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AN INVERSE NODAL PROBLEM AND AMBARZUMYAN PROBLEM FOR
THE PERIODIC p-LAPLACIAN OPERATOR WITH INTEGRABLE
POTENTIALS

Yan-Hsiou Cheng, Chun-Kong Law, Wei-Cheng Lian and Wei-Chuan Wang

Abstract. In this note, we solve the inverse nodal problem and Ambarzumyan
problem for the p-Laplacian coupled with periodic or anti-periodic boundary con-
ditions. We also extend some results in a previous paper to p-Laplacian with L!
potentials, and for arbitrary linear separated boundary conditions. There we prove
a generalized Riemann-Lebesgue Lemma which is of independent interest.

1. INTRODUCTION

An inverse nodal problem is a problem of understanding the potential function
through the nodal points of eigenfunctions, without any other spectral information. An
Ambarzumyan problem is the unique determination of potential ¢, when its associated
spectrum o (q) = o(0). Both problems have been well studied for the classical Sturm-
Liouville operator (see [8, 9, 11, 14]). In a previous paper, we studied the p-Laplacian
operator with C'-potentials and solved the inverse nodal problem and Ambarzumyan
problem for Dirichlet boundary conditions [10]. Now we want to extend the results
to periodic/anti-periodic boundary conditions, and to L' potentials, which is the most
general class of potentials.

Consider the equation

(1.1) — (y’(p‘”>/ =(p—-1)A—qx)y* Y,

where f(P—1) = | f|P~1sgnf. Assume that ¢(1 + z) = ¢(z) for = € R, then (1.1) can
be coupled with periodic or anti-periodic boundary conditions respectively:

(1.2) y(0) =y(1), ¥'(0)=y'(1)
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or

(1.3) y(0) =—y(1), ¥'(0)=—-y'(1).

When p = 2, the above is the classical Hill’s equation. It follows from Floquet theory
that there are countably many interlacing pairs of periodic and anti-periodic eigenvalues
of Hill’s operator. However, Floquet theory does not apply when p # 2. Let o9 (resp.
o2k_1) denote the set of periodic (resp. anti-periodic) eigenvalues of (1.1) which admit
eigenfunctions with exactly 2k (resp. 2k—1) zeros in [0, 1). In 2001, Zhang [15] used a
rotation number function to show the existence of the minimal eigenvalue A\, = min o,
and the maximal eigenvalue \,, = max o,, respectively. Binding and Rynne studied in
more detail in a series of papers [3, 4, 5] and showed that

(i) o9k and o9k _1 are nonempty and compact. Also for all A € o9,
Aok—1 < Agp A< Ao < Aggrs
while oy = {Ao} contains only one simple eigenvalue.

(if) There exists a sequence of variational periodic eigenvalues {~, } and variational
anti-periodic eigenvalues {4, }, such that vy = Ao and for all £ > 1,

Aok = Yok = dop = V2k—1 > Aok—1 = 02k > dop_q = Ook—1-

Furthermore, letting u,, (n > 1) and v, (n > 0) be the Dirichlet and Neumann
eigenvalues which admit eigenfunctions with exactly n zeros in [0, 1), we have

Ao > M2k s Vok > Aoj,
Aok—1 > [2k—1,V2k—1 = dop_1-

The variational periodic eigenvalues {~,,} are defined by the Ljusternik-Schnirel-
mann construction. Define

WEP(0,1) = {w € WHP(0,1) 1 w(0) = w(1), w'(0) = w'(1)}.
1
Let M = {u € W};p(o, 1): / |u|P =1}, and
0
A={AC M: Aisnon-empy, compact and symmetric (A= —A)}.
Hence we define the Krasnoselskij genus of A € A by

©(A) =min{m € N: there exists a continuous, odd f: A — R™\{0}}.
Thus for any integer n > 0, let 7,, = {A € A: ¢(A) >n}. Then

1 ‘u/‘p »
= min max + qlu|” ).
n AEF 41 ueA /0 <p -1 alu )
The set of variational anti-periodic eigenvalues {4,,} is defined in a similar man-
ner.
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(iii) In general, non-variational eigenvalues may exist in o9, and o9 for all & > 1.

Some of the above properties are similar to the linear case, but others are not. This
makes the study of p-Laplacian operators more interesting.

