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EINSTEIN CONDITIONS FOR THE BASE SPACE OF ANTI-INVARIANT
RIEMANNIAN SUBMERSIONS AND CLAIRAUT SUBMERSIONS

Jungchan Lee, JeongHyeong Park, Bayram Şahin and Dae-Yup Song

Abstract. In this paper, we study the geometry of anti-invariant Riemannian sub-
mersions from a Kähler manifold onto a Riemannian manifold. We first determine
the base space when the total space of an anti-invariant Riemannian submersion
is Einstein and then we investigate new conditions for anti-invariant Rieman-
nian submersions to be Clairaut submersions. We also focus on the geometry of
Clairaut anti-invariant submersions.

1. INTRODUCTION

Immersions and submersions which are special tools in differential geometry also
play a fundamental role in Riemannian geometry. O’Neill [9] and Gray [7] studied
Riemannian submersions between Riemannian manifolds. The geometry of Riemannian
submersions have been discussed in [5, 6]. We note that Riemannian submersions are
related with physics and have their applications in the Yang-Mills theory, Kaluza-Klein
theory and superstring theories. Later many researchers considered such submersions
between manifolds with differentiable structures.

In [13], Watson defined almost Hermitian submersions between almost Hermitian
manifolds. In this case, the vertical and horizontal distribution are invariant with respect
to the almost complex structure of the total space of the submersion. In [10, 11], Sahin
introduced anti-invariant Riemannian submersions from almost Hermitian manifolds
onto Riemannian manifolds in which the fibers are anti-invariant with respect to the
almost complex structure of the total space. The geometry of anti-invariant Riemannian
submersions is quite different from the geometry of almost Hermitian submersions.

In this paper, we consider anti-invariant Riemannian submersions from a Kähler
manifold onto a Riemannian manifold. In Section 2, we present the basic information
about Riemannian submersions which is needed for this paper. In Section 3, we give
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curvature relations for an anti-invariant Riemannian submersion from a Kähler manifold
onto a Riemannian manifold. In Section 4, we assume that total space is an Einstein
manifold and the necessary and sufficient condition for an anti-invariant Riemannian
submersion is obtained. In Section 5, we first obtain necessary and sufficient conditions
for a curve on the total space of anti-invariant Riemannian submersions to be geodesic.
Then we give a new characterization for anti-invariant Riemannian submersions to be
Clairaut submersions. We also check the effect of Clairaut’s condition on the geometry
of fiber.

2. PRELIMINARIES

In this section, we define almost Hermitian manifolds, recall the notion of Rieman-
nian submersions between Riemannian manifolds and give a brief review of basic facts
of Riemannian submersions, more details see: [5] and [14].

Let (M, g) be an almost Hermitian manifold. This implies that M admits a tensor
field J of type (1, 1) on M such that, ∀X, Y ∈ Γ(TM), we have

(2.1) J2 = −I, g(X, Y ) = g(JX, JY ).

An almost Hermitian manifold M is called Kähler manifold if

(2.2) (∇XJ)Y = 0, ∀X, Y ∈ Γ(TM),

where ∇ is the Levi-Civita connection on M . For a Kähler manifold, we have

(2.3) R(X, Y )J = JR(X, Y ), R(JX, JY ) = R(X, Y ), ∀X, Y ∈ Γ(TM),

where R(X, Y )Z = ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z denotes the Riemannian curvature
tensor field of M . We now denote by ρ and τ the Ricci tensor and the scalar curvature
defined, respectively, by

(2.4)
ρ(X, Y ) = tr (Z �→ R(Z, X)Y ),

τ = tr Q,

where Q are the Ricci operator defined by g(QX, Y ) = ρ(X, Y ), for X , Y ∈ Γ(TM).
A Riemannian manifold (M, g) is said to be Einstein if the Ricci tensor ρ satisfies
ρ = λg for some function λ on manifold (M, g). We note that if dim(M) > 2, then λ

is a constant.
Let (Mm, g

M
) and (Nn, g

N
) be Riemannian manifolds, where dim(M) = m,

dim(N ) = n and m > n. A Riemannian submersion F : M −→ N is a map of M
onto N satisfying the following axioms:

(i) F has maximal rank.
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(ii) The differential F∗ preserves the lenghts of horizontal vectors.

