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EXISTENCE OF PERIODIC SOLUTIONS OF SEASONALLY
FORCED SIR MODELS WITH IMPULSE VACCINATION

Lin Wang

Abstract. In this paper, we study periodic oscillation of seasonally forced epi-
demiological models with impulse vaccination where periodicity occurs in contact
rate. Using the famous Mawhin’s coincidence degree method, we get the exis-
tence of positive periodic solutions of seasonally forced SIR models with impulse
vaccination at fixed time. Some numerical simulations are presented to illustrate
the effectiveness of such pulse vaccination strategy.

1. INTRODUCTION

In the past decades, tens of millions of human being suffered or died from various
infectious diseases. Many infectious diseases, such as measles, chickenpox, mumps,
rubella, pertussis and influenza, show seasonal patterns of incidence [2, 10, 12]. The
cause of seasonal patterns may vary from the periodic contact rates [11, 12], periodic
fluctuation in birth and death rates [23, 24, 25], and periodic vaccination program [8].
Thus, it is natural to model these diseases by following seasonally forced epidemiolog-
ical models: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt

= μ − β(t)SI − μS,

dI(t)
dt

= β(t)SI − (μ + γ)I,

dR(t)
dt

= γI − μR,

in which
• S, I , R are the fractions of the susceptible, infective and recovered population,
• μ and γ denote the birth (death) rate and recovery rate respectively, which are

positive constant,
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• β(t) is the seasonally-dependent transmission rate, which is a positive continuous
T -periodic function.

Recently, G. Katriel [17] got the existence of periodic positive solutions for the pe-
riodically forced SIR model by Leray-Schauder degree theory provided 1

T

∫ T
0 β(t)dt >

γ + μ. Jódar, Villanueva and Arenas [16] obtained that a T -periodic solution exists
for a more general system by Gaines-Mawhin’s continuation theorem, whenever the
condition mint∈R β(t) > γ + μ holds. Coincidence degree theory is a very powerful
technique especially in proof of existence of solutions in nonlinear equations. It has
many applications in the existence of periodic solutions for periodically forced SIR
model with saturated incidence rates [3, 4, 22].

Pulse vaccination has been testified to be an effective strategy in preventing viral
infections. The pulse vaccination scheme proposes to vaccinate a fraction p of the
entire susceptible population in a single pulse, which can be formulated as

S(t+i ) := lim
h→0+

S(ti + h) = S(ti)− pS(ti),

where S(t) is left continuous satisfying S(ti) = S(t−i ) := limh→0− S(ti + h). This
part of susceptible population has been converted into recovered population

R(t+i ) = R(ti) + pS(ti).

The theoretical study on pulse vaccination strategy was firstly presented by Agur et
al. [1], then studied by many authors [6, 15, 19, 26, 27, 28, 29]. A comprehensive
introduction on vaccination strategies can be found in [18].

There are some research activities about the existence of periodic solutions of
impulsive differential equation [5, 7, 13, 14, 20]. In this paper, we study the existence
of periodic solutions of SIR model with both periodic transmission rate and pulse
vaccination:

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= μ − β(t)SI − μS,

dI(t)
dt

= β(t)SI − (μ + γ)I,

dR(t)
dt

= γI − μR,

�S
∣∣
t=nT+ti

= −Ji(S(t), I(t))
∣∣
t=nT+ti

,

�I
∣∣
t=nT+ti

= 0,

�R
∣∣
t=nT+ti

= Ji(S(t), I(t))
∣∣
t=nT+ti

,

where �S
∣∣
t=nT+ti

= S(nT + t+i )− S(nT + ti), 0 ≤ t1 < · · · < tk < T , n ∈ N. The
susceptible population will be vaccinated for four times largely because the susceptible
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population can be divided into many groups and all groups can not be vaccinated at
the same time. Our vaccination strategies concern the impact of infected population,
which can be formulated as

Ji(S(t), I(t))
∣∣
t=nT+ti

= pi(1− e−αI(nT+ti))S(nT + ti), i = 1, . . . , k,

where 0 ≤ pi < 1, α > 0 large enough.
Denote the basic reproduction number

R0 =
β̄

γ + μ
,

with β̄ = 1
T

∫ T
0 β(t)dt. The following theorem gives the main results of this paper.

