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An Approach to the Log-Euclidean Mean via the Karcher Mean on

Symmetric Cones

Sejong Kim, Un Cig Ji and Sangho Kum*

Abstract. In a general symmetric cone, we show that certain sequence of the Karcher

means converges to the Log-Euclidean mean by using the fact that the Karcher mean

is the limit of inductive means. One can see this as a generalization of the Lie-Trotter

formula of positive definite matrices into a symmetric cone setting via the least squares

mean.

1. Introduction

The geometric mean of positive real numbers is a type of mean or average, which indi-

cates the central tendency of a set of positive real numbers by using the product of their

values. Although positive real numbers can be naturally generalized to positive definite

matrices having positive eigenvalues, it was not obvious to define the geometric mean of

positive definite matrices due to the non-commutativity of matrices. M. Moakher [18] and

R. Bhatia and J. Holbrook [5] observed independently that the geometric mean of two

positive definite matrices A and B can be defined by (1.1) as the midpoint of the unique

Riemannian geodesic curve connecting from A to B:

(1.1) t 7→ A#tB := A1/2(A−1/2BA−1/2)tA1/2.

The Riemannian distance between A and B is given by δ(A,B) =
∥∥logA−1/2BA−1/2

∥∥
2
. As

a suitable extension of the geometric mean of two positive definite matrices to n-variables,

the least squares mean (or the Karcher mean) Λ(A1, . . . , An) of positive definite matrices

A1, . . . , An is proposed. It is defined to be the unique minimizer of the sum of squares of

the Riemannian distances to each of the Ai, i.e.,

Λ(A1, . . . , An) = arg min
X∈P

n∑
i=1

δ2(X,Ai).
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Here P denotes the open convex cone of positive definite matrices with fixed dimension.

Since its appearance, the least squares mean of positive definite matrices for the Rieman-

nian distance has played a significant role in many applied areas. Also, there have been

studied a variety of constructions for the weighted geometric means of n positive definite

matrices (see [2, 6, 9, 10]). Among them is the Log-Euclidean mean given by

(1.2) exp

(
n∑
i=1

wi logAi

)

where ω = (w1, . . . , wn) is a positive probability vector. It may not satisfy all of the

Ando-Li-Mathias properties, but we can see in [3] that it has been used in the field of

diffusion tensor magnetic resonance imaging (DT - MRI).

In this article, we find a new theoretical connection between the Karcher mean and

the Log-Euclidean mean. In fact, it will be shown in Theorem 4.1 that a certain sequence

of the Karcher means converges to the Log-Euclidean mean. This result can be regarded

as a generalization of the Lie-Trotter formula related with the least squares mean. We do

the task in the general framework of symmetric cones which contain the convex cone of

positive definite matrices as a special case. In addition, we raise a corresponding question

concerning positive definite operators in Remark 4.4. So the main result may have its own

theoretical interest concerned with matrix mean theory.

2. Euclidean Jordan algebras and symmetric cones

In this section, we briefly describe (following mostly [7]) some Jordan-algebraic concepts

pertinent to our purpose. A Jordan algebra V over R is a commutative algebra satisfying

x2(xy) = x(x2y) for all x, y ∈ V . For x ∈ V , let L(x) be the linear operator defined

by L(x)y = xy, and let P (x) = 2L(x)2 − L(x2). The map P is called the quadratic

representation of V . An element x ∈ V is said to be invertible if there exists an element y

(denoted by y = x−1) in the subalgebra generated by x and e (the Jordan identity) such

that xy = e. The following appears at Propositions II.3.1 and II.3.3 of [7].

Proposition 2.1. Let V be a Jordan algebra with an identity element e.

(i) An element x in V is invertible if and only if P (x) is invertible. In this case:

P (x)−1 = P (x−1).

(ii) If x and y are invertible, then P (x)y is invertible and (P (x)y)−1 = P (x−1)y−1.

(iii) For any elements x and y, P (P (x)y) = P (x)P (y)P (x). In particular, P (xm) =

P (x)m for m ∈ N.
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(iv) If V is finite-dimensional, then P (expx) = exp 2L(x) for any x ∈ V , where

expx =
∞∑
k=0

xk

k!
.