For each q ∈ N , F−1(q) is an (m− n) dimensional submanifold of M . The subman-
ifolds F−1(q), q ∈ N , are called fibers. A vector field on M is called vertical if it
is always tangent to fibers. A vector field on M is called horizontal if it is always
orthogonal to fibers. A vector field X on M is called basic if X is horizontal and
F−related to a vector field X∗ on N , i.e., F∗Xp = X∗F (p) for all p ∈ M . Note that
we denote the projection morphisms on the distributions kerF∗ and (kerfF∗)⊥ by V
and H, respectively.

The geometry of Riemannian submersions is characterized by O’Neill’s tensors T
and A defined for vector fields E, F on M by

(2.5) AEF = H∇HEVF + V∇HEHF,

(2.6) TEF = H∇VEVF + V∇VEHF,

where ∇ is the Levi-Civita connection of g
M

. It is easy to see that a Riemannian
submersion F : M −→ N has totally geodesic fibers if and only if T vanishes
identically. TE and AE are skew-symmetric operators on (Γ(TM), g) for any E ∈
Γ(TM), reversing the horizontal and the vertical distributions. It is also easy to see
that T is vertical, TE = TVE and A is horizontal, A = AHE . We note that the tensor
fields T and A satisfy

TUW = TW U, ∀U, W ∈ Γ(kerF∗),(2.7)

AXY = −AY X =
1
2
V [X, Y ], ∀X, Y ∈ Γ((kerF∗)⊥).(2.8)

On the other hand, from (2.5) and (2.6) we have

∇V W = TV W + ∇̂V W,(2.9)

∇V X = H∇V X + TV X,(2.10)

∇XV = AXV + V∇XV,(2.11)

∇XY = H∇XY + AXY,(2.12)

for X, Y ∈ Γ((kerF∗)⊥) and V, W ∈ Γ(kerF∗), where ∇̂V W = V∇V W . If X is
basic, then H∇V X = AXV .

Finally, in this section, we recall definition of an anti-invariant Riemannian sub-
mersion from an almost Hermitian manifold onto a Riemannian manifold.
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Definition 1. [10]. Let M be a complex m−dimensional almost Hermitian man-
ifold with Hermitian metric gM and almost complex structure J and N be a Rieman-
nian manifold with Riemannian metric g

N
. Suppose that there exists a Riemannian

submersion F : M −→ N such that kerF∗ is anti-invariant with respect to J , i.e.,
J(kerF∗) ⊆ (kerF∗)⊥. Then we say that F is an anti-invariant Riemannian submer-
sion.

It follows from Definition 1 that J(kerF∗)⊥ ∩ kerF∗ 	= {0}. We denote the com-
plementary orthogonal subbundle to J(kerF∗) in (kerF∗)⊥ by μ. Then we have

(2.13) (kerF∗)⊥ = JkerF∗ ⊕ μ.

It is easy to see that μ is an invariant subbundle of (kerF∗)⊥, under the endomorphism
J . Thus, for X ∈ Γ((kerF∗)⊥), we have

(2.14) JX = BX + CX,

where BX ∈ Γ(kerF∗) and CX ∈ Γ(μ). If μ = {0}, then an anti-invariant submersion
is called a Lagrangian submersion.

3. CURVATURE RELATIONS

In this section, we are going to obtain curvature relations of anti-invariant Rieman-
nian submersions.

Lemma 1. [12]. Let F : M −→ N be a Lagrangian submersion from a Kähler
manifold M to a Riemannian manifold N . Then the horizontal distribution (kerF∗)⊥

is integrable and totally geodesic. As a result of this, we have AX = 0 for X ∈
Γ((kerF∗)⊥).

Proposition 2. The Riemannian curvature R is given by

(3.1)
R(U, V, W, W ′) = R̂(U, V, W,W ′) − g1(TUW ′, TV W )

+g(TV W ′, TUW ),

(3.2) R(U, V, W,X) = g1((∇UT )(V, W ),X)− g1((∇V T )(U, W ), X),

(3.3)
R(X, Y, Z, V ) = −g1((∇ZA)(X, Y ), V ) − g1(AXY, TV Z)

+g1(AY Z, TV X) + g1(AZX, TV Y ),

(3.4)
R(X, Y, Z,H) = R∗(X, Y, Z, H)+ 2g1(AXY,AZH)

−g1(AY Z,AXH) + g1(AXZ,AY H),
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(3.5)

R(X, Y, V,W ) = −g1((∇V A)(X, Y ), W ) + g1((∇WA)(X, Y ), V )

−g1(AXV,AY W ) + g1(AXW,AY V )

+g1(TV X, TWY ) − g1(TW X, TV Y ),

(3.6)
R(X, V, Y,W ) = −g1((∇XT )(V, W ), Y ) − g1((∇V A)(X, Y ), W )

+g1(TV X, TWY ) − g1(AXV,AY W ),

for any U, V, W,W ′ ∈ Γ(V) and X, Y, Z, H ∈ Γ(H), where R∗ is Riemannian curva-
ture of N and R̂ is Riemannian curvature of fiber.