Theorem 1. Let R0 > 1, there exists at least one T -periodic solution (S(t), I(t),
R(t)) of (1.1), all of whose components are positive.

Remark. When pi ≡ 0, i = 1, . . . , k, system (1.1) is the usual seasonally forced
SIR model without pulse vaccination. This problem has been considered in [17] by
Leary-Schauder degree theory. But the proof of Theorem 1 gives another version’s
proof by Mawhin’s coincidence degree method.

The rest of this paper is organized as follows. In Section 2, we give the outline
of Gaines and Mawhin’s continuation theorem and some notations. In Section 3, we
choose a suitable region to our problem. In Section 4, we establish the results on
existence of periodic solutions of our impulsive systems. In Section 5, we present
some numerical experiments to illustrate the effectiveness of our pulse vaccination
strategy.

2. PRELIMINARIES

It is not difficult to observe that dS
dt + dI

dt + dR
dt ≡ 0 in system (1.1). Since S(t),

I(t), R(t) are fractions of the population, we have S(t) + I(t) + R(t) = 1 for all t.
Because R does not appear in the first two equations in (1.1), it is sufficient to consider
the existence of periodic solutions of following systems

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= μ − β(t)SI − μS,

dI(t)
dt

= β(t)SI − (μ + γ)I,

�S
∣∣
t=nT+ti

= −Ji(S(t), I(t))
∣∣
t=nT+ti

,

�I
∣∣
t=nT+ti

= 0,
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with
S(t) ≥ 0, I(t) ≥ 0, S(t) + I(t) ≤ 1.

Obviously, this problem is equivalent to find the solutions of the following periodic
boundary value problem:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= μ − β(t)SI − μS,

dI(t)
dt

= β(t)SI − (μ + γ)I,

�S
∣∣
t=ti

= −Ji(S(t), I(t))
∣∣
t=ti

,

�I
∣∣
t=ti

= 0,

S(0) = S(T ),

I(0) = I(T ).

2.1. Outline of Gaines and Mawhin’s Continuation Theorem

Let L : domL ⊂ X → Z be a linear mapping, and N : X → Z be a continuous
mapping. The mapping L is called a Fredholm mapping of index zero if IndexL =
dimKerL − codim ImL = 0 and ImL is closed in Z. If L is a Fredholm mapping of
index zero, there exist continuous projectors P : X → X and Q : Z → Z such that
ImP = KerL, KerQ = ImL = Im(I − Q) and X = KerL ⊕ KerP , Z = ImL ⊕ ImQ.
It follows that L

∣∣
domL∩KerP : (I − P )X → ImL is invertible. We denote the inverse

of that map by Kp. If Ω is an open bounded subset of X , the mapping N is called
L-compact on Ω if QN (Ω) is bounded and Kp(1− Q)N : Ω → X is compact. Since
Im Q is isomorphic to KerL, there exists an isomorphism Λ : ImQ → KerL. The
following theorem is very useful to our probrem.

Theorem 2. [9] Let Ω ⊂ X be an open bounded set. Let L be a Fredholm mapping
of index zero and N be L-compact on Ω. Assume that:

(1) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ domL, Lx �= λNx.
(2) for each x ∈ ∂Ω ∩ Ker L, QNx �= 0,
(3) deg(ΛQN, Ω∩ Ker L, 0) �= 0.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

2.2. Notations

For non-negative integer j, let

Cj [0, T ; t1, . . . , tk] = {x : [0, T ] → R | x(m)(t) exists for t �= t1, . . . , tk; x(m)(t+i )
and x(m)(ti) := x(m)(t−i ) exist, i = 1, . . . , k, m = 0, . . . , j}.
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Define a Banach space

X = {(x1, x2) | x1, x2 ∈ C[0, T ; t1, . . . , tk], x1(0) = x1(T ), x2(0) = x2(T )},

with the norm‖(x1, x2)‖X = maxt∈[0,T ](|x1(t)| + |x2(t)|). Define another Banach
space

Z = C[0, T ; t1, . . . , tk]× C[0, T ; t1, . . . , tk] × R
k,

with the norm‖(z1, z2, C1, . . . , Ck)‖Z = maxt∈[0,T ](|z1(t)|+|z2(t)|)+|C1|+· · ·+|Ck|.
Let

L : domL → Z,

(S, I) → (S ′, I ′,�S(t1), . . . ,�S(tk)),

where

dom L = {(S, I) | S, I ∈ C1[0, T ; t1, . . . , tk], S(0) = S(T ), I(0) = I(T )}.

