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A (FORGOTTEN) UPPER BOUND FOR THE
SPECTRAL RADIUS OF A GRAPH

Clive Elphick and Chia-An Liu

Abstract. The best degree-based upper bound for the spectral radius is due
to Liu and Weng. This paper begins by demonstrating that a (forgotten) upper
bound for the spectral radius dating from 1983 is equivalent to their much more
recent bound. This bound is then used to compare lower bounds for the clique
number. A series of line graph degree-based upper bounds for the Q-index is then
proposed and compared experimentally with a graph based bound. Finally a new
lower bound for generalised r-partite graphs is proved, by extending a result due
to Erdös.

1. INTRODUCTION

Let G be a simple and undirected graph with n vertices, m edges, and degrees
Δ = d1 ≥ d2 ≥ · · · ≥ dn = δ. Let d denote the average vertex degree, ω the clique
number and χ the chromatic number. Finally let μ(G) denote the spectral radius of G,
q(G) denote the spectral radius of the signless Laplacian of G and GL denote the line
graph of G.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary)
that μ ≤ y − 1, where y is defined by the equality

(1) y(y − 1) =
�y�∑
k=1

dk + (y − �y�)d�y�.

Edwards and Elphick [6] show that 1 ≤ y ≤ n and that y is a single-valued
function of G.

This bound is exact for regular graphs because, we then have that

d = μ ≤ y − 1 =
1
y

⎛
⎝ �y�∑

k=1

d+ (y − �y�)d
⎞
⎠ = d.
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The bound is also exact for various bidegreed graphs. For example, let G be the
Star graph on n vertices, which has μ =

√
n− 1. It is easy to show that �√n − 1� <

y < �√n − 1�. It then follows that y is the solution to the equation

y(y − 1) = (n− 1) + �√n− 1� − 1 + (y − �√n− 1�) = n− 2 + y,

which has the solution y = 1 +
√
n− 1, so μ ≤ y − 1 =

√
n − 1.

Similarly let G be the Wheel graph on n vertices, which has μ = 1 +
√
n. It is

straightforward to show that y = 2 +
√
n is the solution to (1) so again the bound is

exact.

2. AN UPPER BOUND FOR THE SPECTRAL RADIUS

The calculation of y can involve a two step process.

1. Restrict y to integers, so (1) simplifies to

y(y − 1) =
y∑

k=1

dk.

Since d ≤ μ, we can begin with y = �d + 1�, and then increase y by unity until
y(y − 1) ≥ ∑y

k=1 dk. This determines that either y = a or a < y < a+ 1, where a is
an integer.

2. Then, if y is not an integer, solve the following quadratic equation

(2) y(y − 1) =
a∑

k=1

dk + (y − a)da+1.

For convenience let c =
∑a

k=1 dk. Equation (2) then becomes

y2 − y(1 + da+1)− (c− ada+1) = 0.

Therefore

y =
da+1 + 1 +

√
(da+1 + 1)2 + 4(c− ada+1)

2
so

μ ≤ y − 1 =
da+1 − 1 +

√
(da+1 + 1)2 + 4(c− ada+1)

2
.

This two step process can be combined as follows, by letting a+ 1 = k,

(3) μ ≤
dk − 1 +

√
(dk + 1)2 + 4

∑k−1
i=1 (di − dk)

2
, where 1 ≤ k ≤ n.



A (Forgotten) Upper Bound for the Spectral Radius of a Graph 1595

In 2012, Liu and Weng [12] proved (3) using a different approach. They also
proved there is equality if and only if G is regular or there exists 2 ≤ t ≤ k such that
d1 = dt−1 = n− 1 and dt = dn. Note that if k = 1 this reduces to μ ≤ Δ.

If we set k = n in (3) then

μ ≤ δ − 1 +
√

(δ + 1)2 − 4nδ + 8m
2

which was proved by Nikiforov [13] in 2002.

3. LOWER BOUNDS FOR THE CLIQUE NUMBER

Turán’s Theorem, proved in 1941, is a seminal result in extremal graph theory. In
its concise form it states that:

n

n− d
≤ ω(G)

where d is the average vertex degree.
Edwards and Elphick [6] used y to prove the following lower bound for the clique

number:

(4)
n

n − y + 1
< ω(G) +

1
3
.

In 1986, Wilf [16] proved that
n

n− μ
≤ ω(G).

Note, however, that
n

n − y + 1
	≤ ω(G),

since for example n
n−y+1 = 2.13 for K7,9 and n

n−y+1 = 3.1 for K3,3,4.

Nikiforov [13] proved a conjecture due to Edwards and Elphick [6] that

(5)
2m

2m− μ2
≤ ω(G).

Experimentally, bound (5) performs better than bound (4) for most graphs.

4. UPPER BOUNDS FOR THE Q-INDEX

Let q(G) denote the spectral radius of the signless Laplacian of G. In this section
we investigate graph and line graph degree-based bounds for q(G) and then compare
them experimentally.