A finite-dimensional Jordan algebra V with an identity element e is said to be Euclidean

if there exists an inner product 〈·, ·〉 such that 〈xy, z〉 = 〈y, xz〉 for all x, y, z ∈ V . An

element c ∈ V is called an idempotent if c2 = c 6= 0. We say that c1, . . . , ck is a complete

system of orthogonal idempotents if c2i = ci, cicj = 0, i 6= j, c1 + · · · + ck = e. An

idempotent is primitive if it is non-zero and cannot be written as the sum of two non-zero

idempotents. A Jordan frame is a complete system of orthogonal primitive idempotents.

Theorem 2.2 (Spectral theorem, first version). [7, Theorem III.1.1] Let V be a Euclidean

Jordan algebra. Given x ∈ V , there exist real numbers λ1, . . . , λk all distinct and a unique

complete system of orthogonal idempotents c1, . . . , ck such that

(2.1) x =

k∑
i=1

λici.

The numbers λi are called the eigenvalues and (2.1) is called the spectral decomposition of

x.

Theorem 2.3 (Spectral theorem, second version). [7, Theorem III.1.2] Any two Jordan

frames in a Euclidean Jordan algebra V have the same number of elements (called the rank

of V , denoted by rank(V )). Given x ∈ V , there exists a Jordan frame c1, . . . , cr and real

numbers λ1, . . . , λr such that x =
∑r

i=1 λici. The numbers λi (with their multiplicities)

are uniquely determined by x.

Definition 2.4. Let V be a Euclidean Jordan algebra of rank(V ) = r. The spectral map-

ping λ : V → Rr is defined by λ(x) = (λ1(x), . . . , λr(x)), where λi(x)’s are eigenvalues of x

(with multiplicities) as in Theorem 2.3 in non-increasing order λmax(x) = λ1(x) ≥ λ2(x) ≥
· · · ≥ λr(x) = λmin(x). Furthermore, det(x) =

∏r
i=1 λi(x) and tr(x) =

∑r
i=1 λi(x).

Let Q be the set of all square elements of V . Then Q is a closed convex cone of V with

Q ∩ −Q = {0}, and is the set of element x ∈ V such that L(x) is positive semi-definite.

It turns out that Q has non-empty interior Ω, and Ω is a symmetric cone, that is, the

group G(Ω) = {g ∈ GL(V ) | g(Ω) = Ω} acts transitively on it and Ω is a self-dual cone

with respect to the inner product 〈·, ·〉 (see [7]). Furthermore, for any a in Ω, P (a) ∈ G(Ω)

and is positive definite. Note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}. For x, y ∈ V , we

define

x ≤ y if y − x ∈ Ω
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and x < y if y − x ∈ Ω. Clearly Ω = {x ∈ V | x ≥ 0} and Ω = {x ∈ V | x > 0} =

{x ∈ V | λmin(x) > 0}.
On the other hand, the symmetric cone Ω in a Euclidean Jordan algebra V has an

important geometric feature. That is, it admits a G(Ω)-invariant Riemannian metric

defined by

(2.2) 〈u, v〉x =
〈
P (x)−1u, v

〉
, x ∈ Ω, u, v ∈ V.

For this, refer to [7]. So Ω is a symmetric Riemannian space of non-compact type with

respect to its distance metric. In this case, it is shown in [13, Proposition 2.6] that

the unique geodesic curve joining a and b is t 7→ a#tb := P (a1/2)(P (a−1/2)b)t and the

Riemannian distance δ(a, b) is given by

δ(a, b) =

(
r∑
i=1

log2 λi(P (a−1/2)b)

)1/2

.

Basically the trace is an inner product on V , and the Jordan algebra V endowed with

the trace inner product 〈x, y〉 = tr(xy) is still Euclidean [7]. Hence, throughout this paper,

we assume that V is a Euclidean Jordan algebra of rank r equipped with the trace inner

product. Also V is always assumed to be simple.