From now onward, by a periodic eigenvalue Ao, we mean an element of oo,
whether it is variational or non-variational or not. By an anti-periodic eigenvalue
Aa2r_1, we mean an element of o5;_1, variational or non-variational.

In 2008, Brown and Eastham [6] derived a sharp asymptotic expansion of periodic
eigenvalues of the p-Laplacian with locally integrable and absolutely continuous (r —1)
derivative potentials respectively. Below is a version of their theorem for periodic
eigenvalues of the p-Laplacian (1.1), (1.2).

Theorem 1.1. ([6, Theorem 3.1]). Let ¢ be 1-periodic and locally integrable in
(—o0, 00). Then the periodic eigenvalue Ay satisfies

1
1/p o~ 1 1
1.4) /\ka = 2kT + W /() q(t)dt + O<kp—1 ),

2

where 7 = —=L .
psm(g)

By a similar argument, the asymptotic expansion of the anti-periodic eigenvalue
Aa,—1 satisfies

1 1 1
p((2k — 1)7)p—1 /O q(t)dt + O(F)

We denote by {xz(") }?:‘01 the zeros of the eigenfunction corresponding to a periodic/
anti-periodic eigenvalue ), and define the nodal length £ = 2"} — 2\™ and j =

(1.5) AP = (2k—1)7 +

jp(z) = max{i : z\™ < z}. Our main theorem is as follows.

i
Theorem 1.2. Let g € L'(0, 1) be 1-periodic. Define F),(x) as the following:
(a) For the periodic case, let

Por(e) = p#RPRE™ =11+ [ attya,

(b) For the anti-periodic case, let
1
Fatr(a) = p((26 = DRP[2h = D" = 1)+ [ gftyar
0

Then both {Fy;.} and {Fy,_1} converges to ¢ pointwise a.e. and in L!(0,1).

Thus either one of the sequences { Fa } /{ Far—1} will be sufficient to reconstruct q.
Note that here ¢ € L'(0,1). Furthermore, the map between the nodal space and the set
of admissible potentials are homeomorphic after a partition (cf. [10]). The same idea
also works for linear separated boundary value problems with integrable potentials.
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Using the eigenvalue asymptotics above, the Ambarzumyan problems for the peri-
odic and anti-periodic boundary conditions can also be solved.

Theorem 1.3. Let ¢ € L'(0, 1) be periodic of period 1.
(a) If a sequence of periodic eigenvalues { o }7° , for (1.1) such that Ay € ooy, is
given by Ao = (2k7)P for all k € NU {0}, then ¢ = 0 on [0, 1].
(b) If a set of anti-periodic eigenvalue {Aor—1}32, for (1.1) such that \op_1 €
o2k—1, IS given by Aox—1 = ((2k — 1)7)P for all £ € N, with A\; = min oy, and

1
/ a(1) S, (Ft)Pdt = 0, then g = 0 on [0, 1].
0

Note that this sequence might not exploit all the periodic eigenvalues, as we know
that the set og;, (k > 1) contains at least two variational periodic eigenvalues (A, and
ak), as well as some non-variational periodic eigenvalues, as explained above. In fact,
it has been shown that when p # 2, the set o9 can have arbitrarily many elements
for C! potentials (cf. [3, Theorem 1.3]). The situation for anti-periodic eigenvalues is
similar.

In Section 2, we shall apply Theorem 1.1 to study the problems involving periodic
and anti-periodic boundary conditions. There Theorem 1.1 and Theorem 1.2 will be
proved. In section 3, we shall deal with the case of linear separated boundary conditions.

Recently, we worked on a Tikhonov regularization approach of the inverse nodal
problem for p-Laplacian [7]. The approach helps to obtain a more practical approx-
imation of the potential function for Dirichlet p-Laplacian eigenvalue problem. The
present work will be useful in making a similar approach for the periodic p-Laplacian
eigenvalue problem.

2. PrROOF OF MAIN RESULTS
Fix p > 1 and assume that ¢ = 0 and A = 1. Then (1.1) becomes
(") = -1y
Let S, be the solution satisfying the initial conditions S,(0) = 0, S,(0) = 1. It is well

known that S;, and its derivative .S}, are periodic functions on R with period 27. The
two functions also satisfy the following identities (cf. [6, 10]).