We note that the curvature of [5] is having negative sign difference of ours.

Lemma 3. Let F be an anti-invariant Riemannian submersion from a Kähler
manifold (M, J, gM) onto a Riemannian manifold (N, gN). Then for X ∈ Γ(H) and
U, V ∈ Γ(V), we have the following relations:

BTUV = TUJV,(3.7)

BAXU = AXJU.(3.8)

Proof. From (2.2) and (2.10), we have

J∇UV = H∇UJV + TUJV.

Using (2.9), we get

JTUV + J∇̂UV = H∇UJV + TUJV.

Then (2.14) implies that

BTUV + CTUV + J∇̂UV = H∇UJV + TUJV.

Taking the vertical and horizontal parts of this equation, we obtain (3.7). The other
assertion can be obtained in a similar way.

Lemma 4. Let F be an anti-invariant Riemannian submersion from a Kähler
manifold (M, g1, J) onto a Riemannian manifold (N, g). Then we have the following
curvature relations:

(3.9)
R(U, V, W,W ′) = R∗(JU, JV, JW, JW ′) + 2g1(BAJUV, BAJW W ′)

−g1(BAJV W, BAJUW ′) + g1(BAJU W, BAJV W ′),
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(3.10)

R(X, U, V, W) = R∗(CX, JU, JV, JW ) + 2g1(BACXU, BAJV W )

−g1(BAJU V, BACXW ) + g1(BACXV, BAJUW )

+g1((∇JUA)(JV, JW ), BX) + g1(BAJV W, BTBXU)

−g1(BAJW U, BTBXV ) + g1(BAJUV, BTBXW ),

(3.11)

R(X, U, Y,W )=R∗(CX, JU, CY, JW )+2g1(BACXU, BACY W )

−g1((∇JUT )(BX, BY ), JW )−g1(AJUCY, BACXW )

−g1((∇BXA)(JU, JW ), BY )+g1(ACXCY, BAJU W )

−g1(AJUBX,AJW BY )+g1(BTBXU, BTBY W )

+g1((∇JUA)(CY, JW ), BX)+g1(BACY W, BTBXU)

−g1(BAJW U, TBXCY )+g1(BACY U, BTBXW )

+g1((∇JWA)(CX, JU), BY )+g1(BACXU, BTBY W )

−g1(BAJU W, TBY CX)+g1(BACXW, BTBY U)

for any U, V, W,W ′ ∈ Γ(V) and X, Y ∈ Γ(H), where R∗ is Riemannian curvature of
N .

Proof. From (2.3) we have R(U, V, W, W ′) = R(JU, JV, W, W ′). Also from
equation (2.1) we get R(U, V, W,W ′) = g(JR(JU, JV )W, JW ′). Using again (2.3)
we obtain R(U, V,W,W ′) = R(JU, JV, JW, JW ′). Now using (3.4) and (3.8) in this
equation we derive (3.9). By using (3.7), (3.8) and Proposition 2, the other curvature
relations can be obtained in a similar way.

Lemma 5. Let F be an anti-invariant Riemannian submersion from a Kähler
manifold (M, g1, J) onto a Riemannian manifold (N, g). Then the Ricci tensor ρ is
given by

(3.12)

ρ(U, X)

= −3
r+s∑

i

g1(AEiJU,AEiCX) +
r+s∑

i

g1((∇EiA)(Ei, JU), BX)

−2
r+s∑

i

g1(AJUEi, TBXEi) +
r∑

i

g1((∇BXT )(ui, ui), JU)

+
r∑

i

g1((∇JUT )(ui, ui), CX) +
r∑

i

g1((∇uiA)(JU, CX), ui)

+
r∑

i

g1(AJUui,ACXui) −
r∑

i

g1((∇uiT )(BX, ui), JU)