For square matrices (or bounded operators) X and Y on a Hilbert space the Lie-Trotter

formula is given by

(2.3) exp(X + Y ) = lim
m→∞

[
exp

(
X

m

)
exp

(
Y

m

)m]
.

It has been fundamental in the Lie theory and is of great interest in many research areas

including quantum relative entropy. In [1, Theorem 2.7], the Lie-Trotter formula for n

positive definite matrices has been derived in terms of weighted geometric means called

the Sagae-Tanabe means. For the purpose to establish the main result, we extend this

result into a general symmetric cone setting according to the argument in [14].

Theorem 2.5. Let a1, . . . , an be elements in Ω and let (w1, . . . , wn) be a positive probability

vector. Then

exp

(
n∑
i=1

wi log ai

)
= lim

m→∞

[
a1/mn #αn−1 · · ·#α2

(
a
1/m
2 #α1a

1/m
1

)]m
,

where

αk = 1− wk+1

(
k+1∑
i=1

wi

)−1
=

(
k∑
i=1

wi

)(
k+1∑
i=1

wi

)−1
for all k = 1, . . . , n− 1.



An Approach to the Log-Euclidean Mean via the Karcher Mean 195

Proof. By Proposition 2.1(iii), (iv) and [1, Theorem 2.7], we get

P

(
exp

(
n∑
i=1

wi log ai

))
= exp 2L

(
n∑
i=1

wi log ai

)

= exp

(
n∑
i=1

wiL(2 log ai)

)

= lim
m→∞

[
exp

1

m
L(2 log an)#αn−1 · · ·#α1 exp

1

m
L(2 log a1)

]m
= lim

m→∞

[
P

(
exp

log an
m

)
#αn−1 · · ·#α1P

(
exp

log a1
m

)]m
= lim

m→∞

[
P

(
exp

log an
m

#αn−1 · · ·#α1 exp
log a1
m

)]m
= lim

m→∞
P

([
exp

log an
m

#αn−1 · · ·#α1 exp
log a1
m

]m)
where the fifth equality comes from the formula P (a#αb) = P (a)#αP (b) for any a, b ∈ Ω

in [14]. Hence[
exp

(
n∑
i=1

wi log ai

)]2
= P

(
exp

(
n∑
i=1

wi log ai

))
e

= lim
m→∞

P

([
exp

log an
m

#αn−1 · · ·#α1 exp
log a1
m

]m)
e

= lim
m→∞

[
exp

log an
m

#αn−1 · · ·#α1 exp
log a1
m

]2m
.

Therefore we obtain that

exp

(
n∑
i=1

wi log ai

)
= lim

m→∞

[
exp

log an
m

#αn−1 · · ·#α1 exp
log a1
m

]m
= lim

m→∞

[
a1/mn #αn−1 · · ·#α1a

1/m
1

]m
.

This completes the proof.

3. Hadamard space and least squares mean

A complete metric space (X, d) is called a Hadamard space if it satisfies the semiparallel-

ogram law: for any x, y ∈ X there exists m ∈ X

(3.1) d2(m, z) +
1

4
d2(x, y) ≤ 1

2

[
d2(x, z) + d2(y, z)

]
for any z ∈ X. The point m appeared in the equation (3.1) is the unique metric midpoint

between x and y, and it gives rise to a unique minimal geodesic γ : [0, 1] → X joining
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γ(0) = x and γ(1) = y. One can see that for any s, t ∈ [0, 1],

d(γ(s), γ(t)) = |s− t| d(x, y).

The unique geodesic γ connecting x and y is denoted by γ(t) = x#ty for t ∈ [0, 1]. We

call x#ty the t-weighted geometric mean of x and y.

Definition 3.1. Let (X, d) be a Hadamard space. The least squares mean Λd(ω;a) of the

n-tuple a = (a1, a2, . . . , an) ∈ Xn and a positive probability vector ω = (w1, w2, . . . , wn)

is defined by the minimizer of the function
∑n

i=1wid
2(x, ai). In other words,

(3.2) Λd(ω;a) = arg min
x∈X

n∑
i=1

wid
2(x, ai).