Lemma 2.1. (@) [Sy(z)[P 4 [Sy(x)[P = 1 for any z € R;
0) (Sp5p" ") = IS} = (= VIS, = 1= pISyl” = (1= p) +pIS}I7
Next we define a generalized Prufer substitution using S, and .S,;:
(21) y(z) = r(@)S(AVP0(x)), o (x) = AVPr(a)S,(\P0(x)) -
By Lemma 2.1, one obtains ([10])

(2.2) 0 (z)=1- @\spw/pe(m))\p :
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Theorem 2.2. In the periodic/anti-periodic eigenvalue problem, if ¢ € L'(0,1) is
periodic of period 1, then

q(z) = lim pkn< — —1> :
T

n—oo

pointwise a.e. and in L(0, 1), where j = j,(z) = max{k : x,g") <z}
The proof below works for both even and odd »’s, i.e. for both periodic and anti-

periodic problems. Some of the arguments above are motivated by [9]. See also [11].

Proof.  First, integrating (2.2) from a:,g") to a:,(:gl with A = A, we have

~ »(™
SO / . >\S (AYro(t)) Pt |

1 k n
An/p I}(ﬂ)
1 Il(c7+)1 1
=4 - — - — 1/p 1
Hence
(n) ™ 1 I’(g‘?l 1 ajl?—?l 1/p p 1
(2.3) ¢, :Al/pﬂw w AOdt = | a5 T0))) _?dt.
n nJzr, n Jax)
and
/\1/p€( )
P | /= -1
(2.4) 1/p a:,g_gl p/\n/p I}(:gl 1 X
=% [ a2 [ a@s,oiear - e
Lk T,

Now, for z € (0,1), let j = j,(z) = max{k : x,gn) < z}. Then z € I](n) =

[a:ﬁ"), 5 +)1) and, for large n,

27

(n)
I;7 C B(z, /\1/p

)
where B(t,¢) is the open ball with centre ¢ and radius . That is, the sequence of
intervals {I(") n is sufficiently large} shrinks to z nicely (cf. Rudin [13, p.140]).

1 Pé(")

Since ¢ € L'(0, 1) and S SO o(1), we define the sequence of functions

1/pn

-1
k=0

/ a:l(:q-)l
(n)
— af;(g") Xlk" ’
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which is convergent to ¢ pointwise a.e. = € (0,1). Furthermore,

(n)

1/p n—1 x
An k+1
< = E n

and as n tends to infinity,

(n)

1 n—1 \1/p)n) ,z
An k1
/0 gult)dt =3 20k / la(®)dt = gl

/7'(\' (n)
k=0 k

Thus when n is large, |h, — q| < (29, + |¢|) and the integral of the latter converges
to 3||¢||1. By the general Lebesgue dominated convergence theorem [12, p.89], A,
converges to ¢ in L(0,1) .

(n) n—1
Tri1
q(t)dt. Then E k,n X ;(m) CONVErges to
k=0 r

g pointwise a.e. Let ¢,,(t) = \Sp(/\}/pe(t))\p — 1—1). Then for a.e. z € (0,1),

On the other hand, let g, ,, := %/
ék x

(n)
k

By Lemma 2.1(b) and (2.2),

1/p . a,’;.?_)l
Bufa) = 2 [0 (1s,0mepr - ) (010+ 215,001 ) o

/7'(\' én) n
2,
ANEOI0 WasrioW

l’;-") n

bdjn _
= — P g (\1/r0(0)) S0 Po(1))

= O\, 1 HU/Py
Also,
1/p  zi™
pAn Jj+1 1
An(a)] < 222 [ a0 - gl 100700017 - e
’]T a:jn p
/P a:(-")
(p— DA [
< L=V [0y — gyl

J
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which converges to 0 pointwise a.e. because the sequence of intervals {I ](")
: n is sufficiently large} shrinks to x nicely. We conclude that 7,, — 0 a.e. z € (0,1).
Finally, applying the general Lebesgue dominated convergence theorem as above, T,, —
0 in L'(0,1). Therefore, the left hand side of (2.4) converges to ¢ pointwise a.e. and
in L1(0,1). ]

Proof of Theorem 1.2. By the eigenvalue estimates (1.4) and (1.5), we have

1/p€(2k)

2k o () _ o ope (2k) _ (2K)
(2:5) phon(——=2 = 1) = p(2K7)P (2K — 1) + 2kL5 )

; / a(t)dt +o(1) .

