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A (FORGOTTEN) UPPER BOUND FOR THE
SPECTRAL RADIUS OF A GRAPH

Clive Elphick and Chia-An Liu

Abstract. The best degree-based upper bound for the spectral radius is due
to Liu and Weng. This paper begins by demonstrating that a (forgotten) upper
bound for the spectral radius dating from 1983 is equivalent to their much more
recent bound. This bound is then used to compare lower bounds for the clique
number. A series of line graph degree-based upper bounds for the Q-index is then
proposed and compared experimentally with a graph based bound. Finally a new
lower bound for generalised r-partite graphs is proved, by extending a result due
to Erdos.

1. INTRODUCTION

Let G be a simple and undirected graph with n vertices, m edges, and degrees
A=d >dy >--->d, =06. Letd denote the average vertex degree, w the clique
number and x the chromatic number. Finally let x(G) denote the spectral radius of G,
q(G) denote the spectral radius of the signless Laplacian of G' and G* denote the line
graph of G.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary)
that u < y — 1, where y is defined by the equality

Ly]
(1) yy—1) = di+ (y — [y])djy-
k=1

Edwards and Elphick [6] show that 1 < y < n and that y is a single-valued
function of G.
This bound is exact for regular graphs because, we then have that

Ly
1
d=p<y—1=- dod+(y—lyhd| =d.
k=1
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The bound is also exact for various bidegreed graphs. For example, let G be the
Star graph on n vertices, which has = v/n — 1. It is easy to show that |v/n — 1] <
y < [v/n — 1]. It then follows that y is the solution to the equation

yy-D=m-D+[vn-1] -1+ (- [vn-1])=n-2+y,

which has the solutiony =1++vn—1,s0 u<y—1=+n—1.

Similarly let G be the Wheel graph on n vertices, which has 4 = 1 + /n. It is
straightforward to show that y = 2 + /n is the solution to (1) so again the bound is
exact.

2. AN UprpPER BOUND FOR THE SPECTRAL RADIUS

The calculation of y can involve a two step process.
1. Restrict y to integers, so (1) simplifies to

Y

yy—1) =Y d.

k=1

Since d < p, we can begin with y = |d + 1], and then increase y by unity until
y(y —1) > >°7_, di. This determines that either y = a or a < y < a + 1, where a is
an integer.

2. Then, if y is not an integer, solve the following quadratic equation
) yly—1) =Y di+ (y — a)das1.
k=1

For convenience let ¢ = >~} _, di. Equation (2) then becomes

y? —y(1+ dot1) — (¢ — adgq1) = 0.

Therefore
dot1+ 1+ v/ (das1 + 1)2+ 4(c — adat1)
B 2
SO
" S y— 1= da+1 -1+ \/(da+1;-1)2+4<0— ada+1).
This two step process can be combined as follows, by letting a + 1 = k,
dp — 1+ \/(dk + 1244305 d - dy)
3) < , where 1 <k <n.

2
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In 2012, Liu and Weng [12] proved (3) using a different approach. They also
proved there is equality if and only if G is regular or there exists 2 < ¢ < k such that
di =d;1 =n—1and d; = d,. Note that if £ =1 this reduces to ;. < A.

If we set &k = n in (3) then

_ 2 _
u§5 1+¢®+;) 4né + 8m
which was proved by Nikiforov [13] in 2002.

3. Lower BounDs FOR THE CLIQUE NUMBER

Turan’s Theorem, proved in 1941, is a seminal result in extremal graph theory. In
its concise form it states that:

n—dgw(G)

where d is the average vertex degree.
Edwards and Elphick [6] used y to prove the following lower bound for the clique
number:

n 1
4 S — —.
@) noyr1 @ty
In 1986, Wilf [16] proved that
n
<
r—— w(G)
Note, however, that N
T R eO)

since for example ~—l-—= = 2.13 for K79 and ;== = 3.1 for K334.
Nikiforov [13] proved a conjecture due to Edwards and Elphick [6] that
2m
— < .

Experimentally, bound (5) performs better than bound (4) for most graphs.

4. UprpER BOUNDS FOR THE Q-INDEX

Let ¢(G) denote the spectral radius of the signless Laplacian of G. In this section
we investigate graph and line graph degree-based bounds for ¢(G) and then compare
them experimentally.