On Hadamard spaces the least squares mean of any n-tuple of points always exists and

is unique. Moreover, it is well-known (cf. [19]) that Λd is contractive for d, that is,

(3.3) d(Λd(ω;a),Λd(ω; b)) ≤
n∑
i=1

wid(ai, bi)

for all a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Xn and a positive probability vector ω =

(w1, . . . , wn). We see two typical examples of Hadamard spaces and the least squares

means.

Example 3.2. Let us consider a metric d on P defined by

d(A,B) = ‖logA− logB‖2

for any A,B ∈ P. Then (P, d) is a Hadamard space, since the exponential map exp from

the space (H, ‖·‖2) of all Hermitian matrices to (P, d) is an isometry. One can easily see

that the least squares mean Λd(ω;A) of the n-tuple A = (A1, A2, . . . , An) ∈ Pn is the

Log-Euclidean mean, that is,

Λd(ω;A) = exp

(
n∑
i=1

wi logAi

)
.

Example 3.3. The aforementioned metric space (Ω, δ) consisting of a symmetric cone Ω

equipped with the Riemannian distance δ is a Hadamard space which contains (P, δ) as

a particular case [5]. Recently, many scholars have been studying the method to find the

Karcher mean of positive definite matrices with its properties, see [8, 11,16,17].

Now we introduce a recent result by Y. Lim and M. Pálfia [17] which is concerned

with so called ‘no dice theorem’. Motivated by the beginning work of J. Holbrook [8]

in (P, δ), they have constructed a sequence of weighted inductive means and have shown
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that it converges to the weighted Karcher mean [17] in a general Hadamard space. To

be more specific, let (X, δ) be a Hadamard space. For a positive probability vector ω =

(w1, w2, . . . , wn), we denote

ω := (w1, . . . , wn, w1, . . . , wn, . . .),

and s(N) :=
∑N

i=1 ωi for each N ∈ N, where ωi is the ith component of the infinite-

dimensional vector ω. For an n-tuple a = (a1, a2, . . . , an) ∈ Xn,

∆a := max {δ(ai, aj) : 1 ≤ i, j ≤ n} ,

which is called a diameter of a.

Definition 3.4. Let a = (a1, a2, . . . , an) ∈ Xn and ω = (w1, w2, . . . , wn) a positive

probability vector. Then the sequence of weighted inductive means is defined by

(3.4) S1(ω;a) = a1, SN (ω;a) = ak# s(N−1)
s(N)

SN−1(ω;a)

for natural numbers N ≥ 2, where k ∈ {1, . . . , n} is chosen so that k ≡ N (mod n).

Theorem 3.5. [17, Theorem 3.4] Let a = (a1, a2, . . . , an) ∈ Xn and ω = (w1, w2, . . . , wn)

a positive probability vector. Then

(3.5) δ2(Λδ(ω;a), SN (ω;a)) ≤ 1

s(N)

[
3(∆a)2 +

n∑
i=1

wiδ
2(Λδ(ω;a), ai)

]
for all N ∈ N. That is,

lim
N→∞

SN (ω;a) = Λδ(ω;a).

4. Main results

From now on, we restrict our attention to the Hadamard space (Ω, δ) where Ω is the

symmetric cone in a simple Euclidean Jordan algebra (V, ‖·‖). Here ‖·‖ denotes the

norm induced by the trace inner product on V . Let a = (a1, a2, . . . , an) ∈ Ωn and let

ω = (w1, w2, . . . , wn) be a positive probability vector. We consider a double sequence

{Sm,N (a)}

(4.1) Sm,1(ω;a) = a1, Sm,N (ω;a) =

[
a
1/m
k # s(N−1)

s(N)

S
1/m
m,N−1(ω;a)

]m
for natural numbers N ≥ 2, where k ∈ {1, . . . , n} is chosen so that k ≡ N (mod n). The

main result is that the sequence of Karcher means converges to the Log-Euclidean mean,

which can be seen as the generalization of Lie-Trotter formula with the least squares means

in a symmetric cone.
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Theorem 4.1. Let a = (a1, a2, . . . , an) ∈ Ωn and ω = (w1, w2, . . . , wn) a positive proba-

bility vector. Then

lim
m→∞

Λδ(ω;a1/m)m = exp

(
n∑
i=1

wi log ai

)
,

where a1/m = (a
1/m
1 , a

1/m
2 , . . . , a

1/m
n ) for any m ∈ N.