−
r∑

i

g1(TuiJU, TuiCX) + ρ∗(JU, CX),
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(3.13)

ρ(U, V ) = −3
r+s∑

i

g1(BAEiU, BAEiV ) +
r∑

i

g1((∇JUT )(ui, ui), JV )

+
r∑

i

g1((∇uiA)(JU, JV ), ui) −
r∑

i

g1(BTuiU, BTuiV )

+
r∑

i

g1(AJUui,AJV ui) + ρ∗(JU, JV ),

(3.14)

ρ(X, Y )

=
r+s∑

i

g1((∇EiA)(Ei, CX), BY ) +
r+s∑

i

g1((∇EiT )(BX, BY ), Ei)

−2
r+s∑

i

g1(ACXEi, TBY Ei)− 3
r+s∑

i

g1(AEiCX,AEiCY )

−
r+s∑

i

g1(TBXEi, TBY Ei) +
r+s∑

i

g1(AEiBX,AEiBY )

−
r+s∑

i

g1((∇EiA)(CY, Ei), BX) +
r∑

i

g1((∇BY T )(ui, ui), CX)

−
r∑

i

g1((∇uiT )(BY, ui), CX) +
r∑

i

g1((∇uiA)(CX, CY ), ui)

−
r∑

i

g1(TuiCX, TuiCY ) +
r∑

i

g1(ACXui,ACY ui)

−
r∑

i

g1(Tuiui, TBXBY ) +
r∑

i

g1(TBXui, TBY ui)

−
r∑

i

g1((∇uiT )(BX, ui), CY ) +
r∑

i

g1((∇BXT )(ui, ui), CY )

+
r∑

i

g1((∇CXT )(ui, ui), CY ) + ρ∗(CX, CY ) + ρ̂(BX, BY )

−2
r+s∑

i

g1(ACY Ei, TBXEi),

for X, Y ∈ Γ(H), U, V ∈ Γ(V), where {u1, ..., ur}, {E1, ..., Er+s} and {μ1, ..., μs}
are orthonormal frames of (kerF∗), J(kerF∗)⊕ μ and μ, respectively, ρ∗ is the Ricci
tensor of N and ρ̂ is the Ricci tensor of any fiber.

Proof. We see that for X ∈ JkerF∗, CX is zero and for X ∈ μ, BX is zero. Thus
Lemma 5 comes from (3.9)-(3.11).
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From (3.13)-(3.14) the scalar curvature τ is given by

(3.15)

τ = τ∗ + τ̂ − 3
r+s∑

i,j

g1(AEiEj,AEiEj) + 2
r+s∑

j

r∑

i

g1((∇EjT )(ui, ui), Ej)

− 2
r+s∑

j

r∑

i

g1(TuiEj, TuiEj) + 2
r+s∑

j

r∑

i

g1(AEj ui,AEj ui)

−
r∑

i,j

g1(Tuiui, Tujuj) +
r∑

i,j

g1(Tuiuj, Tuiuj),

where τ∗ is the scalar curvature of N and τ̂ is the scalar curvature of any fiber.

4. EINSTEIN METRICS ON THE TOTAL SPACE OF AN ANTI-INVARIANT SUBMERSION

In this section, we assume that total space is an Einstein manifold. Then we have
the following proposition.

Proposition 6. Let F be an anti-invariant Riemannian submersion with totally
geodesic fibers from a Kähler manifold (M, g1, J) onto a Riemannian manifold (N, g).
Then, (M, g1) is Einstein if and only if the following relations hold:

(i) − τ

m
g1(U, V ) + ρ∗(JU, JV ) − 3

r+s∑

i

g1(BAEiU, BAEiV )

+
r∑

i

g1((∇uiA)(JU, JV ), ui) +
r∑

i

g1(AJUui,AJV ui) = 0,

(ii) − τ

m
g1(X, Y ) +

r+s∑

i

g1((∇EiA)(Ei, CX), BY ) − 3
r+s∑

i

g1(AEiCX,AEiCY )

+
r+s∑

i

g1(AEiBX,AEiBY ) −
r+s∑

i

g1((∇EiA)(CY, Ei), BX) + ρ̂(BX, BY )

+
r∑

i

g1((∇uiA)(CX, CY ), ui) +
r∑

i

g1(ACXui,ACY ui) + ρ∗(CX, CY ) = 0,

(4.1)

(iii) ρ∗(JU, CX) − 3
r+s∑

i

g1(AEiJU,AEiCX) +
r+s∑

i

g1((∇EiA)(Ei, JU), BX)

+
r∑

i

g1((∇uiA)(JU, CX), ui) +
r∑

i

g1(AJU ui,ACXui) = 0,

where ρ∗ and ρ̂ are the Ricci tensor of N and the Ricci tensor of the fiber, respectively,
and m = dim(M), r = dim(kerF∗), s = dim(μ).