4.1. Graph bound

Nikiforov [14] has recently strengthened various upper bounds for ¢(G) with the
following theorem.
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Theorem 1. If G is a graph with n vertices, m edges, with maximum degree A
and minimum degree 4, then

q(G)Smin(QA,%(A—i—Qd—l—l—\/(A—|—25—1)2+16m—8(n—1+A)5>).

Equality holds if and only if G is regular or G has a component of order A + 1 in
which every vertex is of degree § or A, and all other components are §-regular.

4.2. Line graph bounds

The following well-known lemma (see, for example, Lemma 2.1 in [2]) provides an
equality between the spectral radii of the signless Laplacian matrix and the adjacency
matrix of the line graph of a graph.

Lemma 2. If G* denotes the line graph of G then
(6) 9(G) =2+ u(G").

Let A;; = {d;+d; —2 | i ~ j} be the degrees of vertices in GE and A > Ay >
.-+ > A,, be a renumbering of them in non-increasing order. Cvetkovi¢ et al. proved
the following theorem using Lemma 2.

Theorem 3. (Theorem 4.7 in [4]).
q(G) <2+ A
with equality if and only if G is regular or semi-regular bipartite.
The following lemma is proved in varying ways in [5, 12, 15].

Lemma 4.

dy — 1+\/<d2—1>2+4d1
2
with equality if and only if G is regular or n — 1 = d; > dy = d,,.

wG) <

Chen et al. combined Lemma 2 and Lemma 4 to prove the following result.

Theorem 5. (Theorem 3.4 in [3]).

A2—1+\/<A2—1>2+4A1

<
q(G) <2+ 5

with equality if and only if G is regular, or semi-regular bipartite, or the tree obtained
by joining an edge to the centers of two stars Ky witheven n,orn — 1 =d; =
do > d3 =d, = 2.
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Stating (3) as a lemma we have

Lemma 6. For 1 < k <n,

dp — 1+ \/(dk + 1244305 d - dy)
2

(7 w(G) < o =

with equality if and only if G is regular or there exists 2 < ¢t < k such that n — 1 =
dy =di_q1 > dy = dy.

Combining Lemmas 2 and 6 provides the following series of upper bounds for the
signless Laplacian spectral radius.

Theorem 7. For 1 < k < m, we have

Ap+14+/(Ar+12+455 1A - Ay
2

(8) q(G) <Yp =1+

with equality if and only if A; = A,, or there exists 2 < ¢ < k such thatm — 1 =
AL =01 >N = A,

Proof. G is simple. Hence (8) is a direct result of (6) and (7). The sufficient
and necessary conditions are immediately those in Lemma 6. ]

Remark 8. Note that Theorem 7 generalizes both Theorems 3 and 5 since those
bounds are precisely 11 and v in (8) respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theo-
rem 3 the graphs with ¢(G) = v, i.e. Ay = A,,, are regular or semi-regular bipartite.

From Theorem 5 the graphs with ¢(G) < ¢; and ¢(G) = 19, i.e. m —1 = A >
Ay = A,,, are the tree obtained by joining an edge to the centers of two stars K24
withevenn,orn—1=d; =dy > ds =d, = 2.

The only graph with ¢(G) < min{¢; | i =1,2} and ¢(G) =13, i.e. m—1=2A,
=Ay>A3=A,,, is the 4-vertex graph K;fg obtained by adding one edge to K 3.

+
K

We now prove that no graph satisfies ¢(G) < min{vy; | 1 < i < k — 1} and
q(G) = ¢, where m > k > 4. Let G be a counter-example such that m — 1 = A; =
Ar_1 > A = A,y,. Since Az = m — 1 there are at least 3 edges incident to all other
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edges in G. If these 3 edges form a 3-cycle then there is nowhere to place the fourth
edge, which is a contradiction. Hence they are incident to a common vertex, and G
has to be a star graph. However a star graph is semi-regular bipartite so ¢(G) = 1,
which completes the proof.