Let

N : X → Z,

(S, I) → (f1(·, S, I), f2(·, S, I),−J1(S(t1), I(t1)), . . . ,−Jk(S(tk), I(tk))),

where

f1(t, S, I) = μ − β(t)SI − μS, f2(t, S, I) = β(t)SI − (μ + γ)I.

Obviously, system (2.2) can be written by L(S, I) = N (S, I). By a simple calculation,
we get

Ker L = {(x1, x2) | (x1, x2) ≡ C ∈ R
2},

and

ImL=

{
(z1, z2, C1, . . . , Ck)∈Z :

1
T

∫ T

0
z1(τ)dτ+

1
T

k∑
i=1

Ci =0,
1
T

∫ T

0
z2(τ)dτ = 0

}
.

It is easy to see that
dimKer L = codim ImL = 2.

Since ImL is closed, L is Fredholm mapping of index 0. Let P : X → X be the
projector given by

P (x1, x2) =
(

1
T

∫ T

0
x1(τ)dτ,

1
T

∫ T

0
x2(τ)dτ

)
, (x1, x2) ∈ X.
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Obviously,
ImP = Ker L = R

2.

Let Q : Z → Z be the projector given by

Q(z1, z2, C1, . . . , Ck) =

(
1
T

∫ T

0
z1(τ)dτ +

1
T

k∑
i=1

Ci,
1
T

∫ T

0
z2(τ)dτ, 01×k

)
.

Obviously,
Ker Q = ImL = Im(I − Q).

Furthermore, the generalized inverse (to L) Kp : ImL → Ker P ∩ dom L exists given
by

Kp(z1, z2, C1, . . . , Ck)

=

(∫ t

0
z1(τ)dτ +

∑
t>ti

Ci − 1
T

∫ T

0

∫ t

0
z1(τ)dτdt−

k∑
i=1

Ci,

∫ t

0
z2(τ)dτ − 1

T

∫ T

0

∫ t

0
z2(τ)dτdt

)
.

Then QN : X → Z read

QN (S, I)=

(
1
T

∫ T

0
f1(τ, S, I)dτ− 1

T

k∑
i=1

Ji(S(ti), I(ti)),
1
T

∫ T

0
f2(τ, S, I)dτ, 01×k

)
.

By a direct calculation, we have

Kp(I − Q)N (S, I)

= Kp

[(
f1(·, S, I)− 1

T

∫ T

0
f1(τ, S, I)dτ +

1
T

k∑
i=1

Ji(S(ti), I(ti)),

f2(·, S, I)− 1
T

∫ T

0
f2(τ, S, I)dτ,−J1(S(t1), I(t1)), . . . ,−Jk(S(tk), I(tk))

)]

=
(∫ t

0
f1dτ − 1

T

∫ T

0

∫ t

0
f1dτdt +

(
1
2
− t

T

)(∫ T

0
f1dτ +

k∑
i=1

Ji(S(ti), I(ti))

)

−
∑
t>ti

Ji(S(ti), I(ti)) +
k∑

i=1

Ji(S(ti), I(ti)),
∫ t

0
f2dτ − 1

T

∫ T

0

∫ t

0
f2dτdt

+
(

1
2
− t

T

)∫ T

0
f2dτ

)
.
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3. THE SUITABLE REGION TO OUR PROBLEM

In order to prove the existence of periodic solutions of (2.1), we consider the
following auxiliary problem

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= λ(μ − β(t)SI − μS),

dI(t)
dt

= λ(β(t)SI − (μ + γ)I),

�S
∣∣
t=ti

= −λJi(S(ti), I(ti)),

�I
∣∣
t=ti

= 0,

S(0) = S(T ),

I(0) = I(T ),

where λ ∈ [0, 1] and t ∈ [0, T ]. Let D be an open bounded subset of X satisfying

D = {(S, I) ∈ X | S(t) > 0, I(t) > 0, S(t) + I(t) < 1}.

Proposition 3. D is an invariant region with respect to (3.1). The disease free
equilibrium (S0, I0) = (1, 0) is the unique periodic solution of (3.1) satisfying (S, I) ∈
∂D, 0 < λ ≤ 1.