From the above Proposition, we have the following theorem.
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Theorem 7. Let F : M −→ N be a Lagrangian submersion with totally geodesic
fibers from a Kähler manifold (M, g1, J) to a Riemannian manifold (N, g). Then,
(M, g1, J) is Einstein if and only if the fibers and the base space (N, g) are Einstein.

Proof. From Proposition 6 and (3.15), taking account into Lemma 1, the following
relations hold

− τ∗ + τ̂

m
g1(U, V ) + ρ∗(JU, JV ) = 0,

− τ∗ + τ̂

m
g1(X, Y ) + ρ̂(BX, BY ) = 0.

(4.2)

From (4.2), for U, V ∈ Γ(V) we have

ρ∗(JU, JV ) = ρ̂(U, V ).(4.3)

This completes the proof.

5. CLAIRAUT ANTI-INVARIANT RIEMANNIAN SUBMERSIONS

If θ is the angle between the velocity vector of a geodesic and a meridian, and r is
the distance to the axis of a surface of revolution, Clairaut’s relation states that r sin θ
is constant. In the submersion theory, this notion was defined by Bishop. According
to his definition, a submersion F : M → N to be a Clairaut submersion if there is a
function r : M → R

+ such that for every geodesic, making angles θ with the horizontal
subspaces, r sin θ is constant. He found the following characterization.

Theorem 8. [3]. Let F : (M, g1) → (B, g) be a Riemannian submersion with
connected fibers. Then F is a Clairaut submersion with r = ef if and only if each
fiber is totally umbilical and has the mean curvature vector field H = −gradf .

Clairaut submersions have been studied in Lorentizan spaces and timelike, spacelike
and null geodesics of Lorentzian Clairaut submersion with one-dimensional fibers have
been investigated in details [1]. Such submersions have been further generalized [2, 4].

As we have seen above, the origin of the notion of Clairaut submersion comes from
geodesic on a surface. Therefore we are going to find necessary conditions for a curve
on the total space to be geodesic.

Lemma 9. Let F be a anti-invariant Riemannian submersion from a Kähler man-
ifold (M, g1, J) onto a Riemannian manifold (N, g). If α : I → M is a regular curve
and X(t), V (t) denote the horizontal and vertical components of its tangent vector
field, then α is a geodesic on M if and only if

∇̄α̇CX + ∇̄α̇JV + AXBX + TV BX = 0(5.1)

∇̄α̇BX + V∇α̇JV + AXCX + TV CX = 0(5.2)
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where ∇̄ is the Schouten connection associated with the mutually orthogonal distribu-
tions V and H.

Proof. Since ∇α̇α̇ = −J∇α̇Jα̇, using (2.14), we get

∇α̇α̇ = −J(V∇α̇BX(t) + H∇α̇BX(t)

+V∇α̇CX(t) + H∇α̇CX(t) + ∇α̇JV (t)).

Then nonsingular J implies that α is geodesic if and only if

V∇α̇BX(t) + H∇α̇BX(t) + V∇α̇CX(t) + H∇α̇CX(t) + ∇α̇JV (t) = 0.

Thus using (2.9)∼(2.12) and the Schouten connection ∇̄XW ′=V∇XVW ′+H∇XHW ′

for X, W ′∈Γ(TM), we obtain (5.1) and (5.2).

Theorem 10. Let F be an anti-invariant Riemannian submersion from a Kähler
manifold (M, J, g1) onto a Riemannian manifold (N, g). Then F is a Clairaut anti-
invariant submersion with r = ef if and only if

g1(V, V )g1(X, gradf)− g1(AZBZ + TV BZ + ∇̄α̇(t)CZ, JV ) = 0,

where Z(t) and V (t) denote the horizontal and vertical components of α̇(t) = X .
Moreover if F is a Clairaut anti-invariant submersion with ef then at least one of
the following statements is true (a) f is constant on J(kerF∗) (b) the fibers are one
dimensional (c)

AJW JY = Y (f)W

for Y ∈ Γ(μ) and W ∈ Γ(kerF∗) such that JW is basic.