0

(2k)

Hence by Theorem 2.2 and the fact that 2k¢;™ = 1+ o(1),

For(x) = p(2k7)P(2k62H — 1) + / 1 q(t)dt
0

also converges to ¢ pointwise a.e. and in L'(0,1). The proof for (b) is the same. =

1
Proof of Theorem 1.3. By (1.4), we have / q(t)dt = 0. Also as the least periodic

0
eigenvalue Ao = 0 is variational, we take the constant function 1 as a test function.

Then 1
0= /\0 < / q = 0.
0
Therefore 1 is the first periodic eigenfunction, and ¢ = 0. This proves (a).
1
For part (b), since A\gx—1 = ((2k—1)7)P for k € N, we have, by (1.5), / q(t)dt =
0

0. Moreover, v(z) = p'/PS,(7x) satisfies anti-periodic boundary conditions and
|v]|z» = 1. Note that by Lemma 2.1(b),

1 -1 1 1
/ \s;ﬁt)\pdt—p—:/ 15, (76)Pdt — = =0 .
0 p 0 p

Now A, = 7P is the first minimal anti-periodic eigenvalue, so it is a variational one.
We let v be a test function, and obtain by variational principle and the hypothesis, that

1 p%p 1
< / L5y @) Pt + / a()S,(Ft)Pdt = 7 .
0 - 0

This implies v is the first eigenfunction. Thus ¢ = 0 a.e. in (0, 1). |

3. LINEAR SEPARATED BouNDARY CONDITIONS

Consider the one-dimensional p-Laplacian with linear separated boundary condi-
tions
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)

(3.1) { y(0)S) () +4'(0)Sp(a) =0

y(1)S,(8) + 4/ (1)Sy(8) =0

where a, 3 € [0, 7). Letting u,, be the nth eigenvalue whose associated eigenfunction
has exactly n — 1 zeros in (0, 1), the generalized phase 6,, as given in (2.2) satisfies

1 =1, CTy(a),

971(0) - 1/pC ( 1/p )7
o2 | .y (8)
—1
0n(1) = Y, <n7T—C'Tp ( f/p )) ,
where the function CTy,(vy) = 5‘783 is an analogue of cotangent function, while
P

— . — 1 .
CTy(v) := CTp(y) if v # 0; and CT',(0) := 0. Also CT,,  stands for the inverse of
5Tp, taking values only in [0, 7).
Let ¢y (z) = |S,(un/"0,(z)P — ;- Below we shall state a general Riemann-
1
Lebesgue lemma, which shows that / gén, — 0 for any g € L(0,1), when p,’s
0
are associated with certain linear separated boundary conditions. In the case of pe-
riodic boundary conditions, Brown and Eastham [6] used a Fourier series expansion
of ¢,, where qﬁn(u}/pen(x)) ~ ¢n (o + 2n7z) and apply Plancherel Theorem to show
convergence.

Lemma 3.1. Let f,, be uniformly bounded and integrable on (0, 1). Suppose that
(i) there exists a partition {zff = 0 < 2} < --- < xy = 1} such that Az} :=
ri, — ) =o(l) as n — oo;

(ii) F(x):= [ fo(t)dtsatisfies F['(z) = O(L) forz € (a7, 27, ) and F' (a7, )
=o(i)forall0<k<n-1,asn — .
1
Then for any g € L1(0, 1), / Ggfn — 0asn— oco.
0

Proof.  Let |f,| < M. We divide the proof into two parts. First, suppose that
g € C[0,1]. We can find a constant M; > 0 such that |g|, |¢/| < M;. Given any
e > 0, then for sufficiently large n, we have Az} < ¢ and [F (2} )] < 5.5

27LM1
|F7 ()| < 5377, for o € (a3, 23, ) forall 0 < k < n—1. Using integration by parts,
1 n—1 an n—1 o
/ 9fal = / :Z 9@ ) B () — / 9F
0 k=0 zy —0 zy

IN

€.
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1
Takeany g € L1(0,1). Then thereisa C! function g on [0, 1] such that / lg—g| <
0