Proof. First, we will prove that D is an invariant region. In fact, it follows from
model (3.1) that

dS

dt

∣∣∣
S=0

= λμ > 0,
dI

dt

∣∣∣
I=0

= 0,
d(S + I)

dt

∣∣∣
S+I=1

= −λγI ≤ 0.

Since there is no impulsive motion for I and

S(t+i ) = (1− λpi(1 − e−αI(ti)))S(ti),

it is easy to conclude that every possible solution will remain in the region D ultimately.
Second, we will prove that the disease-free equilibrium (S0, I0) = (1, 0) is the

unique periodic solution of (3.1) satisfying (S, I) ∈ ∂D.
We assume that (S, I) ∈ ∂D is a solution of (3.1), which means that at least one

of the following conditions holds:
(i) There exists t0 ∈ [0, T ] such that I(t0) = 0.
(ii) There exists t0 ∈ [0, T ] such that S(t0) = 0.
(iii) There exists t0 ∈ [0, T ] such that S(t0) + I(t0) = 1.
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We now consider each of these three cases:
In case of (i), we have I(t0) = 0 and I ′(t0) = 0, which implies I ≡ 0 and

�S(ti) = 0, i = 1, . . . , k. Thus, the only possible periodic solution of S ′ = μ(1− S)
is S ≡ 1.

In case of (ii), we have S(t0) = 0 and S ′(t0) = μ > 0. Thus, it is easy to obtain
that S(t) < 0 for t < t0 sufficiently close to t0, which contradicts the fact that D is
an invariant region.

In case of (iii), we get

(S + I)′(t0) = μ(1− S(t0) − I(t0))− γI(t0) = −γI(t0) ≤ 0.

Because I(t0) = 0 has been discussed, we only discuss S(t0) + I(t0) = 1, (S +
I)′(t0) < 0, which contradicts the fact that D is an invariant region.

Remark. If the impulsive motion doesn’t influenced by I , that means S(t+i ) =
(1 − λpi)S(ti), the system I ≡ 0, S ′ = μ(1 − S) can have a nonconstant periodic
solution on ∂D, which is hard to handle. In fact, if there is no infectious patients, it is
often meaningless to vaccinate the susceptible people.

To use the continuity method, we need to choose an open bounded set Ω ⊆ D,
such that there is no solution (S, I) of (3.1) satisfying (S, I) ∈ ∂Ω for any λ ∈ (0, 1).
From the idea of G. Katriel [17], we choose Ω to be the open subset of D given by

(3.2) Ω =
{

(S, I) ∈ D | min
t∈[0,T ]

S(t) < δ

}
,

where δ ∈ (0, 1) is to be fixed.

Proposition 4. Let R0 > 1, δ ∈ ( 1
R0

, 1). Then there exists no solution (S, I) of
(3.1) satisfying (S, I) ∈ ∂Ω, for any λ ∈ (0, 1].

Proof. Suppose (S, I) ∈ ∂Ω. Then either {(S, I) ∈ ∂D
∣∣mint∈[0,T ] S(t) < δ} or

{(S, I) ∈ D
∣∣mint∈[0,T ] S(t) = δ}.

In the first case, the fact that S0 ≥ δ and Proposition 3 imply that there is no
solution of (3.1) on {(S, I) ∈ ∂D

∣∣mint∈[0,T ] S(t) < δ}.
In the second case, we have I(t) > 0 and S(t) ≥ δ, ∀t ∈ [0, T ]. Dividing the

second equation of (3.1) by I , we have
d ln I(t)

dt
= λ(β(t)S − μ − γ).

Since there is no impulsive motion for I , after integrating over [0, T ], we obtain that

μ + γ =
1
T

∫ T

0
β(t)Sdt ≥ δβ̄,

which is a contradiction to the assumptioin δ > 1
R0

.
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4. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

In this section, we will give the proof of Theorem 1 by 4 steps.

Proof. Step 1. N is L-compact on Ω.
First, it is easy to prove that QN (Ω) is bounded. For any (S, I) ∈ Ω,

‖QN (S, I)‖Z = max
t∈[0,T ]

(| 1
T

∫ T

0
f1(τ, S, I)dτ

− 1
T

k∑
i=1

Ji(S(ti), I(ti))|+ | 1
T

∫ T

0
f2(τ, S, I)dτ |)

≤ 2μ + 2β̄ + γ +
1
T

k∑
i=1

pi

< +∞.