Proof. For a geodesic α(t) on M , putting a =‖ α̇(t) ‖2 which is constant, one
obtains

(5.3) g
1α(t)

(Z(t), Z(t)) = a cos2 θ, g
1α(t)

(V (t), V (t)) = a sin2 θ.

Differentiating the second expression, we have

d

dt
g

1α(t)
(V (t), V (t)) = 2g

1α(t)
(∇α̇(t)V (t), V (t)) = 2a sin θ cos θ

dθ

dt
.

Hence we get

g
1α(t)

(H∇α̇(t)JV (t), JV (t)) = a sin θ cos θ
dθ

dt
.

Using (5.1), we derive

(5.4) −g1α(t)(∇̄α̇CZ(t) + AZ(t)BZ(t) + TV (t)BZ(t), JV (t)) = a sin θ cos θ
dθ

dt
.
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On the other hand, F is a Clairaut submersion with ef if and only if

d

dt
(ef sin θ) = 0.

Multiplying with the nonzero factor a sin θ(t) and using (5.3) and (5.4), it follows that
F is a Clairaut submersion if and only if

g1(V, V )
df(α(t))

dt
− g1(AZBZ + TV BZ + ∇̄α̇(t)CZ, JV ) = 0

which gives the first part of the theorem. Now suppose that F is a Clairaut anti-
invariant submersion with r = ef , then from Bishop’s theorem, the fibers of F are
totally umbilical with mean curvature vector field H = −gradf . Thus we have

TUV = −g1(U, V )gradf,

for U, V ∈ Γ(kerF∗). Multiplying this expression with JW for W ∈ Γ(kerF∗) and
using (2.2) and (2.9), we get

g1(∇UJV, W ) = g1(U, V )g1(gradf, JW ).

Since ∇ is a metric connection, using again(2.9), we derive

(5.5) g1(U, W )g1(gradf, JV ) = g1(U, V )g1(gradf, JW ).

Taking U = W , interchanging the role of U and V in (5.5), we obtain

(5.6) g1(V, V )g1(gradf, JU) = g1(V, U)g1(gradf, JV ).

Using (5.5) with W = U and (5.6), we have

(5.7) g1(gradf, JU) =
(g1(U, V ))2

‖ U ‖2‖ V ‖2
g1(gradf, JU).

On the other hand, from (2.2) and (2.9), we find

g1(∇V JW, JY ) = −g1(V, W )g1(gradf, Y )

for V, W ∈ Γ(V) and Y ∈ Γ(μ). Since μ is invariant with respect to J and [V, JW ]
is belong to V , by using the fact that H∇V JW = AJW V and (2.10), we get

g1(AJW V, JY ) = −g1(V, W )g1(gradf, Y ).

Since AJW is skew-symmetric with respect to g1 and since AJW JY , V and W are
vertical and gradf is horizontal, and above equation holds for all vertical V and W ,
hence we derive

(5.8) AJW JY = Y (f)W.
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Now if gradf ∈ Γ(J(V)), then (5.7) and the equality case of Schwarz inequality implies
that either f is constant on J(V) or the fibers are one dimensional. If gradf ∈ Γ(μ),
then (5.8) implies (c). This completes the proof.

From Theorem 10, we have the following results.

Corollary 11. Let F be a Clairaut anti-invariant submersion from a Kähler man-
ifold (M, g1, J) onto a Riemannian manifold (N, g) with r = ef and dim(V) > 1.
Then the fibers of F are totally geodesic if and only if AJW JX = 0 for W ∈ Γ(V)
and X ∈ Γ(μ).

For a Lagrangian submersion we have the following.

Corollary 12. Let F be a Clairaut Lagrangian submersion from a Kähler manifold
(M, g1, J) onto a Riemannian manifold (N, g) with r = ef . Then either the fibers of
F are totally geodesic or they are one dimensional.

In fact, this case is valid for general case of Lagrangian submersions with totally
umbilical fibers, We omit its proof, which is similar to the proof of Theorem 4. We
recall that a Riemannian submersion with the condition

TUW = g1(U, W )H

is called a Riemannian submersion with totally umbilical fibres, where U, W ∈ Γ(V),
H is the mean curvature vector field of the fiber.

