(φ+
r∑

k=1

ϕktk

)

− 1

2
q2

r∑
i=1

(
∂q

∂ti

)
Ψi

(
1 +

r∑
k=1

uktk

)
+

1

2
q2

r∑
i=1

(
∂q

∂ti

)
ui

Φ +
r∑
j=1

tjΨj


= 0.

(3.13)

We put (3.13) in the following form

(3.14) − 3

2

(
∂q

∂s

)
R(t) = qQ(t),

where

(3.15) R(t) =

Φ′ +
r∑
j=1

tjΨ
′
j

(1 +
r∑

k=1

uktk

)
−

Φ +
r∑
j=1

tjΨj

 r∑
k=1

xktk

and

Q(t) = −

Φ′′ +
r∑
j=1

tjΨ
′′
j

(1 +
r∑

k=1

uktk

)
+

Φ +
r∑
j=1

tjΨj

(φ+
r∑

k=1

ϕktk

)

+
1

2

r∑
i=1

(
∂q

∂ti

)
Ψi

(
1 +

r∑
k=1

uktk

)
− 1

2

r∑
i=1

(
∂q

∂ti

)
ui

Φ +

r∑
j=1

tjΨj

 .

It yields

R(t) = B(s)q(t)

for some vector field B(s) along α since the degree of the polynomial of (3.15) is 2 and

deg q = 2. We can show that ui and wij are constant along α for all i, j = 1, 2, . . . , r. It

means ∂q
∂s = 0. Thus, we have

(3.16)
∂q

∂s
= 0.
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For the details, see [14]. Then, the right side of equation (3.12) implies

1

2

r∑
i=1

(
∂q

∂ti

)2
−γ(s)

Φ +
r∑
j=1

Ψjtj

+ C

1 +
r∑
j=1

ujtj


= q

γ(s)

Φ′′ +
r∑
j=1

Ψ′′j tj −
1

2

r∑
i=1

∂q

∂ti
Ψi −

1

2

r∑
i=1

∂2q

∂t2i

Φ +
r∑
j=1

Ψjtj


− C

φ+

r∑
j=1

ϕjtj −
1

2

r∑
i=1

∂q

∂ti
ui −

1

2

r∑
i=1

∂2q

∂t2i

1 +

r∑
j=1

ujtj

 .

(3.17)

By (3.17), we have

(3.18)
r∑
i=1

(
∂q

∂ti

)2

= aq(t)

for a constant a because of (3.16).

We now put

(3.19)

(
∂q

∂tj

)2

= ajq(t) + rj(t)

for some non-zero constants aj and polynomials rj(t) =
∑r

k=1 cjktk + bj in t for j =

1, 2, . . . , r. According to (3.18), we must have

(3.20)
r∑
j=1

rj(t) = 0.

On the other hand, (3.19) with wjj 6= 0 gives

(3.21) 4wjj = aj .

(3.21) implies

rj(t) =

r∑
k=1

cjktk + bj =

r∑
k=1

8(ujwjk − wjjuk)tk + 4(u2j − wjj)

for j = 1, 2, . . . , r. By the definitions of ui and wii, we can see that bj = 4(u2j − wjj) are

non-positive constants of the form

bj = −4
m−1∑
a=r+1

〈
e′j , ea

〉2
for j = 1, 2, . . . , r. By (3.20), we see that

∑r
j=1 bj = 0 and hence we have e′j = ujα

′,

that is, wjk = ujuk for j = 1, 2, . . . , r and for k = 1, 2, . . . , r. Using this, we can see that
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rj(t) = 0, which means that
(
∂q
∂tj

)2
are the multiples of q(t) for j = 1, 2, . . . , r. Thus we

see that (
∂q

∂ti

)2

= 4u2i q(t)

for i = 1, 2, . . . , r.

Comparing the both sides of the above equation, we have

wij = uiuj

for i, j = 1, 2, . . . , r, which yields

q =

1 +

r∑
j=1

ujtj

2

,

which contradicts that q1/2 is not a polynomial in t. Thus, we have

(3.22) q =

1 +
r∑
j=1

ujtj

2

.

Together with (3.22) and the definitions of ui and wii, we see that

(3.23) e′i = uiα
′

for i = 1, 2, . . . , r. Hence, we have

G = Φ,

from which,

(3.24) φ(s) =
〈〈

Φ(s),Φ′′(s)
〉〉

= −
〈〈

Φ′(s),Φ′(s)
〉〉
.

Therefore, ∆G = f(G+ C) yields

(3.25)
1

2q2
∂q

∂s
Φ′ − 1

q
Φ′′ = f(Φ + C).

Taking the inner product to (3.25) with Φ, we obtain

(3.26) − 1

q
φ(s) = f(1 + γ(s)).

On the other hand, the function φ(s) is reduced to

(3.27) φ(s) = −
m−1∑
a=r+1

u2a(s),
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where ua(s) = 〈α′(s), e′a(s)〉 and er+1, er+2, . . . , em−1 are unit normal vector fields to M

along α. Note that φ(s) = 0 iff Φ′(s) = 0.