Second, it is easy to prove that Kp(I − Q)N : Ω → X is uniform bounded and
equicontinuous on each [ti, ti+1]. Assume that {(Sj, Ij)}∞j=1 ⊂ Ω. Using Arzela-
Ascoli theorem, there exists a uniformly convergent subsequence denoted by Kp(I −
Q)N (Sj1, Ij1) on [0, t1]. Using Arzela-Ascoli theorem on [t1, t2], we have a uniformly
convergent subsequence Kp(I −Q)N (Sj2, Ij2) which is also uniformly convergent on
[0, t1]. Repeat it again and again, we can prove that Kp(I − Q)N (Sjk+1

, Ijk+1
) is

uniformly convergent on [0, T ]. Thus, Kp(1 − Q)N : Ω → X is compact.

Step 2. For each λ ∈ (0, 1), (S, I) ∈ ∂Ω ∩ dom L, L(S, I) �= λN (S, I), which
has been proved by Proposition 4.

Step 3. For each (S, I) ∈ ∂Ω ∩ Ker L, QN (S, I) �= 0.
If QN (S1, I1) = 0, we have

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
T

∫ T

0
f1(τ, S1, I1)dτ − 1

T

k∑
i=1

Ji(S1(ti), I1(ti)) = 0,

1
T

∫ T

0
f2(τ, S1, I1)dτ = 0.

Assume (S1, I1) ∈ Ker L, we know that (S1, I1) is a constant vector in R2. Thus,
(4.1) is equivalent to

(4.2)

⎧⎪⎨
⎪⎩

μ − β̄S1I1 − μS1 − 1
T

k∑
i=1

pi · (1− e−αI1)S1 = 0,

β̄S1I1 − (μ + γ)I1 = 0.
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We claim that there are exactly two solutions: (1, 0) and (S∗, I∗) in KerL satifying
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S∗ =
μ + γ

β̄
,

μ

(
β̄

μ + γ
− 1
)
− β̄I∗ − 1

T

k∑
i=1

pi(1 − e−αI∗) = 0.

By the definition of Ω, we know that (1, 0) /∈ Ω. Denote

G(I) = μ

(
β̄

μ + γ
− 1
)
− β̄I − 1

T

k∑
i=1

pi(1 − e−αI).

We have

G(0) = μ

(
β̄

μ + γ
− 1
)

> 0, G(1) =
−γβ̄

μ + γ
− μ − 1

T

k∑
i=1

pi(1− e−α) < 0.

Since
∂G(I)

∂I
= −β̄ − 1

T

k∑
i=1

piαe−αI < 0,

G(I) is a monotonous function with respect to I . Thus, (S∗, I∗) is the unique solution
of QN (S, I) = 0in KerL ∩ Ω. Because

S∗ =
μ + γ

β̄
=

1
R < δ,

we have (S∗, I∗) /∈ Ker L∩ ∂Ω. Thus, for each (S, I) ∈ ∂Ω∩KerL, QN (S, I) �= 0.

Step 4. There exists an isomorphism Λ : ImQ → Ker L such that

ΛQ(z1, z2, C1, . . . , Ck)

= Λ

(
1
T

∫ T

0

z1(τ)dτ +
1
T

k∑
i=1

Ci,
1
T

∫ T

0

z2(τ)dτ, 01×k

)

=

(
1
T

∫ T

0
z1(τ)dτ +

1
T

k∑
i=1

Ci,
1
T

∫ T

0
z2(τ)dτ

)
.

We will prove that deg(ΛQN, Ω ∩ Ker L, 0) �= 0. From the discussion in Step 3, we
know that (S∗, I∗) is the unique solution of ΛQN (S, I) = 0 in Ω ∩ KerL.
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A direct calculation shows that

deg(ΛQN (S, N ),Ω∩ Ker L, (0, 0))

= deg((μ−β̄SI−μS− 1
T

k∑
i

pi(1−e−αI)S, β̄SI−(μ + γ)I), Ω∩ KerL, (0, 0))

= Sign

∣∣∣∣∣∣
−β̄I∗ − μ − 1

T

k∑
i=1

pi(1 − e−αI∗) −β̄S∗ − 1
T

k∑
i=1

piαe−αI∗S∗

β̄I∗ β̄S∗ − μ − γ

∣∣∣∣∣∣
= Sign

∣∣∣∣∣∣
−β̄I∗ − μ − 1

T

k∑
i=1

pi(1 − e−αI∗) −μ − γ − 1
T

k∑
i=1

piαe−αI∗ μ+γ
β̄

β̄I∗ 0

∣∣∣∣∣∣
= 1 �= 0.