Remark 9. By analogy with (1), if z is defined by the equality

L=
2z =1) = Ap+(z— [z))An,
=1

then ¢ < z + 1. This bound is exact for d—regular graphs, because we then have

]
2d=q<z+1=2+4(-1)=2+- YA+ (z-[z)A ]| =2+A=2d.
k=1

4.3. Experimental comparison

It is straightforward to compare the above bounds experimentally using the named
graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for some
graphs (eg Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and 7
are exact for some graphs (eg complete bipartite) for which Theorem 1 is inexact.
Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28
vertices in Mathematica and the average values of ¢ and the bounds in Theorems 1,
5and 7.

n irrregular graphs ¢(G) Theorem 1 Theorem 5 Theorem 7

10 59 9.3 10.0 10.3 9.8
16 48 10.3 11.2 11.5 11.0
25 25 11.5 13.4 13.1 12.6
28 21 11.2 12.6 12.7 12.2

It can be seen that Theorem 5 gives results that are broadly equal on average to The-
orem 1 and Theorem 7 gives results which are on average modestly better. This is
unsurprising since more data is involved in Theorem 7 than in the other two theorems.
For some graphs, ¢(G) is minimised in Theorem 7 with large values of k.

5. A Lower BOUND FOR THE Q-INDEX

Elphick and Wocjan [7] defined a measure of graph irregularity, v, as follows:

ny d;

4m?2 ’

VvV =
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where v > 1, with equality only for regular graphs.
It is well known that ¢ > 2y and Hofmeister [9] has proved that i > >~ d? /n, so
it is immediate that
dmy/v

q=2p2 :
n

Liu and Liu [11] improved this bound in the following theorem, for which we provide
a simpler proof using Lemma 2.

Theorem 10. Let G be a graph with irregularity v and Q-index ¢(G). Then

4muy

q(G) >

n .

This is exact for complete bipartite graphs.

Proof. Let G* denote the line graph of GG. From Lemma 2 we know that ¢(G) =
2 + p(GE) and it is well known that n(G*) = m and m(G*) = (3. d?/2) — m.
Therefore

2m(GL) 2 (S d? Sod? dAmy
=2 Ly>2 =2+ (&=L -—m|=="L= .
1 TuE) 22+ n(GL) o < 2 " m n

For the complete bipartite graph K ¢,

> S, d? _ > ijen(di + dj)
Tm m

:di—i—dj:s—i—t:n,
which is exact. u
6. GENERALISED 7-PARTITE GRAPHS

In a series of papers, Bojilov and others have generalised the concept of an r-partite
graph. They define the parameter ¢(G) to be the smallest integer » for which V(G)
has an r-partition:

V(G)=V1UVaU---UV,, such that d(v) < n —n;, where n; = |V,

forallve V;andfori=1,2,...,r.
Bojilov et al. [1] proved that ¢(G) < w(G) and Khadzhiivanov and Nenov [10]
proved that

n
—— < ().

Despite this bound, Elphick and Wocjan [7] demonstrated that
n
n—p

Z o(G).
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However, it is proved below in Corollary 15 that

n n

#(C) + %

< <
n—p n—y+1
Definition 11. If H is any graph of order n with degree sequence dg(1) >
di(2) > ... > dg(n), and if H* is any graph of order n with degree sequence
dp+(1) > dp+(2) > ... > dg-(n), such that di (i) < dg-~(i) for all 4, then H* is
said to “dominate” H.
Erdos [8] proved that if G is any graph of order n, then there exists a graph G*
of order n, where x(G*) = w(G) = r, such that G* dominates G and G* is complete
r-partite.

Theorem 12. If G is any graph of order n, then there exists a graph G* of order n,
where w(G*) = ¢(G) = r, such that G* dominates G, and G* is complete r-partite.

Proof. Let G be a generalised r-partite graph with ¢(G) = r and n; = |V;|, and
let G* be the complete r-partite graph K,,, ... Let d(v) denote the degree of vertex
v in G and d*(v) denote the degree of vertex v in G*. Clearly x(G*) = w(G*) = r,
and by the definition of a generalised r-partite graph:

d*(v) =n—n; > d(v)
forall v e V; and for i = 1,...,r. Therefore G* dominates G. ]
Lemma 13. (Lemma 4 in [6]). Assume G* dominates G. Then y(G*) > y(G).

Theorem 14.
n 1

n—y(G)+1 <¢<G>+§'

Proof. Let G* be any graph of order n, where w(G*) = ¢(G) such that G*
dominates G. (By Theorem 12 at least one such graph G* exists.) Then, using
Lemma 13 and inequality (4),

n n 1 1 1

n—y(G)+1 =" n—yG*)+1 <W(G*)+§ :qﬁ(G’)—|-§ §W<G>+§~ .

Corollary 15.
n

n—p

<9(@)+ 3.

Proof. Immediate since p <y — 1. ]
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