Suppose φ(s) ≡ 0 on I. Then, Φ′(s) ≡ 0. This means the Gauss map G is a constant

vector field. Hence, M is an open part of an (r + 1)-plane Er+1.

We now suppose that the open subset J = {s ∈ I | φ(s) 6= 0} is not empty. We may

put

(3.28) f = − φ(s)

q(1 + γ(s))
.

Putting q =
(

1 +
∑r

j=1 ujtj

)2
and substituting (3.28) into (3.25), we have

(3.29)

 r∑
j=1

u′jtj

Φ′ −

1 +
r∑
j=1

ujtj

Φ′′ = − φ

1 + γ

1 +
r∑
j=1

ujtj

 (Φ + C).

Considering the constant terms with respect to t and coefficients of terms containing tj in

(3.29), we get

(3.30) Φ′′ =
φ

1 + γ
(Φ + C) and u′jΦ

′ = 0

for all j = 1, 2, . . . , r.

Since Φ′(s) 6= 0, u′j(s) = 0 for all j = 1, 2, . . . , r and s ∈ J . Thus, uj and wij are

constant on J for all i, j = 1, 2, . . . , r. Hence, we have

Lemma 3.4. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold param-

eterized by (3.2) in Em. If M has pointwise 1-type Gauss map of the second kind, then

the functions

ui(s) =
〈
α′(s), e′i(s)

〉
and wij(s) =

〈
e′i(s), e

′
j(s)

〉
are constant functions on the open interval J = {s ∈ I | φ(s) 6= 0} for all i, j = 1, 2, . . . , r.

The following lemma tells us how to choose some suitable normal vector fields along

the base curve α for non-cylindrical ruled submanifold of Em with pointwise 1-type Gauss

map of the second kind.

Lemma 3.5. Let M be an (r+1)-dimensional non-cylindrical ruled submanifold parametr-

ized by (3.2) satisfying (3.1) in Em. If M has pointwise 1-type Gauss map of the second

kind, we can choose orthonormal frame {ea}m−1a=r+1 of the normal space Tα(s)N of M along

α(s) satisfying

(3.31) e′a(s) ∧ α′(s) = 0

for all a = r + 1, . . . ,m− 1.
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Proof. Let {ea}m−1a=r+1 denote an orthonormal frame of the normal space Tα(s)N of M along

α. If we apply Lemma 2.2 to the normal space Tα(s)N , then there exists an orthonormal

frame {ea}m−1a=r+1 of the normal space Tα(s)N satisfying

(3.32)
〈
e′a(s), eb(s)

〉
= 0

for all a, b = r + 1, . . . ,m− 1.

It follows from (3.23) that for all i = 1, . . . , r and a = r + 1, . . . ,m− 1,

(3.33)
〈
e′a(s), ei(s)

〉
= −

〈
e′i(s), ea(s)

〉
= 0.

Together with (3.32), (3.33) completes the proof.

We now give the following definition of a generalized right cone.

Definition 3.6. Suppose β = β(s) is a circle on the unit sphere centered at the origin.

Let a2,a3, . . . ,ar be orthonormal constant vectors satisfying 〈β′(s),ai〉 = 〈β(s),ai〉 = 0

for all i = 2, 3, . . . , r and s. A ruled submanifold M parametrized by

(3.34) x(s, t1, t2, . . . , tr) = t1β(s) +
r∑
i=2

tiai +D

is called a generalized right cone Ca × Er−1, where Ca is a right cone in E3, D a constant

vector and ti ∈ Ii for some open intervals Ii and i = 2, 3, . . . , r.

Remark 3.7. If β = β(s) is a great circle on the unit sphere in Definition 3.6, a generalized

right cone is an (r + 1)-plane Er+1.

Theorem 3.8. Let M be an (r+1)-dimensional non-cylindrical ruled submanifold in Em.

Then, M has pointwise 1-type Gauss map of the second kind if and only if M is an open

portion of a generalized right cone.

Proof. Let M be an (r+ 1)-dimensional non-cylindrical ruled submanifold with pointwise

1-type Gauss map of the second kind.

Suppose φ ≡ 0 on the whole domain I of α. In this case, we see that M is part of an

(r + 1)-plane Er+1. It is a special case of a generalized right cone.

Now, we suppose that M is not part of (r + 1)-plane, that is, J = {s ∈ I | φ(s) 6= 0}
is non-empty. Note that

(3.35)
〈〈

Φ′,Φ′′
〉〉

= −φ
′

2
,
〈〈

Φ′,Φ
〉〉

= 0 and φ = −
m−1∑
a=r+1

u2a.