Since the exponential map is a diffeomorphism from V onto Ω, we obtain the following.

Corollary 4.2. Let x = (x1, x2, . . . , xn) ∈ V n and ω = (w1, w2, . . . , wn) a positive proba-

bility vector. Then

lim
m→∞

Λδ(ω; ex/m)m = exp

(
n∑
i=1

wixi

)
,

where ex = (ex1 , ex2 , . . . , exn) ∈ Ωn.

One may be able to show the following by direct computation of the Log-Euclidean

mean, but it is also possible to prove using the main result. On the other hand, the

properties related with monotonicity are not satisfied because, in general, am � bm for

m ≥ 2 even if a ≤ b.

Corollary 4.3. Let a = (a1, a2, . . . , an) ∈ Ωn and ω = (w1, w2, . . . , wn) a positive prob-

ability vector. Then the Log-Euclidean mean G(ω;a) = exp (
∑n

i=1wi log ai) satisfies the

following.

(L1) G(ω;a) =
∏n
i=1 a

wi
i if ai’s operator commute.

(L2) G(ω;α1a1, . . . , αnan) = [
∏n
i=1 α

wi
i ]G(ω;a) for all αi > 0.

(L3) G(ωσ;aσ) = G(ω;a), where ωσ = (wσ(1), . . . , wσ(n)).

(L4) δ(G(ω;a), G(ω; b)) ≤
∑n

i=1wiδ(ai, bi).

(L5) G(ω;a−1)−1 = G(ω;a).

(L6) detG(ω;a) =
∏n
i=1(det ai)

wi.

Remark 4.4. The main result Theorem 4.1 shows a remarkable relation between the least

squares mean and the Log-Euclidean mean in a symmetric cone. On the other hand,

J. Lawson and Y. Lim [12] have defined the Karcher mean Λ for positive definite operators

A1, . . . , An as the limit of the monotonically decreasing family of power means. From this

idea, it would be interesting to establish the same relation for positive definite operators

A1, . . . , An, that is,

(4.2) lim
m→∞

Λ(ω;A
1/m
1 , . . . , A1/m

n )m = exp

(
n∑
i=1

wi logAi

)
.
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5. Proof of Theorem 4.1

In order to prove Theorem 4.1, we need the following two lemmas. The first one is a

generalization of the well-known exponential metric increasing property (EMI) due to

Bhatia [4] into a symmetric cone case. Actually, this fact is pointed out by Lim [15].

Lemma 5.1 (Exponential Metric Increasing Property). For all x, y ∈ V , we have

‖x− y‖ ≤ δ(expx, exp y).

Lemma 5.2. Let (X, d) be a complete metric space. Let {am,n}∞m,n=1 be a double sequence

in X. Suppose that

lim
n→∞

sup
m
d(am,n, am) = 0,

where am = limn→∞ am,n for each m ∈ N, and limm→∞ am,n = bn for each n ∈ N. Then

{bn} converges, and

lim
n→∞

bn = lim
n→∞

lim
m→∞

am,n = lim
m→∞

lim
n→∞

am,n = lim
m→∞

am.

Proof. Let ε > 0 be given. Since limn→∞ am,n exists for each m ∈ N, {am,n} is a Cauchy

sequence in (X, d) for each m ∈ N. There exists an N ∈ N such that for any n ≥ N and

l ≥ N , and any m ∈ N,

d(am,n, am,l) <
ε

3
.

So we have

d(bn, bl) ≤ d(bn, am,n) + d(am,n, am,l) + d(am,l, bl)

<
ε

3
+ d(bn, am,n) + d(am,l, bl).

Taking m → ∞ implies that d(bn, bl) ≤ ε, and so {bn} is a Cauchy sequence in X. Since

(X, d) is a complete metric space, {bn} converges to an element b ∈ X. On the other hand,

for any m,n ∈ N we have

d(am, b) ≤ d(am, am,n) + d(am,n, bn) + d(bn, b).