Thus, by theorem 2, the equation L(S, I) = N (S, I) has at least one solution on
domL ∩ Ω.

From Proposition 4, we know that for each λ = 1, (S, I) ∈ domL∩∂Ω, L(S, I) �=
N (S, I). Thus, L(S, I) = N (S, I) has at least one solution in domL ∩ Ω.

5. SIMULATION

In this section, we present some numerical examples to illustrate the effectiveness of
pulse vaccination strategy. Furthermore, we show how the various parameters influence
the solutions of our SIR model.

With the period T = 2π of the forcing representing one year, we take γ = 14 2π
365

corresponding to a two-week infectious period. We set β̄ = 4γ , μ = 0.5
2π and β(t) =

β̄(1+ 0.6 cos(t)). Assume that there are three impulsive point at fixed time π
2 , 2π

2 and
3π
2 with pi = 0.2, i = 1, 2, 3. Let [0, 2π] be divided into k = 200 intervals equally.

Given the initial point (S∗∗, I∗∗) = (μ+γ
β̄

, μ
μ+γ − μ

β̄
), which is the endemic equilibrium

of SIR model without periodic transmission rate and pulse vaccination. The periodic
solutions of system (2.2) can be solved by the Newton iteration method in which we
set S(ti + 1)− S(ti) = pi(1− e−αI(ti))S(ti) at fixed time π

2 , 2π
2 and 3π

2 .
In Fig. 1, we make eight steps of the Newton iteration to get the approximate

infective population of system (2.2) with with both pi = 0 (the surface at the bottom)
and pi = 0.2 (the surface at the top). Obviously, the infective population of system
(2.2) with pulse is lower than the infective population of system (2.2) without pulse in
Fig. 1. Thus, it is very effective to lower the infective population by pulse vaccination
strategy. The solutions in both case are locally stable and the error is about 10−10.
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Fig. 1. Infective population with both pi = 0 and pi = 0.2.

In Fig. 2, we make eight steps of the Newton iteration to get the approximate
susceptible population of system (2.2) with both pi = 0 (the smooth surface) and
pi = 0.2 (the nonsmooth surface). Obviously, the susceptible population of system
(2.2) with pi = 0.2 has periodic and impulsive properties. The solutions in both case
are locally stable and the error is about 10−10.

Fig. 2. Susceptible population with both pi = 0 and pi = 0.2.

Assume T , β, γ , μ and ti are defined above. We make eight steps of the Newton
iteration to get the approximate infective population of system (2.2) with pi = 0.15,
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pi = 0.2 and pi = 0.25. Fig. 3 shows that the effectiveness of pulse vaccination
strategy increase with pi. The solutions here are locally stable and the error is about
10−10. When pi = 0.3, the solution will be unstable and our program will be out of
work.

Fig. 3. Infective population with different pi.

Fig. 4. Population with different μ.
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Assume T , β, γ and ti are defined above, pi = 0.2. We make ten steps of the
Newton iteration to get the approximate infective population and susceptible population
of system (2.2) with μ = 0.4

2π , 0.6
2π and 0.8

2π . Fig. 4 shows that the impact on the infective
population and susceptible population by μ. The solutions here are locally stable and
the error is about 10−13.

Assume T , γ and ti are defined above, pi = 0.2 and μ = 0.5
2π . We make ten steps

of the Newton iteration to get the approximate infective population and susceptible
population of system (2.2) with β̄ = 2γ , 4γ , 6γ and 8γ . Fig. 5 shows that the impact
on the infective population and susceptible population by β̄. The solutions here are
locally stable and the error is about 10−13.

Fig. 5. Population with different β̄.

6. CONCLUSION

We obtain the existence of positive periodic solutions of seasonally forced SIR
models with impulse vaccination by Mawhin’s coincidence degree method. Some nu-
merical simulations are presented to illustrate the effectiveness of such pulse vaccination
strategy.
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