Then, the first equation in (3.30) implies

−φ
′

2
=

φ

1 + γ

〈〈
Φ′, C

〉〉
=

φ

1 + γ
γ′,
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or,

(3.36) − 1

2

φ′

φ
=

(1 + γ)′

(1 + γ)

on J . Equation (3.36) yields
1√
|φ|

= λ̃ |1 + γ|

for some positive constant λ̃. Therefore, we get

Φ′′ = λ

√
|φ|3(Φ + C)

for some non-zero constant λ.

On the other hand, according to Lemma 3.5, we have

(3.37) α′′ = −
r∑
i=1

uiei −
m−1∑
a=r+1

uaea and e′a = uaα
′

for all a = r + 1, . . . ,m− 1. Since 1

λ
√
|φ|3

Φ′′ − Φ is a constant vector, we have

0 =

m−1∑
a=r+1


 µ

λ
√
|φ|3

+ 1

ua −

 u′a

λ
√
|φ|3

′ ea ∧ e1 ∧ · · · ∧ er

+
r∑

k=1

m−1∑
a=r+1

uk


 2

λ
√
|φ|3

u′a +

 1

λ
√
|φ|3

′ ua


× α′ ∧ e1 ∧ · · · ∧ ek−1 ∧ ea ∧ ek+1 ∧ · · · ∧ er.

(3.38)

Considering the orthogonality of the vectors in (3.38), we get

(3.39)

 2

λ
√
|φ|3

u′a +

 1

λ
√
|φ|3

′ ua = 0

for all a = r + 1, . . . ,m− 1.

Since φ 6= 0 on J , there exists ub 6= 0 for some b = r + 1, . . . ,m − 1. Then, equa-

tion (3.39) implies
3

4

|φ|′

|φ|
=
u′b
ub
.

So we see that

|φ|
3
4 = εbub or, u2b =

1

ε2b
|φ|

3
2

for some non-zero real number εb. Together with (3.35), we can see

φ = c |φ|
3
2



240 Dong-Soo Kim, Young Ho Kim, Sun Mi Jung and Dae Won Yoon

for some negative constant c, which means that the function φ is constant and hence the

function ub is also constant. By continuity, the interval J is the whole domain I of α.

It follows from (3.39) that ua are constant for all a = r + 1, . . . ,m − 1. Thus, (3.37)

implies

α′′′ = −µα′

for the constant µ =
∑
u2i +

∑
u2a. According to Lemma 3.1, α is a space curve in E3. By

considering the Frenet formula for α, we see that the base curve α is a plane curve with

non-zero constant curvature and thus it is part of a circle.

Since e′i(s) 6= 0 for all i = 1, 2, . . . , r as indicated in Section 3, we have

(3.40) α(s) =
1

u1
(e1(s)− a1) and ei(s) =

ui
u1
e1(s) + bi

for some constant vectors a1 and bi for i = 2, 3, . . . , r such that e1(s), b2, b3, . . . , br are

linearly independent for each s. By applying the Gram-Schmidt’s method for orthogonal-

ization, we have orthonormal constant vectors a2, . . . ,ar from b2, b3, . . . , br. In this case,

〈e1(s), bi〉 are constant and thus 〈e1(s),ai〉 are constant for all i = 2, . . . , r.

We put vi = 〈e1,ai〉 for all i = 2, . . . , r. Define β1(s) = e1(s) −
∑r

i=2 viai. Then

the length ‖β1(s)‖ =
√

1−
∑r

i=2 v
2
i of the vector field β1 is a non-zero constant since

e1,a2, . . . ,ar are linearly independent. Take β(s) = β1(s)
‖β1(s)‖ . After appropriate change of

parameters t1, t2, . . . , tr, the parametrization (3.2) for M can be reduced to

(3.41) x(s, t1, t2, . . . , tr) = t1β(s) +

r∑
i=2

tiai +D

for some constant vector D.

Since α is a circle, the first equation of (3.40) indicates that the trace of position

vectors of β(s) is a circle on the unit sphere. Thus, the parametrization given by (3.41)

representing the ruled submanifold M is an open part of a generalized right cone.

Conversely, suppose that M is an open part of a generalized right cone Ca × Er−1

parametrized by (3.34). In Introduction, we see that Ca has pointwise 1-type Gauss map

of the second kind. According to Lemma 3.3, we see that M has pointwise 1-type Gauss

map of the second kind.

From above theorem, we immediately have

Corollary 3.9. [7] Let M be a non-cylindrical ruled surface in E3. Then, M has pointwise

1-type Gauss map of the second kind if and only if M is an open portion of a right cone

Ca.

Combining Theorem 3.7 of [14], Theorem 3.2 and Theorem 3.8, we have
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Theorem 3.10 (Classification). An (r+1)-dimensional ruled submanifold M of Euclidean

space Em with pointwise 1-type Gauss map is an open part of one of an (r + 1)-plane, a

generalized circular cylinder Σa × Er−1, a cylinder over a curve in E3 of infinite type, a

generalized helicoid or a generalized right cone Ca × Er−1.
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