Then by the uniform convergence, we first choose an n ∈ N such that for any m ∈ N

d(am,n, am) <
ε

3
and d(bn, b) <

ε

3
.

For chosen n, since limm→∞ am,n = bn, there exists an N ∈ N such that for any m ≥ N

d(am,n, bn) <
ε

3
,

which implies that for any m ≥ N , d(am, b) < ε. Therefore,

lim
m→∞

lim
n→∞

am,n = lim
m→∞

am = b = lim
n→∞

bn = lim
n→∞

lim
m→∞

am,n.
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We are now in a position to prove the main result.

Proof of Theorem 4.1. Note from Example 3.3 that (Ω, δ) is a complete metric space. By

Lemma 5.1, we have, for any x, y ∈ V ,

‖x− y‖ ≤ δ(expx, exp y).

So ∥∥∥log(Λδ(ω;a1/m)m − logSm,N (ω;a)
∥∥∥

= m
∥∥∥log Λδ(ω;a1/m)− logSm,N (ω;a)1/m

∥∥∥
≤ mδ(Λδ(ω;a1/m), Sm,N (ω;a)1/m).

(5.1)

Furthermore, by (3.5), we have

δ2(Λδ(ω;a1/m), Sm,N (ω;a)1/m)

≤ 1

s(N)

[
3(∆(a1/m))2 +

n∑
i=1

wiδ
2(Λδ(ω;a1/m), a

1/m
i )

]
.

(5.2)

Here, we compute ∆(a1/m) and δ(Λδ(ω;a1/m), a
1/m
i ). By the contractive property of

geometric means

∆(a1/m) = max
{
δ(a

1/m
i , a

1/m
j ) : 1 ≤ i, j ≤ n

}
≤ 1

m
∆a,

and by (3.3)

δ(Λδ(ω;a1/m), a
1/m
i ) = δ(Λδ(ω;a1/m),Λδ(ω; a

1/m
i , . . . , a

1/m
i ))

≤
n∑
j=1

wjδ(a
1/m
j , a

1/m
i ) ≤ 1

m

n∑
j=1

wjδ(aj , ai) ≤
1

m
∆a.

So (5.2) can be simplified to

δ2(Λδ(ω;a1/m), Sm,N (ω;a)1/m) ≤ 4

m2s(N)
(∆a)2,

and equivalently,

δ(Λδ(ω;a1/m), Sm,N (ω;a)1/m) ≤ 2

m
√
s(N)

∆a.

Then the equation (5.1) becomes∥∥∥log Λδ(ω;a1/m)m − logSm,N (ω;a)
∥∥∥

≤ mδ(Λδ(ω;a1/m), Sm,N (ω;a)1/m) ≤ 2√
s(N)

∆a.
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Therefore, we have

lim
N→∞

sup
m

∥∥∥log Λδ(ω;a1/m)m − logSm,N (ω;a)
∥∥∥ = 0,

since s(N)→∞ as N →∞. For each N ∈ N, there exists a q ∈ N such that N = n · q+ k

for some k = 1, . . . , n. Then Theorem 2.5 implies that

lim
m→∞

Sm,N (ω;a) = exp

 1

s(N)

r m∑
i=1

wi log ai +
k∑
j=1

wj log aj

 .

By Lemma 5.2, the right-hand side of the above equation converges to the Log-Euclidean

mean. That is,

lim
N→∞

exp

 1

s(N)

q n∑
i=1

wi log ai +

k∑
j=1

wj log aj

 = exp

(
n∑
i=1

wi log ai

)
,

since s(N) = q
∑m

i=1wi +
∑k

j=1wj = q +
∑k

j=1wj ,

lim
N→∞

q

s(N)
= lim

q→∞

q

q +
k∑
j=1

wj

= 1.

The conclusion of Lemma 5.2 tells us that

lim
m→∞

Λδ(ω;a1/m)m = lim
m→∞

lim
N→∞

Sm,N (ω;a)

= lim
N→∞

lim
m→∞

Sm,N (ω;a) = exp

(
n∑
i=1

wi log ai

)
.

This completes the proof.
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