4.1. Graph bound

Nikiforov [14] has recently strengthened various upper bounds for q(G) with the
following theorem.
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Theorem 1. If G is a graph with n vertices, m edges, with maximum degree Δ
and minimum degree δ, then

q(G) ≤ min
(

2Δ,
1
2

(
Δ + 2δ − 1 +

√
(Δ + 2δ − 1)2 + 16m− 8(n− 1 + Δ)δ

))
.

Equality holds if and only if G is regular or G has a component of order Δ + 1 in
which every vertex is of degree δ or Δ, and all other components are δ-regular.

4.2. Line graph bounds

The following well-known lemma (see, for example, Lemma 2.1 in [2]) provides an
equality between the spectral radii of the signless Laplacian matrix and the adjacency
matrix of the line graph of a graph.

Lemma 2. If GL denotes the line graph of G then

(6) q(G) = 2 + μ(GL).

Let Δij = {di + dj − 2 | i ∼ j} be the degrees of vertices in GL, and Δ1 ≥ Δ2 ≥
· · · ≥ Δm be a renumbering of them in non-increasing order. Cvetković et al. proved
the following theorem using Lemma 2.

Theorem 3. (Theorem 4.7 in [4]).

q(G) ≤ 2 + Δ1

with equality if and only if G is regular or semi-regular bipartite.

The following lemma is proved in varying ways in [5, 12, 15].

Lemma 4.

μ(G) ≤ d2 − 1 +
√

(d2 − 1)2 + 4d1

2
with equality if and only if G is regular or n− 1 = d1 > d2 = dn.

Chen et al. combined Lemma 2 and Lemma 4 to prove the following result.

Theorem 5. (Theorem 3.4 in [3]).

q(G) ≤ 2 +
Δ2 − 1 +

√
(Δ2 − 1)2 + 4Δ1

2

with equality if and only if G is regular, or semi-regular bipartite, or the tree obtained
by joining an edge to the centers of two stars K1, n

2
−1 with even n, or n − 1 = d1 =

d2 > d3 = dn = 2.
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Stating (3) as a lemma we have

Lemma 6. For 1 ≤ k ≤ n,

(7) μ(G) ≤ φk :=
dk − 1 +

√
(dk + 1)2 + 4

∑k−1
i=1 (di − dk)

2

with equality if and only if G is regular or there exists 2 ≤ t ≤ k such that n − 1 =
d1 = dt−1 > dt = dn.

Combining Lemmas 2 and 6 provides the following series of upper bounds for the
signless Laplacian spectral radius.

Theorem 7. For 1 ≤ k ≤ m, we have

(8) q(G) ≤ ψk := 1 +
Δk + 1 +

√
(Δk + 1)2 + 4

∑k−1
i=1 (Δi − Δk)

2

with equality if and only if Δ1 = Δm or there exists 2 ≤ t ≤ k such that m − 1 =
Δ1 = Δt−1 > Δt = Δm.

Proof. GL is simple. Hence (8) is a direct result of (6) and (7). The sufficient
and necessary conditions are immediately those in Lemma 6.

Remark 8. Note that Theorem 7 generalizes both Theorems 3 and 5 since those
bounds are precisely ψ1 and ψ2 in (8) respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theo-
rem 3 the graphs with q(G) = ψ1, i.e. Δ1 = Δm, are regular or semi-regular bipartite.

From Theorem 5 the graphs with q(G) < ψ1 and q(G) = ψ2, i.e. m − 1 = Δ1 >

Δ2 = Δm, are the tree obtained by joining an edge to the centers of two stars K1, n
2
−1

with even n, or n − 1 = d1 = d2 > d3 = dn = 2.
The only graph with q(G)<min{ψi | i= 1, 2} and q(G) =ψ3, i.e. m−1 = Δ1

=Δ2>Δ3 =Δm, is the 4-vertex graph K+
1,3 obtained by adding one edge to K1,3.

� �

�

�

K+
1,3

We now prove that no graph satisfies q(G) < min{ψi | 1 ≤ i < k − 1} and
q(G) = ψk where m ≥ k ≥ 4. Let G be a counter-example such that m− 1 = Δ1 =
Δk−1 > Δk = Δm. Since Δ3 = m − 1 there are at least 3 edges incident to all other
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edges in G. If these 3 edges form a 3-cycle then there is nowhere to place the fourth
edge, which is a contradiction. Hence they are incident to a common vertex, and G
has to be a star graph. However a star graph is semi-regular bipartite so q(G) = ψ1,

which completes the proof.

Remark 9. By analogy with (1), if z is defined by the equality

z(z − 1) =
�z�∑
k=1

Δk + (z − �z�)Δ�z�,

then q ≤ z + 1. This bound is exact for d−regular graphs, because we then have

2d = q ≤ z + 1 = 2 + (z − 1) = 2 +
1
z

⎛
⎝ �z�∑

k=1

Δ + (z − �z�)Δ
⎞
⎠ = 2 + Δ = 2d.