€. Hence
1 1 1
| o= [o-at+ [ ot
0 0 0
1 1
Here \/ (9 — 9)fn] < Me, and by above, the term / J/fn can be arbitrarily small
Q 0
when n is large enough. Hence the theorem is valid. ]

Corollary 3.2. Consider the p-Laplacian (1.1) with boundary conditions (3.1).
1

Define g, (x) = |5, ("6, (x))|” — L, then for any g € L1(0,1), / gbn — 0.
0

Proof.  Since 6,,(0) and 6,,(1) are as given in (3.2), ¢, is uniformly bounded
on [0, 1]. Take z} be such that 6(z}) = 22 Also by integrating the phase equation

M}L/p .
(2.2), /" = O(n), and

1 1
Azy, = O<W> = O(g)
Hence by Lemma 2.1(b) and (3.1), we have for k =1,...,n — 2,
T -1 [Tk 1 d _
/ e = / . O@) du Sy 70 (@) Sy 11/ 700 () 77D
_1 _ P 1
= s [Spl/ PO () S) (/PO () D]+ O(—)
Pln Zy, Hn
1 1
pu— O —_— p— J—
( Mn) ()

. . * 1
since S,(km) = 0. It is also clear that / ¢n(x)de = O<E>' Thus we may apply
Ty

Lemma 3.1 to complete the proof. ]

Theorem 3.3. When ¢ € L'(0, 1), the eigenvalues p,, of the Dirichlet p-Laplacian
(1.1) satisfies, as n — oo,

) -

1 1
/p _ e  —
(3.3) p/ P =nm+ )T /0 q(t)dt + O<np—1

Furthermore, F,, converges to ¢ pointwise and in L'(0, 1), where

1

Fu(@) := p(n7)? (") — 1) + /O q(t) dt.
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Proof. Integrating (2.2) from 0 to 1, we have

P S /O a1, (/o) Pt
blin

1 /1 1 L ) 1
- qtdt+7/qt Sp(u/Po(t))|P — =)dt .
pu;_l/p 0 ( ) pu;_l/p 0 ( )(‘ p( ( ))‘ P

=nT+
Then by Corollary 3.2, we have

| awsusroe)lr - Syt = o).
0 p

for any ¢ € L'(0, 1). Hence (3.3) holds. Furthermore, by Theorem 2.2, we can obtain
the reconstruction formula with pointwise and L' convergence. |

Remark. In the same way, the Ambarzumyan Theorems for Neumann as well
as Dirichlet boundary conditions as given in [10, Theorems 1.3 and 5.1] can also be
proved for L' potentials. Furthermore, the above method can also be used to show
Theorem 1.1 by reducing the periodic problem to a Dirichlet problem by a translation
of the first nodal length, as in [8].

In fact, for general linear separated boundary problems (3.1),

(CTH(3) P~ (CTp(a)

ui/p = NasT +

=1
(3.4) (nag7)
+;/1<>d +o(—)
p(naﬁ%yj_l 0 qlxr)axr ’I’Lp_l ;
where
n ifa=08=0
neg=14 n—1/2 ifa>0=0o>0=a .

n—1 a, >0

This is because, after an integration of (2.2),

I 1
@5) () =00 = 1= = [ a@ISy k0N dr -+ o).
n J0 n
By (3.2), if a = 0, then 6,,(0) = 0. Similarly 6,,(1) = 0 if 3 = 0. Now, let
y = CT,*(x). Then z = CT),(y) and hence

/

-
y ==
1+ |zlP

= —|z[P72(1 + O(|z]P),
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when || is sufficiently small. Since y(0) = 7, we have

+ O(2?P71) .

/7-(\- x(p_l)
2 p-—1
Therefore, when n is sufficiently large,

R, (O e

0,(0) =
QM;/ZJ (p— 1>M£Lp—1)/p

Similarly, when 3 #£ 0,

(=97, (CLEYD |, e

1/p ng—l)/p

0,(1) =
W i (p—1Dp

Hence (3.4) is valid. Furthermore, F;, converges to q pointwise and in L' (0, 1), where

(CT,(8))®~D = (CT ()@~ N / Lo dt
0

(napT)P~!

Fo(x) = p(nag?)? | (nas + )i — 1
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