Proposition 13. Let F be a Lagrangian submersion from Kähler manifold (M, g1, J)
onto a Riemannian manifold (N, g) with totally umbilical fibers with dim(V) > 1.
Then the fibers are totally geodesic.

We note that Proposition 13 was already given in [12] as Proposition 5.4.

Lemma 14. For an anti-invariant Riemannian submersion, we have

g1(TV U, X) = −g1(TV BX, JU) + g1(ACXJU, V ),

for U, V ∈ Γ(V) and X ∈ Γ(H). Observe that if F is a Clairaut anti-invariant
submersion, we have

AJUCX = X(f)U + JU(f)BX,

and if dim(V) > 1, we get
AJU CX = X(f)U,

for basic CX .
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From Lemma 14, we also have the following expressions.

Lemma 15. Let F be a Clairaut anti-invariant submersion from a Kähler manifold
(M, g1, J) onto a Riemannian manifold (N, g) with r = ef and dim(V) > 1. Then
we have

r+s∑

i=1

g1(ACY Ei, TBXEi) =
s∑

j=1

g1(ACY μj , TBXμj),(5.9)

r+s∑

i=1

g1(AEiCX,AEiCY ) = rX(f)Y (f) +
s∑

j=1

g1(Aμj CX,Aμj CY ),(5.10)

for X, Y ∈ Γ(H) such that CX and CY are basic .

Proof. For an anti-invariant Riemannian submersion, we can write

r+s∑

i=1

g1(ACY Ei, TBXEi) =
r∑

i=1

g1(ACY Jui, TBXJui) +
s∑

j=1

g1(ACY μj , TBXμj).

Since F is a Clairaut submersion, A is anti-symmetric on H and dim(V) > 1, from
Lemma 14, we have

r+s∑

i=1

g1(ACY Ei, TBXEi) = −
r∑

i=1

Y (f)g1(ui, TBXJui) +
s∑

j=1

g1(ACY μj , TBXμj).

Also since T is anti-symmetric with respect to g1, using Theorem 8, we obtain

r+s∑

i=1

g1(ACY Ei, TBXEi) =−
r∑

i=1

Y (f)g1(BX, ui)g1(gradf, Jui)

+
s∑

j=1

g1(ACY μj, TBXμj).

Then we get (5.9) since f is constant on JV from Theorem 10. In a similar way, we
obtain (5.10).

From (5.10), (5.9) and Lemma 5, we have the following result which characterizes
the fibers.

Proposition 16. Let F be a Clairaut anti-invariant submersion from a Kähler
manifold (M, g1, J) onto a Riemannian manifold (N, g) with r = ef and dim(V) > 1.
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Then we have

ρ(X, X) ≤
r+s∑

i

{2g1((∇EiA)(Ei, CX), BX) + g1((∇EiT )(BX, BX), Ei)}

+ ‖ traceA(.)BX ‖2
JV⊕μ −4

s∑

i

g1(AμiCX, TBXμi)

+
r∑

i

{2g1((∇BXT )(ui, ui), CX) + g1((∇CXT )(ui, ui), CX)

−2g1((∇uiT )(BX, ui), CX) + g1((∇uiA)(CX, CX), ui)

−g1(Tuiui, TBXBX)}+ ‖ traceACX(.) ‖2
V + ‖ traceTBX(.) ‖2

V
−3 ‖ traceA(.)CX ‖2

μ +ρ∗(CX, CX) + ρ̂(BX, BX),

for X ∈ Γ(H) such that CX is basic. The equality case is satisfied if and only if f

is constant on the horizontal distribution, that is, F has totally geodesic fibers. In the
equality case, it takes the following form

ρ(X, X) =
r+s∑

i

2g1((∇EiA)(Ei, CX), BX)+ ‖ traceACX (.) ‖2
V

+
r∑

i

g1((∇uiA)(CX, CX), ui)+‖ traceA(.)BX ‖2
JV⊕μ +ρ∗(CX, CX)

− 3 ‖ traceA(.)CX ‖2
μ +ρ̂(BX, BX).

Also from Theorem 7 and Corollary 12, we have

Corollary 17. Let F be a Clairaut Lagrangian submersion from a Kähler manifold
(M, g1, J) onto a Riemannian manifold (N, g) with r = ef and dimM > 2. Then
(M, g1, J) is Einstein if and only if the fibers and the base space (N, g) are Einstein.
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