4.3. Experimental comparison

It is straightforward to compare the above bounds experimentally using the named
graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for some
graphs (eg Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and 7
are exact for some graphs (eg complete bipartite) for which Theorem 1 is inexact.
Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28
vertices in Mathematica and the average values of q and the bounds in Theorems 1,
5 and 7.

n irrregular graphs q(G) Theorem 1 Theorem 5 Theorem 7

10 59 9.3 10.0 10.3 9.8
16 48 10.3 11.2 11.5 11.0
25 25 11.5 13.4 13.1 12.6
28 21 11.2 12.6 12.7 12.2

It can be seen that Theorem 5 gives results that are broadly equal on average to The-
orem 1 and Theorem 7 gives results which are on average modestly better. This is
unsurprising since more data is involved in Theorem 7 than in the other two theorems.
For some graphs, q(G) is minimised in Theorem 7 with large values of k.

5. A LOWER BOUND FOR THE Q-INDEX

Elphick and Wocjan [7] defined a measure of graph irregularity, ν, as follows:

ν =
n

∑
d2

i

4m2
,
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where ν ≥ 1, with equality only for regular graphs.
It is well known that q ≥ 2μ and Hofmeister [9] has proved that μ2 ≥ ∑

d2
i /n, so

it is immediate that
q ≥ 2μ ≥ 4m

√
ν

n
.

Liu and Liu [11] improved this bound in the following theorem, for which we provide
a simpler proof using Lemma 2.

Theorem 10. Let G be a graph with irregularity ν and Q-index q(G). Then

q(G) ≥ 4mν
n

.

This is exact for complete bipartite graphs.

Proof. Let GL denote the line graph of G. From Lemma 2 we know that q(G) =
2 + μ(GL) and it is well known that n(GL) = m and m(GL) = (

∑
d2

i /2) − m.
Therefore

q = 2 + μ(GL) ≥ 2 +
2m(GL)
n(GL)

= 2 +
2
m

(∑
d2

i

2
−m

)
=

∑
d2

i

m
=

4mν
n

.

For the complete bipartite graph Ks,t,

q ≥
∑

i d
2
i

m
=

∑
ij∈E(di + dj)

m
= di + dj = s + t = n,

which is exact.

6. GENERALISED r-PARTITE GRAPHS

In a series of papers, Bojilov and others have generalised the concept of an r-partite
graph. They define the parameter φ(G) to be the smallest integer r for which V (G)
has an r-partition:

V (G) = V1 ∪ V2 ∪ · · · ∪ Vr, such that d(v) ≤ n− ni, where ni = |Vi|,
for all v ∈ Vi and for i = 1, 2, . . . , r.

Bojilov et al. [1] proved that φ(G) ≤ ω(G) and Khadzhiivanov and Nenov [10]
proved that

n

n− d
≤ φ(G).

Despite this bound, Elphick and Wocjan [7] demonstrated that

n

n− μ
	≤ φ(G).
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However, it is proved below in Corollary 15 that

n

n − μ
≤ n

n− y + 1
< φ(G) +

1
3
.

Definition 11. If H is any graph of order n with degree sequence dH(1) ≥
dH(2) ≥ . . . ≥ dH(n), and if H∗ is any graph of order n with degree sequence
dH∗(1) ≥ dH∗(2) ≥ . . . ≥ dH∗(n), such that dH(i) ≤ dH∗(i) for all i, then H∗ is
said to “dominate” H .

Erdös [8] proved that if G is any graph of order n, then there exists a graph G∗

of order n, where χ(G∗) = ω(G) = r, such that G∗ dominates G and G∗ is complete
r-partite.

Theorem 12. If G is any graph of order n, then there exists a graphG∗ of order n,
where ω(G∗) = φ(G) = r, such that G∗ dominates G, and G∗ is complete r-partite.

Proof. Let G be a generalised r-partite graph with φ(G) = r and ni = |Vi|, and
let G∗ be the complete r-partite graph Kn1,...,nr . Let d(v) denote the degree of vertex
v in G and d∗(v) denote the degree of vertex v in G∗. Clearly χ(G∗) = ω(G∗) = r,
and by the definition of a generalised r-partite graph:

d∗(v) = n− ni ≥ d(v)

for all v ∈ Vi and for i = 1, . . . , r. Therefore G∗ dominates G.

Lemma 13. (Lemma 4 in [6]). Assume G∗ dominates G. Then y(G∗) ≥ y(G).

Theorem 14.
n

n− y(G) + 1
< φ(G) +

1
3
.

Proof. Let G∗ be any graph of order n, where ω(G∗) = φ(G) such that G∗

dominates G. (By Theorem 12 at least one such graph G∗ exists.) Then, using
Lemma 13 and inequality (4),

n

n− y(G) + 1
≤ n

n − y(G∗) + 1
< ω(G∗)+

1
3

= φ(G)+
1
3
≤ ω(G)+

1
3
.

Corollary 15.
n

n− μ
< φ(G) +

1
3
.

Proof. Immediate since μ ≤ y − 1.
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